Imperial College London

DrCristinaLo Celso

Faculty of Natural SciencesDepartment of Life Sciences

Reader in Stem Cell Biology
 
 
 
//

Contact

 

+44 (0)20 7594 5359c.lo-celso

 
 
//

Location

 

550Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

57 results found

Beerman I, Luis TC, Singbrant S, Lo Celso C, Méndez-Ferrer Set al., 2017, The evolving view of the hematopoietic stem cell niche., Exp Hematol, Vol: 50, Pages: 22-26

Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled "The evolving view of the hematopoietic stem cell niche," which we summarize here.

JOURNAL ARTICLE

Lo Celso C, 2017, Revealing the inner workings of human HSC adhesion, BLOOD, Vol: 129, Pages: 921-922, ISSN: 0006-4971

JOURNAL ARTICLE

MacLean AL, Lo Celso C, Stumpf MPH, 2017, Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis, STEM CELLS, Vol: 35, Pages: 80-88, ISSN: 1066-5099

JOURNAL ARTICLE

Secklehner J, Lo Celso C, Carlin LM, 2017, Intravital microscopy in historic and contemporary immunology, IMMUNOLOGY AND CELL BIOLOGY, Vol: 95, Pages: 506-513, ISSN: 0818-9641

JOURNAL ARTICLE

Hawkins ED, Duarte D, Akinduro O, Khorshed RA, Passaro D, Nowicka M, Straszkowski L, Scott MK, Rothery S, Ruivo N, Foster K, Waibel M, Johnstone RW, Harrison SJ, Westerman DA, Quach H, Gribben J, Robinson MD, Purton LE, Bonnet D, Lo Celso Cet al., 2016, T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments, NATURE, Vol: 538, Pages: 518-+, ISSN: 0028-0836

JOURNAL ARTICLE

Khorshed RA, Lo Celso C, 2016, MACHINE LEARNING CLASSIFICATION OF COMPLEX VASCULATURE STRUCTURES FROM IN-VIVO BONE MARROW 3D DATA, IEEE 13th International Symposium on Biomedical Imaging (ISBI), Publisher: IEEE, Pages: 1217-1220, ISSN: 1945-7928

CONFERENCE PAPER

Khorshed RA, Lo Celso C, 2016, Automated identification and measurement of Hematopoietic Stem Cells in 3D Intravital Microscopy Data, Microscopy and Analysis, Editors: Stanciu, Publisher: InTech, ISBN: 978-953-51-2578-5

Image analysis and quantification of Haematopoietic stem cells (HSCs) position within their surrounding microenvironment in the bone marrow is a fast growing area of research, as it holds the key to understanding the dynamics of HSC-niche interactions and their multiple implications in normal tissue development and in response to various stress events. However, this area of research is very challenging due to the complex cellular structure of such images. Therefore, automated image analysis tools are required to simplify the biological interpretation of 3D HSC microenvironment images. In this chapter, we describe how 3D intravital microscopy data can be visualised and analysed using a computational method that allows the automated quantification of HSC position relative to surrounding niche components.

BOOK CHAPTER

Lo Celso C, Hawkins ED, Duarte D, Akinduro O, Khorshed RA, Passaro D, Nowicka M, Straszkowski L, Scott MK, Rothery S, Ruivo N, Foster K, Waibel M, Johnstone RW, Harrison SJ, Westerman DA, Quach H, Gribben J, Robinson MD, Purton LE, Bonnet Det al., 2016, Intravital Microscopy Reveals Fundamental Differences in the Interaction of Stem Cells and T Acute Lymphoblastic Leukaemia with the Bone Marrow Microenvironment, 58th Annual Meeting and Exposition of the American-Society-of-Hematology, Publisher: AMER SOC HEMATOLOGY, ISSN: 0006-4971

CONFERENCE PAPER

Silberstein L, Goncalves KA, Kharchenko PV, Turcotte R, Kfoury Y, Mercier F, Baryawno N, Severe N, Bachand J, Spencer JA, Papazian A, Lee D, Chitteti BR, Srour EF, Hoggatt J, Tate T, Lo Celso C, Ono N, Nutt S, Heino J, Sipilä K, Shioda T, Osawa M, Lin CP, Hu G-F, Scadden DTet al., 2016, Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators., Cell Stem Cell, Vol: 19, Pages: 530-543

Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function.

