Imperial College London

DrChristosRossios

Faculty of MedicineNational Heart & Lung Institute

Research Associate
 
 
 
//

Contact

 

c.rossios05 Website

 
 
//

Location

 

Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

51 results found

Kermani NZ, Song W-J, Badi Y, Versi A, Guo Y, Sun K, Bhavsar P, Howarth P, Dahlen S-E, Sterk PJ, Djukanovic R, Adcock IM, Chung KF, U-BIOPRED Consortiumet al., 2021, Correction to: Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma., Respiratory Research, Vol: 22, Pages: 1-3, ISSN: 1465-9921

Journal article

Kermani N, Song W-J, Badi Y, Versi A, Guo Y, Sun K, Bhavsar P, Howarth P, Dahlen S-E, Sterk PJ, Djukanovic R, Adcock I, Chung KFet al., 2021, Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma, Respiratory Research, Vol: 22, ISSN: 1465-9921

BackgroundPatients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells.MethodsWe examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels.ResultsACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes.ConclusionLevels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma.

Journal article

Adcock I, Alderawi A, Caramori G, Baker E, Hitchings A, Rahman I, Rossios C, Casolari P, Papi A, Ortega V, Curtis J, Dunmore S, Kirkham Pet al., 2020, FN3K expression in COPD: A potential comorbidity factor for cardiovascular disease, BMJ Open Respiratory Research, Vol: 7, ISSN: 2052-4439

Introduction Cigarette smoking and oxidative stress are common risk factors for the multi-morbidities associated with chronic obstructive pulmonary disease (COPD). Elevated levels of advanced glycation endproducts (AGE) increase the risk of cardiovascular disease (CVD) comorbidity and mortality. The enzyme fructosamine-3-kinase (FN3K) reduces this risk by lowering AGE levels.Methods The distribution and expression of FN3K protein in lung tissues from stable COPD and control subjects, as well as an animal model of COPD, was assessed by immunohistochemistry. Serum FN3K protein and AGE levels were assessed by ELISA in patients with COPD exacerbations receiving metformin. Genetic variants within the FN3K and FN3K-RP genes were evaluated for associations with cardiorespiratory function in the Subpopulations and Intermediate Outcome Measures in COPD Study cohort.Results This pilot study demonstrates that FN3K expression in the blood and human lung epithelium is distributed at either high or low levels irrespective of disease status. The percentage of lung epithelial cells expressing FN3K was higher in control smokers with normal lung function, but this induction was not observed in COPD patients nor in a smoking model of COPD. The top five nominal FN3K polymorphisms with possible association to decreased cardiorespiratory function (p<0.008–0.02), all failed to reach the threshold (p<0.0028) to be considered highly significant following multi-comparison analysis. Metformin enhanced systemic levels of FN3K in COPD subjects independent of their high-expression or low-expression status.Discussion The data highlight that low and high FN3K expressors exist within our study cohort and metformin induces FN3K levels, highlighting a potential mechanism to reduce the risk of CVD comorbidity and mortality.

Journal article

Östling J, van Geest M, Schofield JPR, Jevnikar Z, Wilson S, Ward J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlen S-E, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Sun K, Pandis I, Auffray C, Sousa AR, Guo Y, Adcock IM, Howarth P, Chung KF, Bigler J, Sterk PJ, Skipp PJ, Djukanović R, Vaarala O, U-BIOPRED Study Groupet al., 2019, IL-17-high asthma with features of a psoriasis immunophenotype, Journal of Allergy and Clinical Immunology, Vol: 144, Pages: 1198-1213, ISSN: 0091-6749

