Imperial College London

ProfessorColinTurnbull

Faculty of Natural SciencesDepartment of Life Sciences

Professor of Plant Sciences
 
 
 
//

Contact

 

+44 (0)20 7594 6437c.turnbull Website

 
 
//

Location

 

449Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

72 results found

Altmann S, Lopez-Cobollo RM, Thorpe P, Gierlinski M, Kanvil S, Turnbull C, Bos JIBet al., 2019, Uncovering the molecular basis of virulence and avirulence in the Medicago - pea aphid system, 18th Congress of International-Society-for-Molecular-Plant-Microbe-Interactions (IS-MPMI), Publisher: AMER PHYTOPATHOLOGICAL SOC, Pages: 151-151, ISSN: 0894-0282

Conference paper

Papadopulos AST, Igea J, Dunning LT, Osborne OG, Quan X, Pellicer J, Turnbull C, Hutton I, Baker WJ, Butlin RK, Savolainen Vet al., 2019, Ecological speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species divergence in Howea, Evolution, Vol: 73, Pages: 1986-1995, ISSN: 0014-3820

Although it is now widely accepted that speciation can occur in the face of continuous gene flow, with little or no spatial separation, the mechanisms and genomic architectures that permit such divergence are still debated. Here, we examined speciation in the face of gene flow in the Howea palms of Lord Howe Island, Australia. We built a genetic map using a novel method applicable to long-lived tree species, combining it with double digest restriction-site associated DNA sequencing of multiple individuals. Based upon various metrics, we detected 46 highly differentiated regions throughout the genome, four of which contained genes with functions that are particularly relevant to the speciation scenario for Howea, specifically salt and drought tolerance.

Journal article

Osborne OG, Ciezarek A, Wilson T, Crayn D, Hutton I, Baker WJ, Turnbull CGN, Savolainen Vet al., Speciation in Howea palms occurred in sympatry, was preceded by ancestral admixture, and was associated with edaphic and phenological adaptation, Molecular Biology and Evolution, ISSN: 1537-1719

Howea palms are viewed as one of the most clear-cut cases of speciation in sympatry. The sister species H. belmoreana and H. forsteriana are endemic to the oceanic Lord Howe Island, Australia, where they have overlapping distributions and are reproductively isolated mainly by flowering time differences. However, the potential role of introgression from Australian mainland relatives had not previously been investigated, a process that has recently put other examples of sympatric speciation into question. Furthermore, the drivers of flowering time-based reproductive isolation remain unclear. We sequenced an RNA-seq dataset that comprehensively sampled Howea and their closest mainland relatives (Linospadix, Laccospadix), and collected detailed soil chemistry data on Lord Howe Island to evaluate whether secondary gene flow had taken place and to examine the role of soil preference in speciation. D-statistics analyses strongly support a scenario whereby ancestral Howea hybridised frequently with its mainland relatives, but this only occurred prior to speciation. Expression analysis, population genetic and phylogenetic tests of selection, identified several flowering time genes with evidence of adaptive divergence between the Howea species. We found expression plasticity in flowering time genes in response to soil chemistry as well as adaptive expression and sequence divergence in genes pleiotropically linked to soil adaptation and flowering time. Ancestral hybridisation may have provided the genetic diversity that promoted their subsequent adaptive divergence and speciation, a process that may be common for rapid ecological speciation.

Journal article

Morris WL, Alamar MC, Lopez-Cobollo RM, Castillo JC, Bennett M, Van der Kaay J, Stevens J, Kumar Sharma S, McLean K, Thompson AJ, Terry LA, Turnbull CGN, Bryan GJ, Taylor MAet al., 2019, A member of the TERMINAL FLOWER1/CENTRORADIALIS gene family controls sprout growth in potato tubers, Journal of Experimental Botany, Vol: 70, Pages: 835-843, ISSN: 0022-0957