JOURNAL ARTICLE

Vainieri ML, Blagborough AM, MacLean AL, Haltalli MLR, Ruivo N, Fletcher HA, Stumpf MPH, Sinden RE, Lo Celso Cet al., 2016, Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points, OPEN BIOLOGY, Vol: 6, ISSN: 2046-2441

JOURNAL ARTICLE

Khorshed RA, Hawkins ED, Duarte D, Scott MK, Akinduro OA, Rashidi NM, Spitaler M, Lo Celso Cet al., 2015, Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data, STEM CELL REPORTS, Vol: 5, Pages: 139-153, ISSN: 2213-6711

JOURNAL ARTICLE

Batista S, Maniati E, Reynolds LE, Tavora B, Lees DM, Fernandez I, Elia G, Casanovas O, Lo Celso C, Hagemann T, Hodivala-Dilke Ket al., 2014, Haematopoietic focal adhesion kinase deficiency alters haematopoietic homeostasis to drive tumour metastasis, NATURE COMMUNICATIONS, Vol: 5, ISSN: 2041-1723

JOURNAL ARTICLE

Rashidi NM, Lo Celso C, 2014, Flying back to the nest: Intravital microscopy reveals how the niche can induce stemness., Intravital, Vol: 3, ISSN: 2165-9087

JOURNAL ARTICLE

Rashidi NM, Scott MK, Scherf N, Krinner A, Kalchschmidt JS, Gounaris K, Selkirk ME, Roeder I, Lo Celso Cet al., 2014, In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells, BLOOD, Vol: 124, Pages: 79-83, ISSN: 0006-4971

JOURNAL ARTICLE

Scott MK, Akinduro O, Lo Celso C, 2014, In Vivo 4-Dimensional Tracking of Hematopoietic Stem and Progenitor Cells in Adult Mouse Calvarial Bone Marrow, JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, ISSN: 1940-087X

JOURNAL ARTICLE

Carlson AL, Fujisaki J, Wu J, Runnels JM, Turcotte R, Lo Celso C, Scadden DT, Strom TB, Lin CPet al., 2013, Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label, PLOS ONE, Vol: 8, ISSN: 1932-6203

JOURNAL ARTICLE

Fink J, Kent D, Li J, Hawkins E, Lo Celso C, Green Aet al., 2013, HOMOZYGOUS JAK2V617F DRIVES RAPID HEMATOPOIETIC STEM CELL PROLIFERATION AND DIFFERENTIATION AT THE EXPENSE OF SELF-RENEWAL, 42nd Annual Scientific Meeting of the International-Society-for-Experimental-Hematology-and-Stem-Cells (ISEH), Publisher: ELSEVIER SCIENCE INC, Pages: S15-S15, ISSN: 0301-472X

CONFERENCE PAPER

Hawkins ED, Lo Celso C, 2013, Subdivision of bone marrow microenvironments: purpose built homes for haematopoietic stem cells, EMBO JOURNAL, Vol: 32, Pages: 176-177, ISSN: 0261-4189

JOURNAL ARTICLE

Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LEet al., 2013, Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies, CELL STEM CELL, Vol: 13, Pages: 520-533, ISSN: 1934-5909

JOURNAL ARTICLE

Lo Celso C, 2013, IN VIVO IMAGING OF QUIESCENT AND PHYSIOLOGICALLY ACTIVATED HAEMATOPOIETIC STEM CELLS, 42nd Annual Scientific Meeting of the International-Society-for-Experimental-Hematology-and-Stem-Cells (ISEH), Publisher: ELSEVIER SCIENCE INC, Pages: S4-S4, ISSN: 0301-472X

CONFERENCE PAPER

MacLean AL, Lo Celso C, Stumpf MPH, 2013, Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled, JOURNAL OF THE ROYAL SOCIETY INTERFACE, Vol: 10, ISSN: 1742-5689