BACKGROUND: The role of interleukin-17 immunity is well established in inflammatory diseases like psoriasis and inflammatory bowel disease but not in asthma where further study is required. OBJECTIVE: To undertake a deep-phenotyping study of asthmatics with up-regulated interleukin-17 immunity. METHODS: Whole genome transcriptomic analysis was performed using epithelial brushings, bronchial biopsies (91 asthmatics patients and 46 healthy controls) and whole blood samples (n=498) from the U-BIOPRED cohort. Gene signatures induced in vitro by interleukin-17 and interleukin-13 in bronchial epithelial cells were used to identify patients with interleukin-17-high and interleukin-13-high phenotypes of asthma. RESULTS: 22 out of 91 patients were identified with interleukin-17 and 9 patients with interleukin-13 gene signatures. The interleukin-17-high asthmatics were characterised by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis, the differentially expressed genes in interleukin-17-high patients were shared with those reported as altered in psoriasis lesions, and included genes regulating epithelial barrier function and defence mechanisms, such as interleukin-1β, interleukin-6, interleukin-8, and beta-defensin. CONCLUSION: The interleukin-17-high asthma phenotype, characterized by bronchial epithelial dysfunction, upregulated anti-microbial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway which should be considered as a biomarker for this phenotype in further studies, including clinical trials targeting interleukin-17.

Journal article

Schofield JPR, Burg D, Nicholas B, Strazzeri F, Brandsma J, Staykova D, Folisi C, Bansal AT, Xian Y, Guo Y, Rowe A, Corfield J, Wilson S, Ward J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlen S-E, Fowler SJ, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Sun K, Pandis I, Riley J, Auffray C, De Meulder B, Lefaudeux D, Sousa AR, Adcock IM, Chung KF, Sterk PJ, Skipp PJ, Djukanović R, U-BIOPRED Study Groupet al., 2019, Stratification of asthma phenotypes by airway proteomic signatures, Journal of Allergy and Clinical Immunology, Vol: 144, Pages: 70-82, ISSN: 0091-6749

BACKGROUND: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy to predict treatment responses and a need for better understanding of the underlying mechanisms. OBJECTIVE: Identify molecular sub-phenotypes of asthma defined by proteomic signatures for improved stratification. METHODS: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyse the proteomes of sputum supernatants from 246 participants (206 asthmatics) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. RESULTS: Analysis of the sputum proteome resulted in 10 clusters, proteotypes, based on similarity in proteomics features, representing discrete molecular sub-phenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined three of these as highly eosinophilic, three as highly neutrophilic, and two as highly atopic with relatively low granulocytic inflammation. For each of these three phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. CONCLUSION: This study provides further stratification of asthma currently classified by quantifying granulocytic inflammation and gives additional insight into their underlying mechanisms which could become targets for novel therapies.

Journal article

Perotin J-M, Schofield JPR, Wilson SJ, Ward J, Brandsma J, Strazzeri F, Bansal A, Yang X, Rowe A, Corfield J, Lutter R, Shaw DE, Bakke PS, Caruso M, Dahlén B, Fowler SJ, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Sun K, Pandis I, Auffray C, De Meulder B, Lefaudeux D, Riley JH, Sousa AR, Dahlen S-E, Adcock IM, Chung KF, Sterk PJ, Skipp PJ, Collins JE, Davies DE, Djukanović R, U-BIOPRED Study Groupet al., 2019, Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux, European Respiratory Journal, Vol: 53, ISSN: 0903-1936

Journal article

De Meulder B, Lefaudeux D, Bansal AT, Mazein A, Chaiboonchoe A, Ahmed H, Balaur I, Saqi M, Pellet J, Ballereau S, Lemonnier N, Sun K, Pandis I, Yang X, Batuwitage M, Kretsos K, van Eyll J, Bedding A, Davison T, Dodson P, Larminie C, Postle A, Corfield J, Djukanovic R, Chung KF, Adcock IM, Guo Y-K, Sterk PJ, Manta A, Rowe A, Baribaud F, Auffray C, U-BIOPRED Study Group and the eTRIKS Consortiumet al., 2018, A computational framework for complex disease stratification from multiple large-scale datasets, BMC Systems Biology, Vol: 12, ISSN: 1752-0509

BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.