Potato tuber bud dormancy break followed by premature sprouting is a major commercial problem which results in quality losses and decreased tuber marketability. An approach to controlling premature tuber sprouting is to develop potato cultivars with a longer dormancy period and/or reduced rate of sprout growth. Our recent studies using a potato diploid population have identified several QTLs that are associated with tuber sprout growth. In the current study we aim to characterise a candidate gene associated with one of the largest effect QTL for rapid tuber sprout growth on potato chromosome 3. Underlying this QTL is a gene encoding a TERMINAL FLOWER 1/ CENTRORADIALIS homologue (PGSC0003DMG400014322). Here we use a transgenic approach to manipulate the expression level of the CEN family member in a potato tetraploid genotype (cv. Désirée). We demonstrate a clear effect of StCEN expression manipulation, with decreased expression levels associated with an increased rate of sprout growth, and over-expressing lines showing a lower rate of sprout growth than controls. Associated with different levels of StCEN expression were different levels of ABA and cytokinins implying a role in controlling the levels of plant growth regulators in the apical meristem.

Journal article

Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW, Yang W, Turnbull C, Meyerowitz EM, Locke JCW, Jonsson Het al., 2018, Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins, Proceedings of the National Academy of Sciences of the United States of America, Vol: 115, Pages: 1382-1387, ISSN: 0027-8424

The shoot apical meristem (SAM) is responsible for the generation of all the aerial parts of plants. Given its critical role, dynamical changes in SAM activity should play a central role in the adaptation of plant architecture to the environment. Using quantitative microscopy, grafting experiments, and genetic perturbations, we connect the plant environment to the SAM by describing the molecular mechanism by which cytokinins signal the level of nutrient availability to the SAM. We show that a systemic signal of cytokinin precursors mediates the adaptation of SAM size and organogenesis rate to the availability of mineral nutrients by modulating the expression of WUSCHEL, a key regulator of stem cell homeostasis. In time-lapse experiments, we further show that this mechanism allows meristems to adapt to rapid changes in nitrate concentration, and thereby modulate their rate of organ production to the availability of mineral nutrients within a few days. Our work sheds light on the role of the stem cell regulatory network by showing that it not only maintains meristem homeostasis but also allows plants to adapt to rapid changes in the environment.

Journal article

Herraiz A, Stokes L, Turnbull C, Hutton I, Baker W, Savolainen Vet al., 2018, Developing a new variety of kentia palms (Howea forsteriana): up-regulation of cytochrome b561 and chalcone synthase is associated with the red coloration of the stems, Botany Letters, Vol: 165, Pages: 241-247, ISSN: 2381-8115

The kentia palm (Howea forsteriana) is endemic to a 12 km2 volcanic island in the Tasman Sea, Lord Howe Island. It is one of the most traded houseplants in the world. The typical kentia palm presents a dark green-coloured stem. Note that the stem is made of leaf rachis and petioles, which are intermingled towards the base. However, we discovered on Lord Howe Island a new biological variety that has a red stem. Red-stemmed palm species are known and highly demanded as decorative plants. However, these red palm horticultural varieties require tropical or subtropical conditions to grow, hence commercialization is limited. Thus, a red-stemmed variety of H. forsteriana may have tremendous market potential. Nonetheless, palm trees grow generally slowly and often reach maturity at 15–20 years old or later, which may make conventional strategies unsuitable for the propagation of a new variety. This difficulty needs to be addressed before commercialization can be achieved. Here, we found that anthocyanin is responsible for the red colouration of the stem in the new variety. Using RNA sequencing and quantitative PCR, we identified two gene isoforms displaying altered expression associated with this red colouration, encoding a cytochrome b561 and a chalcone synthase. The latter protein is known to be part of the anthocyanin biosynthesis pathway, which plays a central role in pigmentation in plants. The levels of cytochrome b561 transcripts accumulated were found to be well correlated with an increased anthocyanin concentration in the red stems.

