Imperial College London

Dr Clare McCormack

Faculty of MedicineSchool of Public Health

Research Associate







Bay 2Medical SchoolSt Mary's Campus





Publication Type

7 results found

McCormack C, Goethals O, Goeyvaerts N, Woot de Trixhe XD, Geluykens P, Borrenberghs D, Ferguson NM, Ackaert O, Dorigatti Iet al., 2023, Modelling the impact of JNJ-1802, a first-in-class dengue inhibitor blocking the NS3-NS4B interaction, on in-vitro DENV-2 dynamics, PLoS Computational Biology, Vol: 19, ISSN: 1553-734X

Dengue virus (DENV) is a public health challenge across the tropics and subtropics. Currently, there is no licensed prophylactic or antiviral treatment for dengue. The novel DENV inhibitor JNJ-1802 can significantly reduce viral load in mice and non-human primates. Here, using a mechanistic viral kinetic model calibrated against viral RNA data from experimental in-vitro infection studies, we assess the in-vitro inhibitory effect of JNJ-1802 by characterising infection dynamics of two DENV-2 strains in the absence and presence of different JNJ-1802 concentrations. Viral RNA suppression to below the limit of detection was achieved at concentrations of >1.6 nM, with a median concentration exhibiting 50% of maximal inhibitory effect (IC50) of 1.23x10-02 nM and 1.28x10-02 nM for the DENV-2/RL and DENV-2/16681 strains, respectively. This work provides important insight into the in-vitro inhibitory effect of JNJ-1802 and presents a first step towards a modelling framework to support characterization of viral kinetics and drug effect across different host systems.

Journal article

Vicco A, McCormack CP, Pedrique B, Amuasi JH, Awuah AA-A, Obirikorang C, Struck NS, Lorenz E, May J, Ribeiro I, Malavige GN, Donnelly CA, Dorigatti Iet al., 2023, A simulation-based method to inform serosurvey design for estimating the force of infection using existing blood samples., PLoS Comput Biol, Vol: 19

The extent to which dengue virus has been circulating globally and especially in Africa is largely unknown. Testing available blood samples from previous cross-sectional serological surveys offers a convenient strategy to investigate past dengue infections, as such serosurveys provide the ideal data to reconstruct the age-dependent immunity profile of the population and to estimate the average per-capita annual risk of infection: the force of infection (FOI), which is a fundamental measure of transmission intensity. In this study, we present a novel methodological approach to inform the size and age distribution of blood samples to test when samples are acquired from previous surveys. The method was used to inform SERODEN, a dengue seroprevalence survey which is currently being conducted in Ghana among other countries utilizing samples previously collected for a SARS-CoV-2 serosurvey. The method described in this paper can be employed to determine sample sizes and testing strategies for different diseases and transmission settings.

Journal article

Lim A-Y, Jafari Y, Caldwell JM, Clapham HE, Gaythorpe KAM, Hussain-Alkhateeb L, Johansson MA, Kraemer MUG, Maude RJ, McCormack CP, Messina JP, Mordecai EA, Rabe IB, Reiner RC, Ryan SJ, Salje H, Semenza JC, Rojas DP, Brady OJet al., 2023, A systematic review of the data, methods and environmental covariates used to map Aedes-borne arbovirus transmission risk, BMC Infectious Diseases, Vol: 23, ISSN: 1471-2334

BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sampl

Journal article

McCormack CP, Yan AWC, Brown JC, Sukhova K, Peacock TP, Barclay WS, Dorigatti Iet al., 2023, Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants in different cell types., Journal of the Royal Society Interface, Vol: 20, Pages: 1-12, ISSN: 1742-5662

We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants.

Journal article

McCormack CP, Ghani AC, Ferguson NM, 2019, Fine-scale modelling finds that breeding site fragmentation can reduce mosquito population persistence, COMMUNICATIONS BIOLOGY, Vol: 2

Journal article

Dorigatti I, McCormack C, Nedjati-Gilani G, Ferguson NMet al., 2017, Using Wolbachia for Dengue Control: Insights from Modelling., Trends in Parasitology, Vol: 34, Pages: 102-113, ISSN: 1471-5007

Dengue is the most common arboviral infection of humans, responsible for a substantial disease burden across the tropics. Traditional insecticide-based vector-control programmes have limited effectiveness, and the one licensed vaccine has a complex and imperfect efficacy profile. Strains of the bacterium Wolbachia, deliberately introduced into Aedes aegyptimosquitoes, have been shown to be able to spread to high frequencies in mosquito populations in release trials, and mosquitoes infected with these strains show markedly reduced vector competence. Thus, Wolbachia represents an exciting potential new form of biocontrol for arboviral diseases, including dengue. Here, we review how mathematical models give insight into the dynamics of the spread of Wolbachia, the potential impact of Wolbachia on dengue transmission, and we discuss the remaining challenges in evaluation and development.

Journal article


Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01005447&limit=30&person=true