Journal article

Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Dahlen SE, Krug N, Sandstrom T, Shaw DE, Lutter R, Bakke P, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Djukanovic R, Sterk PJ, Guo Y, Adcock I, Chung KFet al., 2018, Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis, European Respiratory Journal, Vol: 51, ISSN: 0903-1936

Background: Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi1omic analysis will enable the definition of smoking and ex1smoking severe asthma molecular phenotypes.Methods The U1BIOPRED severe asthma patients containing current1smokers (CSA), ex1smokers (ESA), non1smokers (NSA) and healthy non1smokers (NH) was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed. Results Colony stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene Set Variation Analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated. Conclusion Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level with CSA having increased CSF2 expression and ESA patients showed sustained loss of epithelial barrier processes.

Journal article

Rossios C, Pavlidis S, Gibeon D, Horowitz D, Branigan P, Loza M, Baribaud F, Rao N, Chung F, Adcock IMet al., 2017, An Impaired Innate Immune Response In Airway Smooth Muscle Cells From Chronic Cough Patients, International Conference of the American-Thoracic-Society (ATS), Publisher: Portland Press, Biochemical Society, ISSN: 0144-8463

Chronic cough is associated with airway inflammation and remodelling. Abnormal airway smooth muscle cell (ASMC) function may underlie mechanisms of chronic cough. Our objective was to examine the transcriptome and focused secretome of ASMCs from chronic cough patients and healthy non-cough volunteers. ASMC gene expression profiling was performed at baseline and/or after stimulation with polyinosinic:polycytidylic acid (poly(I:C)) to mimic viral infection. Supernatants were collected for multiplex analysis. Our results showed no significant differentially expressed genes (DEGs, false discovery rate (FDR) <0.05) between chronic cough and healthy non-cough ASMCs at baseline. Poly(I:C) stimulation resulted in 212 DEGs (>1.5 fold-change, FDR <0.05) in ASMCs from chronic cough patients compared with 1674 DEGs in healthy non-cough volunteers. The top up-regulated genes included chemokine (C–X–C motif) ligand (CXCL) 11 (CXCL11), CXCL10, chemokine (C–C motif) ligand (CCL) 5 (CCL5) and interferon-induced protein 44 like (IFI44L) corresponding with inflammation and innate immune response pathways. ASMCs from cough subjects had enhanced activation of viral response pathways in response to poly(I:C) compared with healthy non-cough subjects, reduced activation of pathways involved in chronic inflammation and equivalent activation of neuroregulatory genes. The poly(I:C)-induced release of inflammatory mediators, including CXCL8, interleukin (IL)-6 and CXCL1, from ASMCs from cough patients was significantly impaired compared with healthy non-cough subjects. Addition of fluticasone propionate (FP) to poly(I:C)-treated ASMCs resulted in greater gene expression changes in healthy non-cough ASMCs. FP had a differential effect on poly(I:C)-induced mediator release between chronic cough and healthy non-cough volunteers. In conclusion, altered innate immune and inflammatory gene profiles within ASMCs, rather than infiltrating cells or nerves, may drive the cough

Conference paper

Pavlidis S, Guo Y, Sun K, Rossios C, Rowe A, Loza M, Baribaud F, Hoda U, Sousa A, Corfield J, Djukanovic R, Sterk PJ, Adcock I, Chung F, Auffray Cet al., 2017, Molecular evidence of Group 1 innate lymphoid cell activation in the U-BIOPRED cohort, European-Respiratory-Society (ERS) International Congress, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Rossios C, Pavlidis S, Gibeon D, Mumby S, Durham A, Ojo O, Horowitz D, Loza M, Baribaud F, Rao N, Chung KF, Adcock IM, U-BIOPRED WP6 study groupet al., 2017, Impaired innate immune gene profiling in airway smooth muscle cells from chronic cough patients., Bioscience Reports, ISSN: 0144-8463