Journal article

Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, Savolainen Vet al., 2017, Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island, New Phytologist, Vol: 217, Pages: 1254-1266, ISSN: 0028-646X

Microbes can have profound effects on their hosts, driving natural selection, promoting speciation and determining species distributions. However, soil-dwelling microbes are rarely investigated as drivers of evolutionary change in plants.We used metabarcoding and experimental manipulation of soil microbiomes to investigate the impact of soil and root microbes in a well-known case of sympatric speciation, the Howea palms of Lord Howe Island (Australia). Whereas H. forsteriana can grow on both calcareous and volcanic soils, H. belmoreana is restricted to, but more successful on, volcanic soil, indicating a trade-off in adaptation to the two soil types.We suggest a novel explanation for this trade-off. Arbuscular mycorrhizal fungi (AMF) are significantly depleted in H. forsteriana on volcanic soil, relative to both H. belmoreana on volcanic soil and H. forsteriana on calcareous soil. This is mirrored by the results of survival experiments, where the sterilization of natural soil reduces Howea fitness in every soil–species combination except H. forsteriana on volcanic soil. Furthermore, AMF-associated genes exhibit evidence of divergent selection between Howea species.These results show a mechanism by which divergent adaptation can have knock-on effects on host–microbe interactions, thereby reducing interspecific competition and promoting the coexistence of plant sister species.

Journal article

Kanvil S, Pham J, Lopez-Cobollo R, Selby M, Bennett M, Beckingham C, Powell G, Turnbull Cet al., 2017, Cucurbit extrafascicular phloem has strong negative impacts on aphids and is not a preferred feeding site., Plant, Cell and Environment, Vol: 40, Pages: 2780-2789, ISSN: 0140-7791

Cucurbits have long been known to possess two types of phloem: fascicular (FP) within vascular bundles and extrafascicular phloem (EFP) surrounding vascular bundles and scattered through the cortex. Recently, their divergent composition was revealed, with FP having high sugar content consistent with conventional phloem, but EFP having much lower sugar levels and a very different proteome. However, the evolutionary advantages of possessing both FP and EFP have remained unclear. Here, we present four lines of quantitative evidence that together support the hypothesis that FP represents a typical phloem and is an attractive diet for aphids, whereas aphids avoid feeding on EFP. First, aphid stylet track endings were more abundant near the abaxial FP element of minor veins, suggesting a feeding preference for FP over EFP. Second, sugar profiles from stylet exudates were wholly consistent with FP origins, further supporting preference for FP and avoidance of EFP. Third, supplementation of EFP exudate into artificial diets confirmed an aversion to EFP in choice experiments. Finally, EFP exudate had negative effects on aphid performance. On the basis of aphids' inability to thrive on EFP, we conclude that EFP is atypical and perhaps should not be classed as a phloem system.

Journal article

Barlow NE, Smpokou E, Friddin MS, Macey R, Gould I, Turnbull C, Flemming AJ, Brooks NJ, Ces O, Barter LMCet al., 2017, Engineering plant membranes using droplet interface bilayers, Biomicrofluidics, Vol: 11, ISSN: 1932-1058

Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana, tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

Journal article

Lopez-Cobollo RM, Filippis I, Bennett MH, Turnbull CGet al., 2016, Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins, The Plant Journal, Vol: 88, Pages: 633-647, ISSN: 1365-313X

Cucurbits are well studied phloem biology models but unusually possess both fascicular phloem (FP) within vascular bundles and additional extrafascicular phloem (EFP). Although the functional differences between the two systems are not yet clear, sugar analysis and limited protein profiling previously established that FP and EFP have divergent composition. Here we report a detailed comparative proteomics study of FP and EFP in two cucurbits, pumpkin and cucumber. We re-examined the sites of exudation by video microscopy, and confirmed that in both species, the spontaneous exudate following tissue cutting derives almost exclusively from EFP. Comparative gel electrophoresis and mass spectrometry-based proteomics of exudates, sieve element contents and microdissected stem tissues established that EFP and FP profiles are highly dissimilar, and that there are also species differences. Searches against cucurbit databases enabled identification of more than 300 FP proteins from each species. Few of the detected proteins (~10%) were shared between sieve element contents of FP and EFP, and enriched Gene Ontology categories also differed. To explore quantitative differences in the proteomes, we developed multiple reaction monitoring methods for cucumber proteins that are representative markers for FP or EFP and assessed exudate composition at different times after tissue cutting. Based on failure to detect FP markers in exudate samples, we conclude that FP is blocked very rapidly and therefore contributes minimally to the exudates. Overall, the highly divergent contents of FP and EFP indicate that they are substantially independent vascular compartments. This article is protected by copyright. All rights reserved.

