Imperial College London

Particle-Scale Modelling of clays

Catherine O'Sullivan

Particle scale modelling of clay

Options

Interactions

Response

Part 1: Why model clay at the particle scale?

Sand Behaviour Contributions from DEM

Verification of frameworks

Thought experiments

New experimental methods

Clay – challenges posed

Large, time dependant settlement observed at Athlone road embankment in Ireland (Long and O'Riordan, 2001)

Quick clay landslide at Lyngseidet, Norway September 3, 2010 (220,000 m³) (Geological survey of Norway, 2015) Hazard potential for shrink swell clay in the Thames basin (British Geological Survey, 2019)

Clay – challenges posed

RemediaClay - Keller injection of a potassium and ammonium ion solution Ground Engineering - 2022

Clay behaviour

Comparison between natural and reconstituted clays for Mexico City clay (Leroueil and Vaughan, 1990)

Idealised clay fabrics (Sides and Barden, 1971)

Clay behaviour

(Kaolinite: Wang and Siu, 2006)

SEM image of kaolinite prepared with acidic water (pH<5.5)

SEM image of kaolinite prepared with alkaline water (pH>5.5)

Electrolyte concentration negligible (Pedrotti and Tarantino, 2017)

Modelling Tool: Discrete element method

Modelling Tool: Discrete element method

HPC at Imperial College

Molecular Dynamics

Simulates interaction between atoms and molecules

Algorithmically similar to DEM

Can use MD codes to run DEM simulations

Considers energy between particles (atoms) "potentials"

Gradient of potential energy – separation distance plot gives force

Consider dynamic equilibrium of particles

Lennard-Jones Potential

- Widely used in molecular dynamics simulations in a variety of studies for non-bonded interactions.
- First proposed by Lennard-Jones
 (1931) for investigating cohesive
 forces between ideal gas particles.
- Assumes spherical particles
- Useful to model colloids

Typical shape of the Lennard-Jones potential (Jiang, 2014)

Lennard-Jones Potential

$$E_{LJ} = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Repulsive term: $E_{LJ,R} = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} \right]$

- Repulsive component of interaction
- Dominates at short distances

Attractive term:
$$E_{LJ,A} = -4\epsilon \left[\left(\frac{\sigma}{r} \right)^6 \right]$$

- Van der Waals force
- Dominates at medium-large distances
- Exponent of 6 relates to equations for van der Waals force

Typical shape of the Lennard-Jones potential (Jiang, 2014)

Part 2: Options to model clay

Modelling options – sub-platelet scale

Clay minerals

Hallosite

Kaolinite

Mixture of fibrous and platy illite. Bone Spring formation, Permian Basin, USA. Field of view ≈ 7.6 µm wide. Photo courtesy of Laura-Jane Strachan, James Hutton Institute.

Montmorillonite showing a rose like texture, Miocene arkose, Madrid Basin, Spain.

Fesharaki, O., García-Romero, E., Cuevas-González, J., López-Martínez, N. (2007) Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain DOI link. Field of view ≈ 22 μm wide. Photo courtesy of Emilia García-Romero, Universidad Complutense de Madrid, Spain.

Illite

Montmorillonite

'Images of Clay Archive' of the Mineralogical Society of Great Britain & Ireland and The Clay Minerals Society https://www.minersoc.org/images-of-clay.html Modelling options – platelet scale

Pagano et al. (2020)

Sjoblom, 2015

deBono and McDowell (2002) 812 sub-spheres

Yao and Anandarajah (2003) Cuboids

Bandera et al.(2021) Flat ellipsoids

Clay "platelets" or "particles"

Hallosite

Kaolinite

Mixture of fibrous and platy illite. Bone Spring formation, Permian Basin, USA. Field of view ≈ 7.6 μm wide. Photo courtesy of Laura-Jane Strachan, James Hutton Institute.

Montmorillonite showing a rose like texture, Miocene arkose, Madrid Basin, Spain.

Fesharaki, O., García-Romero, E., Cuevas-González, J., López-Martínez, N. (2007) Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain DOI link. Field of view ≈ 22 μm wide. Photo courtesy of Emilia García-Romero, Universidad Complutense de Madrid, Spain.