Chronic cough is associated with airway inflammation and remodelling. Abnormal airway smooth muscle cell (ASMC) function may underlie mechanisms of chronic cough.  Our objective was to examine the transcriptome and focused secretome of ASMCs from chronic cough patients and healthy non-cough volunteers.  ASMC gene expression profiling was performed at baseline and/or after stimulation with polyinosinic:polycytidylic acid (poly(I:C)) to mimic viral infection.  Supernatants were collected for multiplex analysis.  Our results showed no significant differentially expressed genes (DEGs, false discovery rate: FDR<0.05) between chronic cough and healthy non-cough ASMCs at baseline.  Poly(I:C) stimulation resulted in 212 DEGs (>1.5 fold change, FDR <0.05) in ASMCs from chronic cough patients compared with 1674 DEGs in healthy non-cough volunteers.  The top up-regulated genes included CXCL11 , CXCL10 , CCL5 and IFI44L corresponding with inflammation and innate immune response pathways.  ASMCs from cough subjects had enhanced activation of viral response pathways in response to poly(I:C) compared to healthy non-cough subjects, reduced activation of pathways involved in chronic inflammation and equivalent activation of neuroregulatory genes.  The poly(I:C)-induced release of inflammatory mediators, including CXCL8, IL-6 and CXCL1, from ASMCs from cough patients was significantly impaired compared to healthy non-cough subjects.  Addition of fluticasone propionate (FP) to poly(I:C)-treated ASMCs resulted in greater gene expression changes in healthy non-cough ASMCs.  FP had a differential effect on poly(I:C)-induced mediator release between chronic cough and healthy non-cough volunteers.  In conclusion, altered innate immune and inflammatory gene profiles within ASMCs, rather than infiltrating cells or nerves, may drive the cough response following respiratory viral infection.

Journal article

Papaioannou AI, Spathis A, Kostikas K, Karakitsos P, Papiris S, Rossios Cet al., 2017, The role of endosomal toll-like receptors in asthma, EUROPEAN JOURNAL OF PHARMACOLOGY, Vol: 808, Pages: 14-20, ISSN: 0014-2999

Journal article

Pavlidis S, Guo Y, Sun K, Rossios C, Rowe A, Loza M, Baribaud F, Hoda U, Sousa A, Corfield J, Djukanovic R, Sterk PJ, Adcock I, Chung KFet al., 2017, Comparison between bronchial and nasal brushings gene expression in the u-biopred cohort, International Conference of the American-Thoracic-Society (ATS), Publisher: American Thoracic Society, ISSN: 1073-449X

Conference paper

Rossios C, Pavlidis S, Hoda U, Kuo CH, Wiegman C, Russell K, Sun K, Loza MJ, Baribaud F, Durham AL, Ojo O, Lutter R, Rowe A, Bansal A, Auffray C, Sousa A, Corfield J, Djukanovic R, Guo Y, Sterk PJ, Chung KF, Adcock IM, Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes U-BIOPRED Consortia Project Teamet al., 2017, Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma, Journal of Allergy and Clinical Immunology, Vol: 141, Pages: 560-570, ISSN: 1097-6825

BACKGROUND: Sputum analysis in asthmatic patients is used to define airway inflammatory processes and might guide therapy. OBJECTIVE: We sought to determine differential gene and protein expression in sputum samples from patients with severe asthma (SA) compared with nonsmoking patients with mild/moderate asthma. METHODS: Induced sputum was obtained from nonsmoking patients with SA, smokers/ex-smokers with severe asthma, nonsmoking patients with mild/moderate asthma (MMAs), and healthy nonsmoking control subjects. Differential cell counts, microarray analysis of cell pellets, and SOMAscan analysis of sputum analytes were performed. CRID3 was used to inhibit the inflammasome in a mouse model of SA. RESULTS: Eosinophilic and mixed neutrophilic/eosinophilic inflammation were more prevalent in patients with SA compared with MMAs. Forty-two genes probes were upregulated (>2-fold) in nonsmoking patients with severe asthma compared with MMAs, including IL-1 receptor (IL-1R) family and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NRLP3) inflammasome members (false discovery rate < 0.05). The inflammasome proteins nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 1 (NLRP1), NLRP3, and nucleotide-binding oligomerization domain (NOD)-like receptor C4 (NLRC4) were associated with neutrophilic asthma and with sputum IL-1β protein levels, whereas eosinophilic asthma was associated with an IL-13-induced TH2 signature and IL-1 receptor-like 1 (IL1RL1) mRNA expression. These differences were sputum specific because no activation of NLRP3 or enrichment of IL-1R family genes in bronchial brushings or biopsy specimens in patients with SA was observed. Expression of NLRP3 and of the IL-1R family genes was validated in the Airway Disease Endotyping for Personalized Therapeutics cohort. Inflammasome inhibition using CRID3 prevented airway hyperresponsiveness and airway inflammati