Journal article

de Saint Germain A, Clavé G, Badet-Denisot MA, Pillot JP, Cornu D, Le Caer JP, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FDet al., 2016, An histidine covalent receptor and butenolide complex mediates strigolactone perception, Nature Chemical Biology, Vol: 12, Pages: 787-794, ISSN: 1552-4469

Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/β-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand.

Journal article

Dunning LT, Hipperson H, Baker WJ, Butlin RK, Devaux C, Hutton I, Igea J, Papadopulos AST, Quan X, Smadja CM, Turnbull CGN, Savolainen Vet al., 2016, Ecological speciation in sympatric palms: 1. Gene expression, selection and pleiotropy, Journal of Evolutionary Biology, Vol: 29, Pages: 1472-1487, ISSN: 1420-9101

Ecological speciation requires divergent selection, reproductive isolation, and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA-Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. We identified loci with potential dual function in flowering time and soil adaptation, which effect on flowering time was validated by knocking orthologous genes in a model plant species. These results indicate that pleiotropy could have favoured the evolution of barrier traits in this system, despite ongoing gene flow.

Journal article

Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G, Oh J, Guyomarc H S, Pizot M, Farmer EE, Turnbull C, Vernoux T, Bennett MJ, Laplaze Let al., 2016, Corrigendum: A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants, Nature Communications, Vol: 7, ISSN: 2041-1723

Journal article

Antoniadi I, Plackova L, Simonovik B, Dolezal K, Turnbull C, Ljung K, Novak Oet al., 2015, Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex, PLANT CELL, Vol: 27, Pages: 1955-1967, ISSN: 1040-4651

Journal article

Kanvil S, Collins CM, Powell G, Turnbull CGNet al., 2015, Cryptic Virulence and Avirulence Alleles Revealed by Controlled Sexual Recombination in Pea Aphids, GENETICS, Vol: 199, Pages: 581-593, ISSN: 0016-6731

Journal article

Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G, Oh J, Guyomarc'h S, Pizot M, Farmer EE, Turnbull C, Vernoux T, Bennett MJ, Laplaze Let al., 2015, A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants, Nature Communications, Vol: 6, ISSN: 2041-1723

Activated forms of ​jasmonic acid (​JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the quantification of dynamic changes in ​JA distribution in response to stress with high spatiotemporal sensitivity. We show that Jas9-VENUS abundance is dependent on bioactive JA isoforms, the ​COI1 co-receptor, a functional Jas motif and proteasome activity. We demonstrate the utility of Jas9-VENUS to analyse responses to ​JA in planta at a cellular scale, both quantitatively and dynamically. This included using Jas9-VENUS to determine the cotyledon-to-root ​JA signal velocities on wounding, revealing two distinct phases of ​JA activity in the root. Our results demonstrate the value of developing quantitative sensors such as Jas9-VENUS to provide high-resolution spatiotemporal data about hormone distribution in response to plant abiotic and biotic stresses.

Journal article

Kanvil S, Powell G, Turnbull C, 2014, Pea aphid biotype performance on diverse Medicago host genotypes indicates highly specific virulence and resistance functions, Bulletin of Entomological Research, Vol: 104, Pages: 689-701, ISSN: 1475-2670

Aphid–plant interactions depend on genotypes of both organisms, which determine the two-way molecular exchange that leads to compatible or incompatible outcomes. The underlying genes are mostly unknown, making it difficult to predict likelihood of aphid success or host resistance, and hampering crop genetic improvement. Here we screened eight pea aphid clonal genotypes collected from diverse legume hosts, on a species-wide panel of Medicago truncatula (Mt) genotypes. Aphid virulence was measured by survival, fecundity and growth rate, together with scores for chlorosis and necrosis as host response indicators. Outcomes were highly dependent on the specific aphid–host genotype combinations. Only one Mt line was fully resistant against all clones. Aphid-induced host chlorosis and necrosis varied greatly, but correlated with resistance only in a few combinations. Bi-clustering analysis indicated that all aphid clones could be distinguished by their performance profiles across the host genotypes tested, with each clone being genetically differentiated and potentially representing a distinct biotype. Clones originating from Medicago sativa ranged from highly virulent to almost completely avirulent on both Medicago species, indicating that some were well adapted, whereas others were most likely migrants. Comparisons of closely related pairs of Australian Mt genotypes differing in aphid resistance revealed no enhanced resistance to European pea aphid clones. Based on the extensive variation in pea aphid adaptation even on unfamiliar hosts, most likely reflecting multiple biotype-specific gene-for-gene interactions, we conclude that robust defences require an arsenal of appropriate resistance genes.