Illite

Montmorillonite

'Images of Clay Archive' of the Mineralogical Society of Great Britain & Ireland and The Clay Minerals Society https://www.minersoc.org/images-of-clay.html

Kaolinite particles

SEM image of single kaolinite particle (Volkova et al., 2021)

- One particle is 10 or more stacked units
- Particle dimensions circa
 11 nm thick, 600 nm wide
 (Gupta, 2011)
- Shape hexagonal or pseudo hexagonal

Kaolinite

SEM image of kaolinite prepared with acidic water (pH<5.5)

SEM image of kaolinite prepared with alkaline water (pH > 5.5)

- Common clay mineral
- Surface chemistry depends on pore fluid (pH, salt concentraction)
- Pore fluid characteristics influence overall mechanical behaviour
- Pore fluid characteristics influence fabric

Viable modelling framework should capture sensitivity of kaolinite to pore fluid chemistry

Electrolyte concentration negligible

(Pedrotti and Tarantino, 2017)

Part 3: Particle interactions

Use of atomistic MD to develop particle interactions

Face to Face Configuration

0.10

Base sorting of the surface area of the

Ebrahimi et al. (2014)

Edge to Edge Configuration

DLVO model

- Derjaguin-Landau-Vervey-Overbeek Model
- Developed to explain colloidal behaviourequilibrium of colloids in solution
- Dates from 1950s
- Generally accepted in soil mechanics
- Gives force / energy per unit area

DLVO model

DLVO

model

Electro-chemical forces:

Electrostatic forces

Van der Waals forces

 $E_{total} = E_{vdv} + E_{Coulumb}$

E_{vdv} = van der Waals energy

E_{Coulumb} = Electrostatic energy

Van der Waals Energy

Attractive force (in case of colloids)

$$E_{vdv} = \frac{A_H}{12\pi} \left[\frac{1}{h^2} + \frac{1}{(h+\delta_1+\delta_2)^2} - \frac{1}{(h+\delta_1)^2} - \frac{1}{(h+\delta_2)^2} \right]$$

Assume two infinite parallel plates

- h = separation distance
- Mineralogy of the clay considered and type of solvent through Hamaker Constant A_H
- Thickness of interacting particles δ_i

Model parameters √

Electrostatic Energy

$$E_{\text{Coulumb}} = \boldsymbol{\varepsilon_r} \boldsymbol{\epsilon_0} \boldsymbol{\kappa} \left[\frac{2\boldsymbol{\psi_1}\boldsymbol{\psi_2} \exp(\kappa h) - \boldsymbol{\psi_1}^2 - \boldsymbol{\psi_2}^2}{\exp(2\kappa h) - 1} \right]$$

- Dielectric permittivity ε_r \checkmark
- κ Debye length which depends on salt concentration $ho_s {f V}$
- Surface potential ψ_i
- Graham equation links surface potential and surface charge

Challenging to determine accurately

Atomic Force Microscopy (AFM'

System to determine cantilever bending moment

Silicon nitride tip on mica in air

-10

40

Separation Distance (nm)

90

kaolinite

AFM→ topography, stiffness and adhesion

Forces on kaolinite: HS – high salinity, LS -Low salinitiy

90

-10

40

Separation Distance (nm)

Surface charge

Influenced by salt concentration and acidity of environment

Atomic Force Microscpy (AFM) measurements from Gupta (2011) 1mMol KCl

Interaction energy dependency on surface charge

Interaction energy

Schematic energy versus distance profile of DLVO model (Israelachvili, 2011)

Kaolinite – 6 interaction scenarios

> 6 interaction scenarios when pH varied

Edge-edge	Repulsive
Edge-silica face	Attractive pH≤4 Repulsive pH>4
Edge- alumina face	Repulsive pH=4 Attractive pH=5-6 Repulsive =8-10

Silica face- silica face	Repulsive
Alumina	_
face-alumina	Repulsive
face	
Silica face-	Attractive pH≤6
alumina face	Repulsive pH>6

1mM KCl – Gupta (2011)

DLVO predicted interaction energy and force

Af = Alumina face Sf = Silica face E = Edge

Monodisperse system, pH=8, 1mM KCl electrolyte

DLVO predicted interaction energy and force

Monodisperse system, pH=8, 1mM KCl electrolyte

pH dependency of kaolinite particle interactions

Alkaline conditions (pH>5,5)

Acidic conditions (pH<5,5)

Net interaction:

- Face-face: repulsion
- Face-edge : repulsion

Dispersed fabric

Net interaction:

- Face-face: repulsion
- Face-edge attraction

Cardhouse fabric

SU6600 10-0 kV 10-4 mm x13-0 k SE 4-00 un

Kaolinite prepared with alkaline water (Pedrotti and Tarantino, 2017)

Kaolinite prepared with acidic water (Pedrotti and Tarantino, 2017)

Contact forces

Mechanical forces: Born's repulsion

Net interaction force between two clay particles (Liu et al., 2008)

Part 4: System level response

Overall aim

Scanning Electron Microscope (SEM) image of kaolinite (British Mineralogical Society)

- Develop effective framework to model clay at the particle scale
- Advance understanding of link between particle scale parameters and fabric
- Link fabric to overall mechanical behaviour

DLVO Model

- Direct use of DLVO theory in a molecular dynamics code complicated by lack of consideration of directional dependency of interactions
- Equations typically considered are for parallel planar surfaces or spheres
- Not capable of modelling particles with general morphology and orientation
- Seek framework to include DLVO contact interactions in multi-particle simulation environment