Journal article

Chung KF, Seiffert J, Chen S, Theodorou IG, Goode AE, Leo BF, McGilvery CM, Hussain F, Wiegman C, Rossios C, Zhu J, Gong J, Tariq F, Yufit V, Monteith AJ, Hashimoto T, Skepper JN, Ryan MP, Zhang J, Tetley TD, Porter AEet al., 2017, Inactivation, clearance, and functional effects of lung-instilled short and long silver nanowires in rats, ACS Nano, Vol: 11, Pages: 2652-2664, ISSN: 1936-086X

There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague–Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health.

Journal article

Kuo CS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Hoda U, Rossios C, Sousa A, Wilson SJ, Howarth P, Dahlen B, Dahlen SE, Chanez P, Shaw D, Krug N, Sandström T, De Meulder B, Lefaudeux D, Fowler S, Fleming L, Corfield J, Auffray C, Sterk PJ, Djukanovic R, Guo Y, Adcock IM, Chung KF, U-BIOPRED Project Teamet al., 2017, A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED, American Journal of Respiratory and Critical Care Medicine, Vol: 195, Pages: 443-455, ISSN: 1535-4970

RATIONALE AND OBJECTIVES: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. We used transcriptomic profiling of airway tissues to help define asthma phenotypes. METHODS: The transcriptome from bronchial biopsies and epithelial brushings of 107 moderate-to-severe asthmatics were annotated by gene-set variation analysis (GSVA) using 42 gene-signatures relevant to asthma, inflammation and immune function. Topological data analysis (TDA) of clinical and histological data was used to derive clusters and the nearest shrunken centroid algorithm used for signature refinement. RESULTS: 9 GSVA signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper type 2 (Th-2) cytokines and lack of corticosteroid response (Group 1 and Group 3). Group 1 had the highest submucosal eosinophils, high exhaled nitric oxide (FeNO) levels, exacerbation rates and oral corticosteroid (OCS) use whilst Group 3 patients showed the highest levels of sputum eosinophils and had a high BMI. In contrast, Group 2 and Group 4 patients had an 86% and 64% probability of having non-eosinophilic inflammation. Using machine-learning tools, we describe an inference scheme using the currently-available inflammatory biomarkers sputum eosinophilia and exhaled nitric oxide levels along with OCS use that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSION: This analysis demonstrates the usefulness of a transcriptomic-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target Th2-mediated inflammation and/or corticosteroid insensitivity.

Journal article

Loza MJ, Djukanovic R, Chung KF, Horowitz D, Ma K, Branigan P, Barnathan ES, Susulic VS, Silkoff PE, Sterk PJ, Baribaud Fet al., 2016, Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study, RESPIRATORY RESEARCH, Vol: 17, ISSN: 1465-993X

Journal article

Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, Bansal AT, Lutter R, Sousa AR, Corfield J, Pandis I, Bakke PS, Caruso M, Chanez P, Dahlen S-E, Fleming LJ, Fowler SJ, Horvath I, Krug N, Montuschi P, Sanak M, Sandstrom T, Shaw DE, Singer F, Sterk PJ, Roberts G, Adcock IM, Djukanovic R, Auffray C, Chung KF, U-BIOPRED Study Groupet al., 2016, U-BIOPRED clinical adult asthma clusters linked to a subset of sputum -omics, Journal of Allergy and Clinical Immunology, Vol: 139, Pages: 1797-1807, ISSN: 1097-6825