Journal article

Young NF, Ferguson BJ, Antoniadi I, Bennett MH, Beveridge CA, Turnbull CGNet al., 2014, Conditional Auxin Response and Differential Cytokinin Profiles in Shoot Branching Mutants., Plant physiology, Vol: 165, Pages: 1723-1736, ISSN: 0032-0889

Strigolactone (SL), auxin, and cytokinin (CK) are hormones that interact to regulate shoot branching. For example, several ramosus (rms) branching mutants in pea (Pisum sativum) have SL defects, perturbed xylem CK levels, and diminished responses to auxin in shoot decapitation assays. In contrast with the last of these characteristics, we discovered that buds on isolated nodes (explants) of rms plants instead respond normally to auxin. We hypothesized that the presence or absence of attached roots would result in transcriptional and hormonal differences in buds and subtending stem tissues, and might underlie the differential auxin response. However, decapitated plants and explants both showed similar up-regulation of CK biosynthesis genes, increased CK levels, and down-regulation of auxin transport genes. Moreover, auxin application counteracted these trends, regardless of the effectiveness of auxin at inhibiting bud growth. Multivariate analysis revealed that stem transcript and CK changes were largely associated with decapitation and/or root removal and auxin response, whereas bud transcript profiles related more to SL defects. CK clustering profiles were indicative of additional zeatin-type CKs in decapitated stems being supplied by roots and thus promoting bud growth in SL-deficient genotypes even in the presence of added auxin. This difference in CK content may explain why rms buds on explants respond better to auxin than those on decapitated plants. We further conclude that rapid changes in CK status in stems are auxin dependent but largely SL independent, suggesting a model in which auxin and CK are dominant regulators of decapitation-induced branching, whereas SLs are more important in intact plants.

Journal article

Bainbridge K, Bennett T, Crisp P, Leyser O, Turnbull Cet al., 2014, Grafting in Arabidopsis., Methods Mol Biol, Vol: 1062, Pages: 155-163

Grafting provides a simple way to generate chimeric plants with regions of different genotypes and thus to assess the cell autonomy of gene action. The technique of grafting has been widely used in other species, but in Arabidopsis, its small size makes the process rather more demanding. However, there are now several well-established grafting procedures available, which we described here, and their use has already contributed greatly to understanding of such processes as shoot branching control, flowering, disease resistance, and systemic silencing.

Journal article

Bromley JR, Warnes BJ, Newell CA, Thomson JCP, James CM, Turnbull CGN, Hanke DEet al., 2013, A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy, Biochemical Journal, Vol: 458, Pages: 225-237, ISSN: 1470-8728

Solanum tuberosum Cytokinin Riboside Phosphorylase (StCKP1), catalyses the interconversion of the N9-riboside form of the plant hormone cytokinin (CK), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as CK-binding activity in extracts of tuberising potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide, and motifs for purine nucleoside phosphorylase activity. Expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted to ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted to their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

Journal article

Turnbull CGN, Lopez-Cobollo RM, 2013, Heavy traffic in the fast lane: long-distance signalling by macromolecules, NEW PHYTOLOGIST, Vol: 198, Pages: 33-51, ISSN: 0028-646X

Journal article

Littlewood J, Wang L, Turnbull C, Murphy Ret al., 2013, Techno-economic potential of bioethanol from bamboo in China, Biotechnology for Biofuels, Vol: 6, Pages: 173-173, ISSN: 1754-6834