JOURNAL ARTICLE

Progatzky F, Dallman MJ, Lo Celso C, 2013, From seeing to believing: labelling strategies for in vivo cell-tracking experiments, INTERFACE FOCUS, Vol: 3, ISSN: 2042-8898

JOURNAL ARTICLE

Roeder I, Krinner A, Scherf N, Scott M, Rashidi N, Pompe T, Lo Celso Cet al., 2013, QUANTIFICATION OF STEM CELL/NICHE INTERACTIONS BY COUPLING IN VIVO IMAGING AND IN SILICO SIMULATION, 42nd Annual Scientific Meeting of the International-Society-for-Experimental-Hematology-and-Stem-Cells (ISEH), Publisher: ELSEVIER SCIENCE INC, Pages: S31-S31, ISSN: 0301-472X

CONFERENCE PAPER

Barrett O, Sottocornola R, Lo Celso C, 2012, In vivo imaging of hematopoietic stem cells in the bone marrow niche., Methods Mol Biol, Vol: 916, Pages: 231-242

Even though hematopoietic stem cells (HSC) are amongst the first somatic stem cells exploited for therapeutic purposes, their application is still limited by the inability to expand them ex vivo without impairing their function. Moreover, it has recently emerged that several types of leukemia develop and relapse through complex interactions with bone marrow (BM) components and may directly affect the HSC and their niche. Increasing attention has therefore been dedicated to the BM microenvironment the HSC reside in, with the view that a better understanding of the molecular regulators of HSC-niche interaction in vivo will allow improving HSC mobilization, collection and transplantation and provide clues for the development of innovative leukemia treatments. This chapter focuses on a recently established technique for the visualization of transplanted hematopoietic stem and progenitor cells (HSPC) within the calvarium bone marrow of live mice (Lo Celso et al. Nature 457:92-96, 2007). Intravital microscopy is a rapidly developing field, driven by constant improvement in both detection technologies (i.e., spatial resolution, depth of penetration, spectral definition) and probe availability (i.e., increasingly sophisticated genetic and chemical reporter systems). We therefore discuss the current limitations and challenges related to intravital microscopy of the HSC niche and introduce a number of potential imaging approaches, which could be promising candidates for future development of this technique.

JOURNAL ARTICLE

Sottocornola R, Lo Celso C, 2012, Dormancy in the stem cell niche, STEM CELL RESEARCH & THERAPY, Vol: 3, ISSN: 1757-6512

JOURNAL ARTICLE

Cornejo MG, Mabialah V, Sykes SM, Khandan T, Lo Celso C, Lopez CK, Rivera-Munoz P, Rameau P, Tothova Z, Aster JC, DePinho RA, Scadden DT, Gilliland DG, Mercher Tet al., 2011, Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification, BLOOD, Vol: 118, Pages: 1264-1273, ISSN: 0006-4971

JOURNAL ARTICLE

Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Cote D, Sykes M, Strom TB, Scadden DT, Lin CPet al., 2011, In vivo imaging of T-reg cells providing immune privilege to the haematopoietic stem-cell niche, NATURE, Vol: 474, Pages: 216-U256, ISSN: 0028-0836

JOURNAL ARTICLE

Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM, Ferraro F, Shterental S, Lin CP, Gilliland DG, Scadden DT, Armstrong SA, Williams DAet al., 2011, Differential niche and Wnt requirements during acute myeloid leukemia progression, BLOOD, Vol: 118, Pages: 2849-2856, ISSN: 0006-4971

JOURNAL ARTICLE

Lo Celso C, Lin CP, Scadden DT, 2011, In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow, NATURE PROTOCOLS, Vol: 6, Pages: 1-14, ISSN: 1754-2189

JOURNAL ARTICLE

Lo Celso C, Scadden DT, 2011, The haematopoietic stem cell niche at a glance, JOURNAL OF CELL SCIENCE, Vol: 124, Pages: 3529-3535, ISSN: 0021-9533

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00588123&limit=30&person=true