Journal article

Pavlidis S, Adcock I, Chung F, Rowe A, Rossios C, Pandis I, Djukanovich R, Sterk P, Guo Y, Wiegman Cet al., 2016, Enrichment of the Janus kinase (JAK) activation signature in severe asthma sputum: Correlation with IL-13 expression, European Respiratory Congress, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Hogema F, Dai R, Li X, Rossios C, Chung F, Adcock I, Wiegman Cet al., 2016, High-fat diet in mice leads to amplified ozone-induced airway hyperresponsiveness (AHR), mitochondrial dysfunction and insulin resistance, European Respitory Congress, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Kuo CS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Rossios C, Lutter R, Djukanovic R, Sterk PJ, Chung KF, Adcock I, Kuo Yet al., 2016, Sputum transcriptomics identifies co-expressed network signatures associated with Fev1 and sputum neutrophilia in severe asthmatics on oral corticosteroids, International Conference of the American Thoracic Society (ATS), Publisher: American Thoracic Society, ISSN: 1535-4970

Conference paper

Pavlidis S, Rossios C, Loza M, Baribaud F, Rowe A, Kuo CS, Lutter R, Hoda U, Pandis I, Guo Y-K, Sousa AR, Corfield J, Sterk PJ, Djukanovic R, Adcock I, Chung Ket al., 2016, Macrophage Inflammasome Activation In Sputum From Severe Asthmatics, International Conference of the American-Thoracic-Society (ATS), Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Adcock IM, Ngkelo A, Hoffmann RF, Durham AL, Marwick JA, Brandenburg SM, de Bruin HG, Jonker MR, Rossios C, Tsitsiou E, Caramori G, Contoli M, Casolari P, Monaco F, Ando F, Speciale G, Kilty I, Chung KF, Papi A, Lindsay MA, ten Hacken NHT, van den Berge M, Timens W, Barnes PJ, van Oosterhout AJ, Kirkham PA, Heijink IHet al., 2015, Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD, American Journal of Physiology-Lung Cellular and Molecular Physiology, Vol: 309, Pages: L1112-L1123, ISSN: 1522-1504

In Chronic Obstructive Pulmonary Disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. GSK3β inactivation plays a key role in mediating signalling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3β is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of p-GSK3β-ser9, a marker of GSK3β inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers and non-smokers. We observed increased levels of p-GSK3β-ser9 in monocytes, alveolar macrophages and bronchial epithelial cells from COPD patients and control smokers compared to non-smokers. Pharmacological inactivation of GSK3β did not affect CXCL8 or GM-CSF expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3β inactivation is a common effector of oxidative stress induced activation of the MEK/ERK-1/2 and PI3K/Akt signalling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3β inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3β, acting as a ROS-sensitive hub.

Journal article

Shaw DE, Sousa AR, Fowler SJ, Fleming LJ, Roberts G, Corfield J, Pandis I, Bansal AT, Bel EH, Auffray C, Compton CH, Bisgaard H, Bucchioni E, Caruso M, Chanez P, Dahlen B, Dahlen S-E, Dyson K, Frey U, Geiser T, de Verdier MG, Gibeon D, Guo Y-K, Hashimoto S, Hedlin G, Jeyasingham E, Hekking P-PW, Higenbottam T, Horvath I, Knox AJ, Krug N, Erpenbeck VJ, Larsson LX, Lazarinis N, Matthews JG, Middelveld R, Montuschi P, Musial J, Myles D, Pahus L, Sandstrom T, Seibold W, Singer F, Strandberg K, Vestbo J, Vissing N, von Garnier C, Adcock IM, Wagers S, Rowe A, Howarth P, Wagener AH, Djukanovic R, Sterk PJ, Chung KFet al., 2015, Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort, European Respiratory Journal, Vol: 46, Pages: 1308-1321, ISSN: 1399-3003

U-BIOPRED is a European Union consortium of 20 academic institutions, 11 pharmaceutical companies and six patient organisations with the objective of improving the understanding of asthma disease mechanisms using a systems biology approach.This cross-sectional assessment of adults with severe asthma, mild/moderate asthma and healthy controls from 11 European countries consisted of analyses of patient-reported outcomes, lung function, blood and airway inflammatory measurements.Patients with severe asthma (nonsmokers, n=311; smokers/ex-smokers, n=110) had more symptoms and exacerbations compared to patients with mild/moderate disease (n=88) (2.5 exacerbations versus 0.4 in the preceding 12 months; p<0.001), with worse quality of life, and higher levels of anxiety and depression. They also had a higher incidence of nasal polyps and gastro-oesophageal reflux with lower lung function. Sputum eosinophil count was higher in severe asthma compared to mild/moderate asthma (median count 2.99% versus 1.05%; p=0.004) despite treatment with higher doses of inhaled and/or oral corticosteroids.Consistent with other severe asthma cohorts, U-BIOPRED is characterised by poor symptom control, increased comorbidity and airway inflammation, despite high levels of treatment. It is well suited to identify asthma phenotypes using the array of “omic” datasets that are at the core of this systems medicine approach.

