Imperial College London

ProfessorCatherineO'Sullivan

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Professor of Particulate Soil Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 6117cath.osullivan Website

 
 
//

Location

 

501Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

211 results found

Patino-Ramirez F, O'Sullivan C, Dini D, 2023, Percolating contacts network and force chains during interface shear in granular media, Publisher: SPRINGER

Working paper

Sassel T, Patino-Ramirez F, Hanley K, O'Sullivan Cet al., 2023, Linking the macro-scale response of granular materials during drained cyclic loading to the evolution of micro-structure, contact network and energy components, Granular Matter, Vol: 25, Pages: 1-19, ISSN: 1434-5021

This study has considered the behaviour of granular materials subjected to drained cyclic loading under constant mean effective stress. Using the discrete element method, cubical, isotropically compressed samples were subjected to 50 loading cycles at different values of mean stress (p′= 100, 200, 300 kPa) and different loading amplitudes (ζ= 5%, 10% and 20% of p′). At low cycle numbers, the deformation mechanism is controlled by contractive volumetric strains, before transitioning to the ratcheting regime, characterised by the persistent accumulation of plastic strains. An energy/work analysis showed that the volumetric work per cycle decreased as hysteresis loops tighten. During ratcheting, most boundary work was dissipated by contact sliding. The mechanical response was controlled by ζ, with little to no influence of p′. For ζ=5%, deformations were confined to the elastic range, with no increase in secant stiffness Gsec or shear strength after cyclic loading. For ζ=10%, Gsec and the shear strength increased after cyclic loading, although no significant expansion of the yield surfaces was observed. The largest loading amplitude (ζ=20%) induced yielding at low cycles, leading to significant changes in the fabric, volume and yield surfaces of the samples, and a significant increase of shear strength and Gsec. At the micro-scale, graph theory was used to quantify the evolution of the contact network. After ∼20 loading cycles, the network reached a steady-state of constant but persistent topology changes in the material, with most of the topology retained between loading cycles.

Journal article

Liu D, O'Sullivan C, Carraro JAH, 2023, The influence of particle size distribution on the stress distribution in granular materials, Géotechnique, Vol: 73, Pages: 250-264, ISSN: 0016-8505

This study systematically explores the effect of the shape of the particle size distribution on stress transmission in granular materials using three-dimensional discrete element method simulations. Extending prior studies that have focussed on bi-modal mixtures of coarser and finer grains, a broad range of isotropically compressed specimens with spherical particles and linear, fractal and gap-graded particle size distributions are considered. Considering isotropic stress conditions the nature of stress distribution was analysed by determining the mean effective particle stresses and considering the proportion of this stress transmitted by particles with different sizes. For gap-graded materials a contact-based perspective was adopted to consider the stress transmission both within and between the different size fractions. A clear correlation emerged between the cumulative distribution of particle sizes by volume and the cumulative distribution of particle sizes by mean effective stress for specimens with continuous PSDs. This correlation does not hold universally for gap-graded materials. In gap-graded materials the distribution of effective stress between the different size fractions depends upon the size ratio and the percentage of finer grains in the specimen. In contrast to specimens with continuous gradings, in the gap-graded specimens the distribution of effective stress amongst the different size fractions exhibited a marked sensitivity to density. Basic network analysis is shown to provide useful insight into effective stress transmission in the bimodal gap-graded materials.

Journal article

Bandera S, O'Sullivan C, Tangney P, Angioletti-Uberti Set al., 2023, Response to the discussion on ?Coarse-grained molecular dynamics of clay compression?, COMPUTERS AND GEOTECHNICS, Vol: 155, ISSN: 0266-352X

Journal article

Sanvitale N, Zhao B, Bowman E, O'Sullivan Cet al., 2023, Particle-scale observation of seepage flow in granular soils using PIV and CFD, Geotechnique: international journal of soil mechanics, Vol: 73, Pages: 71-88, ISSN: 0016-8505