BACKGROUND:Bamboo is potentially an interesting feedstock for advanced bioethanol production in China due to its natural abundance, rapid growth, perennial nature and low management requirements. Liquid hot water (LHW) pretreatment was selected as a promising technology to enhance sugar release from bamboo lignocellulose whilst keeping economic and environmental costs to a minimum. The present research was conducted to assess: 1) by how much LHW pretreatment can enhance sugar yields in bamboo, and 2) whether this process has the potential to be economically feasible for biofuel use at the commercial scale. Pretreatments were performed at temperatures of 170-190?C for 10?30 minutes, followed by enzymatic saccharification with a commercial enzyme cocktail at various loadings. These data were then used as inputs to a techno-economic model using AspenPlus? to determine the production cost of bioethanol from bamboo in China.RESULTS:At the selected LHW pretreatment of 190?C for 10 minutes, 69% of the initial sugars were released under a standardised enzyme loading; this varied between 59-76% when 10?140 FPU/g glucan of commercial enzyme Cellic CTec2 was applied. Although the lowest enzyme loading yielded the least amount of bioethanol, the techno-economic evaluation revealed it to be the most economically viable scenario with a production cost of $0.484 per litre (with tax exemption and a $0.16/litre subsidy). The supply-chain analysis demonstrated that bioethanol could be economically competitive with petrol at the pump at enzyme loadings up to 60 FPU/g glucan. However, in a prospective scenario with reduced government support, this enzyme loading threshold would be reduced to 30 FPU/g glucan.CONCLUSIONS:Bioethanol from bamboo is shown to be both technically and economically feasible, as well as competitive with petrol in China. Alternative approaches to reduce bioethanol production costs are still needed however, to ensure its competitiveness in a possible future scenar

Journal article

Hardner CM, Peace C, Vithanage V, Carroll B, Turnbull C, McConchie Cet al., 2012, Genetic Resources and Improvement in Macadamia, 1st International Symposium on Wild Relatives of Subtropical and Temperate Fruit and Nut Crops, Publisher: INT SOC HORTICULTURAL SCIENCE, Pages: 253-262, ISSN: 0567-7572

Conference paper

Braun N, de Saint Germain A, Pillot J-P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau Cet al., 2011, The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching, Plant Physiology, Vol: 158, Pages: 225-238, ISSN: 1532-2548

The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.

Journal article

Turnbull C, 2011, Long-distance regulation of flowering time, JOURNAL OF EXPERIMENTAL BOTANY, Vol: 62, Pages: 4399-4413, ISSN: 0022-0957

Journal article

Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn Oet al., 2010, Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Vol: 107, Pages: 13532-13537, ISSN: 0027-8424

Journal article

Truman WM, Bennett MH, Turnbull CGN, Grant MRet al., 2010, Arabidopsis Auxin Mutants Are Compromised in Systemic Acquired Resistance and Exhibit Aberrant Accumulation of Various Indolic Compounds, Plant Physiology, Vol: 152, Pages: 1562-1573, ISSN: 1532-2548

Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the establishment and maintenance of systemic immunity.

Journal article

Turnbull CGN, 2010, Grafting as a research tool., Methods Mol Biol, Vol: 655, Pages: 11-26

Grafting as a means to connect different plant tissues has been enormously useful in many studies of long-distance signalling and transport in relation to regulation of development and physiology. There is an almost infinite number of pairwise graft combinations that can be tested, typically between two different genotypes and/or between plants previously exposed to different environmental treatments. Grafting experiments are especially powerful for unambiguous demonstration of spatial separation of source and target, including genetic complementation of mutant phenotypes across a graft union, direct detection of transmitted molecules in receiving tissue or vascular sap, and activation or suppression of molecular targets due to signal transmission. Although grafting has a long history in research, only in the past decade has it been applied extensively to the Arabidopsis model. This chapter compares the main Arabidopsis grafting methods now available and describes seedling grafting in detail. Information is also provided on grafting of other common research model species, together with outlines of some successful applications.

Journal article

Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJet al., 2009, Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8, PLANT CELL, Vol: 21, Pages: 39-53, ISSN: 1040-4651

Journal article

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland Get al., 2007, FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, SCIENCE, Vol: 316, Pages: 1030-1033, ISSN: 0036-8075

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00324952&limit=30&person=true