Journal article

Fleming L, Murray C, Bansal AT, Hashimoto S, Bisgaard H, Bush A, Frey U, Hedlin G, Singer F, van Aalderen WM, Vissing NH, Zolkipli Z, Selby A, Fowler S, Shaw D, Chung KF, Sousa AR, Wagers S, Corfield J, Pandis I, Rowe A, Formaggio E, Sterk PJ, Roberts Get al., 2015, The burden of severe asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts, European Respiratory Journal, Vol: 46, Pages: 1322-1333, ISSN: 0903-1936

U-BIOPRED aims to characterise paediatric and adult severe asthma using conventional and innovative systems biology approaches.A total of 99 school-age children with severe asthma and 81 preschoolers with severe wheeze were compared with 49 school-age children with mild/moderate asthma and 53 preschoolers with mild/moderate wheeze in a cross-sectional study.Despite high-dose treatment, the severe cohorts had more severe exacerbations compared with the mild/moderate ones (annual medians: school-aged 3.0 versus 1.1, preschool 3.9 versus 1.8; p<0.001). Exhaled tobacco exposure was common in the severe wheeze cohort. Almost all participants in each cohort were atopic and had a normal body mass index. Asthma-related quality of life, as assessed by the Paediatric Asthma Quality of Life Questionnaire (PAQLQ) and the Paediatric Asthma Caregiver's Quality of Life Questionnaire (PACQLQ), was worse in the severe cohorts (mean±se school-age PAQLQ: 4.77±0.15 versus 5.80±0.19; preschool PACQLQ: 4.27±0.18 versus 6.04±0.18; both p≤0.001); however, mild/moderate cohorts also had significant morbidity. Impaired quality of life was associated with poor control and airway obstruction. Otherwise, the severe and mild/moderate cohorts were clinically very similar.Children with severe preschool wheeze or severe asthma are usually atopic and have impaired quality of life that is associated with poor control and airflow limitation: a very different phenotype from adult severe asthma. In-depth phenotyping of these children, integrating clinical data with high-dimensional biomarkers, may help to improve and tailor their clinical management.

Journal article

Kuo SC-H, Guo Y, Pandis I, Pavlidis S, Hoda U, Rossios C, Corfield J, Sousa A, Djukanovic R, Loza M, Baribaud F, Sterk PJ, Adcock IM, Chung K-Fet al., 2015, LATE-BREAKING ABSTRACT: Sputum transcriptome analysis yields eosinophilic and non-eosinophilic inflammatory mechanisms in UBIOPRED asthma cohort, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Guney TG, Danahay H, Durham AL, Rossios C, Chung F, Dowling M, Adcock Iet al., 2015, Characterisation of a novel 3D model of the airways, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Ashmore R, Durham A, Michaeloudes C, Rossios C, Adcock Iet al., 2015, Investigating mitochondrial dysfunction in asthma, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Rossios C, Loza M, Pavlidis S, Rowe A, Djukanovic R, Baribaud F, Sterk PJ, Chung KF, Adcock IMet al., 2015, Sputum supernatant profiling reveals inflammasome-associated signatures in severe asthmatics in U-BIOPRED, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Pavlidis S, Loza M, Baribaud F, Kuo C-H, Rowe A, Lutter R, Hoda U, Rossios C, Sousa A, Corfield J, Adcock I, Djukanovic R, Sterk P, Chung Fet al., 2015, Th2 subsetting of U-BIOPRED asthma subjects based on airway transciptomic profiles, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00474062&limit=30&person=true