Seepage-induced instabilities pose a challenge in many geotechnical applications. Particle-scale mechanisms govern the initiation of instability. However, current understanding is based on a macro-scale perspective that draws on continuum mechanics. Recent developments in imaging and numerical analysis can provide the particle-scale fundamental perspective needed to develop a comprehensive insight. This contribution demonstrates the value of combining particle-scale experimental and numerical studies. The experiments consider transparent soil samples created using refractive image matching and monitored by particle image velocimetry (PIV). Three-dimensional pore topology is extracted from a series of 2D images and imported into computational fluid dynamics (CFD)simulations. Permeability is estimated by three distinct approaches: using flow rate, PIV-and CFD-generated data. The flow fields obtained from PIV and CFD are in good agreement considering both flow rate contour plots and flow rate distributions; this demonstrates the successful reconstruction of three-dimensional pore structure and flow-field analysis. The comparison also reveals that the side boundary effects in CFD simulations are constrained within a limited region. The multi-plane results characterize the variance of flow velocity with the three-dimensional pore topology. Finally, the fluid-particle interactions obtained from CFD results show a larger variance in the angular particle packings.

Journal article

Liu D, O'Sullivan C, Harb Carraro JA, 2022, Use of combined static and dynamic testing to quantify the participation of particles in stress transmission, Journal of Geotechnical and Geoenvironmental Engineering, Vol: 148, ISSN: 0733-9410

A number of research studies have recognised that not all particles in a sand specimen are active in stress transmission, particularly in the case of gap-graded soils. This has implications for the use of the global void ratio (e), and variables/parameters that depend upon e, to predict the influence of the state on the mechanical behaviour of gap-graded soils. This study explores the possibility of comparing the shear stiffness determined in dynamic wave propagation tests (G_dyn) with stiffness values determined in small-strain probes (G_sta) to assess the extent to which all the particles in a specimen are actively engaged in stress transmission. The idea is initially developed using three-dimensional discrete element method simulations and considering ideal specimens. The practical application of this approach is then tested in a series of drained triaxial compression tests. The numerical studies considered both specimens with continuous, linear particle size distributions as well as gap-graded soils. The results show that the ratio G_sta/G_dyn may be associated with the ratio between the bulk density calculated considering only the stress transmitting particles, ρ_m, and the bulk density calculated considering all the particles, ρ. The ratio ρ_m/ρ is determined by the proportion of inactive particles, which varies with the proportion by mass of finer particles in the soil (F_finer) for gap-graded soils. The relationship between G_sta/G_dyn (e) and F_finer enables a qualitative assessment of the proportion of inactive particles. The corresponding experimental test results show a similar but weaker correlation between the ratio of G_sta/G_dyn and F_finer, this weaker correlation may be attributed to the differences between the simulations and the experimental conditions. However, despite the challenges with experimental implementation, the data presented here support the idea that it may be possible to qualitatively estimate the proportion by volum

Journal article

O'Sullivan C, Arson C, Coasne B, 2022, A perspective on Darcy's law across the scales: from physical foundations to particulate mechanics, Journal of Engineering Mechanics, Vol: 148, ISSN: 0733-9399

This paper puts forward a perspective or opinion that we can demonstrate Darcy’s law is valid at any scale where fluid can be modelled/analyzed as a continuum. Darcy’s law describes the flow of a fluid through a porous medium by a linear relationship between the flow rate and the pore pressuregradient through the permeability tensor. We show that such a linear relationship can be established at any scale, so long as the permeability tensor is expressed as a function of adequate parameters that describe the pore space geometry, fluid properties and physical phenomena. Analytical models at pore scale provide essential information on the key variables that permeability depends on under different flow regimes. Upscaling techniques based on the Lippman-Schwinger equation, pore network models orEshelby’s homogenization theory make it possible to predict fluid flow beyond the pore scale. One of the key challenges to validate these techniques is to characterize microstructure and measure transport properties at multiple scales. Recent developments in imaging, multi-scale modeling and advanced computing offer new possibilities to address some of these challenges.