Particle scale model

Determine particle scale parameters

Calculate energyseparation relationship as predicted by DLVO

Calibrate Gay-Berne potential against DLVO predictions

Input Gay-Berne parameters in multiparticle MD simulation

- Hamaker constant, particle size (E_{vdv})
- Dielectric permittivity, surface potential, Debye length $(E_{Coulomb})$

 Need to consider face-face, edge-face, edge-edge

- •5 parameters to calibrate for axisymmetric particles
- Need to consider face-face, edge-face, edge-edge
- Develop initial assembly
- Equilibrate
- Simulate compression tests

Ellipsoidal particles

Tang-Tat Ng demonstrated benefits of using ellipsoids to model sand grains

Ebrahimi (2014) demonstrated viability of using ellipsoids to model clay particles

Requires use of generalized Leonard-Jones potential → Gay-Berne potential

Ellipsoid dimensions from particle dimensions from SEM work of Gupta (2011)

Gay-Berne potential

Gay and Berne, 1981

- Introduced to study the anisotropic interaction of two large, rigid, ellipsoidal particles.
- Based upon Leonard Jones potential

$$E_{LJ} = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

$$E_{GB} = 4\epsilon \left[\left(\frac{\sigma}{h_{12} + \gamma \sigma} \right)^{12} - \left(\frac{\sigma}{h_{12} + \gamma \sigma} \right)^{6} \right] \times \eta_{12} \times \chi_{12}$$

- Additional model parameters account for variation in interaction with orientation
- Model parameters determined by curve fitting – empirical model

Gay-Berne potential

- Introduced to study the anisotropic interaction of two large, rigid, ellipsoidal particles.
- Based upon Leonard Jones potential

$$E_{LJ} = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

$$E_{GB} = 4\epsilon \left[\left(\frac{\sigma}{h_{12} + \gamma \sigma} \right)^{12} - \left(\frac{\sigma}{h_{12} + \gamma \sigma} \right)^{6} \right] \times \eta_{12} \times \chi_{12}$$

For alkaline pH isolate repulsive term

Gay and Berne, 1981

Calibrated model

System level response

System level response

System response – isotropic compression

System response – isotropic compression

Conclusions

- Link between clay particle interactions and mechanical behavior not well formed.
- Kaolinite is ideal material to develop a modelling framework
- Accepting validity of DLVO model Gay Berne potential can be calibrated to model clay particle interactions
- Need to consider large systems of particles
- Gay Berne framework is viable but needs modification

References

- Bandera, S. (2021), Fundamental Analysis of The Influence of Structure on Clay Behaviour, PhD thesis, Imperial College of Science, Technology and Medicine.
- Bandera, S., O'Sullivan, C., Tangney, P. and Angioletti-Uberti, S. (2021), 'Coarse-grained molecular dynamics simulations of clay compression', Computers and Geotechnics 138.
- Derjaguin, B. V. and Landau, L. (1941), 'Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes', Acta Physicochimica URSS 14, 633–662.
- Ebrahimi, D. (2014), Multiscale modeling of clay-water systems Professor of Civil and Environmental Engineering Thesis Supervisor, PhD thesis, Massachusetts Institute of Technology.
- Gay, J. G. and Berne, B. J. (1981), 'Modification of the overlap potential to mimic a linear site—site potential', Journal of chemical Physics 74, 3316–3319.
- Gupta, V. (2011), Surface Charge Features of Kaolinite Particles and Their Interactions, PhD thesis, The University of Uhta.
- Honorio et a. (2017) Hydration Phase Diagram of Clay Particles from Molecular Simulations Langmuir 2017, 33, 44, 12766–12776
- Israelachvili, J. N. (2011), Intermolecular and Surface Forces, third edition edn, Elsevier Inc.
- Pedrotti, M. and Tarantino, A. (2018), 'An experimental investigation into the micromechanics of non-active clays', Ge´otechnique 68, 666–683.
- Verwey, E. J. W. and Overbeek, J. T. G. (1948), Theory of the stability of lyophobic colloids. Amsterdam, Elsevier Inc.
- Wang, Y. H. and Siu, W. K. (2006a), 'Structure characteristics and mechanical properties of kaolinite soils. i. surface charges and structural characterizations', Canadian Geotechnical Journal 43, 587–600.
- Wang, Y. H. and Siu, W. K. (2006b), 'Structure characteristics and mechanical properties of kaolinite soils. ii. effects of structure on mechanical properties', Canadian Geotechnical Journal 43, 601–617.
- Zhu, H., Andrew J. Whittle, Roland J.-M. Pellenq & Katerina Ioannidou (2019) Mesoscale simulation of aggregation of imogolite nanotubes from potential of mean force interactions, Molecular Physics, 117:22, 3445-3455, DOI: 10.1080/00268976.2019.1660817