Imperial College London

Dr Christian Malaga-Chuquitaype

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 5007c.malaga Website CV

 
 
//

Assistant

 

Ms Ruth Bello +44 (0)20 7594 6040

 
//

Location

 

322Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Thiers:2018,
author = {Thiers, Moggia R and Malaga, Chuquitaype C},
title = {Seismic protection of cross-laminated timber buildings with supplemental inertia devices},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Multi-storey Cross-Laminated Timber (CLT) buildings are gaining popularity throughout the world due to their many constructive and environmental advantages. Several researchers have proposed the use of post-tensioned rocking connections to improve the seismic performance of timber walled buildings. Although experimental results show that this system has a ductile behaviour and good energy dissipation characteristics, previous research also suggests that high inter-storey drifts and floor accelerations can develop in medium and high-rise timber buildings during earthquakes causing excessive non-structural and content damage. This paper studies the possibility of incorporating inerter-based dampers to reduce these demands and improve the overall seismic performance of Rocking CLT Walled buildings. Firstly, the seismic performance of a series of benchmark buildings designed using Direct Displacement Based Design (DDBD) procedures is assessed. Multiple Stripe Analyses (MSA) are performed to study the response of the buildings for a wide range of seismic intensity levels. The structural performance is examined in terms of peak inter-storey drifts and floor acceleration demands. Secondly, a Tuned InertoViscous Damper (TIVD) system is designed to obtain an effective mass ratio for the first mode of μr=0.1. A numerical model for the TIVD is defined and incorporated into the structural models previously analysed. Response history analyses are then performed on complete numerical models and the corresponding performance parameters compared in order to assess the effectiveness of the protective measure.
AU - Thiers,Moggia R
AU - Malaga,Chuquitaype C
PY - 2018///
TI - Seismic protection of cross-laminated timber buildings with supplemental inertia devices
ER -