Journal article

Morimoto T, Zhao B, Taborda D, O'Sullivan Cet al., 2022, Critical appraisal of pore network models to simulate fluid flow through assemblies of spherical particles, Computers and Geotechnics, Vol: 150, Pages: 1-20, ISSN: 0266-352X

Coupled numerical models considering fluid flow and particle movement enable fundamental analyses of a variety of phenomena in geomechanics including seepage-induced instabilities. Amongst the various CFD (Computational Fluid Dynamics)-DEM (Discrete Element Method) coupled frameworks which have been proposed, Pore Network Models (PNMs) have the potential to simulate fluid flow in granular materials accurately with a low computational cost to enable simulations on Representative Volume Elements (RVEs). However, the current models of the local conductance between the connected pores are very simple, limiting the accuracy of PNMs. This study develops novel local conductance models by detailed analysisof existing analytical studies of fluid flow through different 3D lattice packings of uniform spheres. The performance of these new models relative to existing, simpler models is demonstrated using CFD simulations in which the flow in the pore space of random assemblies of polydisperse spheres is accurately resolved. The analyses show that the new models proposed here can more accurately predict the local and global permeabilities of specimens with a wide range of void ratios and polydispersities. These models do not require any optimisation via merging pores so that they can efficiently simulate systems with an evolving pore space topology.

Journal article

Malik S, O'Sullivan C, Reddyhoff T, Dini D, Holmes Aet al., 2022, An acoustic 3D positioning system for robots operating underground, IEEE Sensors Letters, Vol: 6, Pages: 1-4, ISSN: 2475-1472

Underground robots are potentially helpful in many application domains, including geotechnical engineering, agriculture, and archaeology. One of the critical challenges in developing underground robotics is the accurate estimation of the positions of the robots. Acoustic-based positioning systems have been explored for developing an underground 3D positioning system. However, the positioning range is limited due to attenuation in the medium. This letter proposes an underground positioning system that utilizes a novel and easy-to-implement electronic approach for measuringthe acoustic propagation times between multiple transmitters and a receiver. We demonstrate a prototype using four transmitters at the surface and a single buried acoustic sensor as a proof-of-concept. The times of arrival for signals emitted by the different sources are measured by correlating the transmitted and received signals. The distances between the multiple transmitters and a receiver are estimated, and a tri-linearization algorithm is used to estimate the position of the buried sensor in 3D with respect to reference coordinates. The system is tested in a soil tank. The experimental results show that the proposed system is able to estimate the 3D position of buried sensors with an error of less than ±2.5 cm within a measurement field of size 50 cm × 50 cm × 35 cm in X, Y, and Z (width × length × depth). The proposed electronic synchronization approach allows increasing the positioning range of the system by increasing the number of transmittersat the surface. This paves the way for the development of a positioning system for robots operating underground.

Journal article

Adesina P, O'Sullivan C, Morimoto T, Otsubo Met al., 2022, Determining a representative element volume for DEM simulations of samples with non-circular particles, PARTICUOLOGY, Vol: 68, Pages: 29-43, ISSN: 1674-2001

Journal article

Adesina P, Morimoto T, Otsubo M, O'Sullivan Cet al., 2022, Determining a representative element volume for DEM simulations of samples with non-circular particles, Particuology: science and technology of particles, Vol: 68, Pages: 29-43, ISSN: 1672-2515

Numerical studies on the number of particles or system size required to attain a representative element volume (REV) for discrete element method (DEM) simulations of granular materials have almost always considered samples with spherical or circular particles. This study considers how many particles are needed to attain a REV for 2D samples of 2-disc cluster particles where the particle aspect ratio (AR) was systematically varied. Dense and loose assemblies of particles were simulated. The minimum REV was assessed both by considering the repeatability of static packing characteristics and the shearing behaviour in biaxial compression tests, and by investigating the effect of sample size on the measured characteristics and observed shearing behaviour. The repeatability of the data considered generally improved with increasing sample size. The packing characteristics of the dense samples were more repeatable suggesting that the minimum REV reduces with increasing packing density. The minimum REV was observed to be sensitive to the characteristic measured. Although the overall responses of the samples during shear deformation were similar irrespective of the sample sizes, the smaller the sample size, the higher the fluctuations observed in the responses. Analysis of the coefficient of variation of the fluctuations around the critical state stress ratio can provide insight as to whether a REV is attained. The particle AR influences the effect of sample size on shearing characteristics and thus the minimum number of particles required to attain a REV; this can be explained by the influence of AR on the number of contacts within the samples.

Journal article

Otsubo M, Kuwano R, O'Sullivan C, Shire Tet al., 2022, Using geophysical data to quantify stress-transmission in gap-graded granular materials, Geotechnique: international journal of soil mechanics, Vol: 72, Pages: 565-582, ISSN: 0016-8505

The behaviour of gap-graded granular materials, i.e. mixtures of coarse and cohesionless finer grains having a measurable difference in particle size, does not always confirm to established frameworks of sand behaviour. Prior research has revealed that the role of the finer particles on the stress-strain response, liquefaction resistance, and internal stability of non-cohesive gap-graded soils is significant and complex, and highly dependent on both the volumetric proportion of finer particles in the material and the coarse-particle to finer-particle size ratio. Quantifying the participation of the finer particles on the stress transmission and overall behaviour is central to understanding the behaviour of these materials. However, no experimental technique that can directly quantify the contribution of finer particles to the overall behaviour has hitherto been proposed. This paper explores to what extent the participation of finer particles can be assessed using laboratory geophysics, recognizing that granular materials act as a filter to remove the high frequency components of applied seismic / sound waves. Discrete element method simulations are performed to understand the link between particle-scale stress transmission and the overall response observed during shear wave propagation. When the proportion of finer particles is increased systematically both the shear wave velocity (VS) and low-pass frequency (flp) increase sharply once a significant amount of the applied stress is transferred via the finer particles. This trend is also observed in equivalent laboratory experiments. Consequently, the flp–VS relationship can provide useful insights to assess whether the finer particles contribute to stress transmission and hence the mechanical behaviour of the gap-graded materials.

Journal article

Liu D, Morimoto T, Carraro JAH, OSullivan Cet al., 2022, A semi-empirical re-evaluation of the influence of state on elastic stiffness in granular materials, Granular Matter, Vol: 24, Pages: 1-22, ISSN: 1434-5021

This study uses data acquired from three-dimensional discrete element method simulations to reconsider what measure of state can be used to predict stiffness in granular materials. A range of specimens with linear and gap-graded particle size distributions are considered and stiffness is measured using small amplitude strain probes. Analysis of the data firstly confirms that the void ratio, which is typically used as a measure of state in experimental soil mechanics, does not correlate well with shear stiffness. However, the empirical expressions developed by Hardin and his colleagues can capture variations in stiffness, provided an appropriate state variable is used. The study then highlights that the contribution of individual contacts to the overall stiffness is highly variable, depending on both the contact force transmitted and the particle size. Analyses explore how the stress transmission both within and between the different size fractions affects the overall stiffness. This heterogeneity in stiffness relates to the heterogeneity in the stress transmission amongst the different fractions. By considering the heterogeneity of stress distribution amongst different particle size fractions, a new semi-empirical stress-based state variable is proposed that provides insight into the factors that influence stiffness.

Journal article

Yu M, Reddyhoff T, Dini D, Holmes A, O'Sullivan Cet al., 2022, Acoustic emission enabled particle size estimation via low stress-varied axial interface shearing, IEEE Transactions on Instrumentation and Measurement, Vol: 71, ISSN: 0018-9456

Acoustic emission (AE) refers to a rapid release of localized stress energy that propagates as a transient elastic wave and is typically used in geotechnical applications to study stick-slip during shearing, and breakage and fracture of particles. This article develops a novel method of estimating the particle size, an important characteristic of granular materials, using axial interface shearing-induced AE signals. Specifically, a test setup that enables axial interface shearing between a one-dimensional compression granular deposit and a smooth shaft surface is developed. The interface sliding speed (up to 3mm/s), the compression stress (0-135kPa), and the particle size (150μm-5mm) are varied to test the acoustic response. The start and end moments of a shearing motion, between which a burst of AE data is produced, are identified through the variation of the AE count rates, before key parameters can be extracted from the bursts of interests. Linear regression models are then built to correlate the AE parameters with particle size, where a comprehensive evaluation and comparison in terms of estimation errors is performed. For granular samples with a single size, it is found that both the AE energy related parameters and AE counts, obtained using an appropriate threshold voltage, are effective in differentiating the particle size, exhibiting low fitting errors. The value of this technique lies in its potential application to field testing, for example as an add-on to cone penetration test systems and to enable in-situ characterization of geological deposits.

Journal article

Kalderon M, Smith E, O'Sullivan C, 2022, Comparative analysis of porosity coarse-graining techniques for discrete element simulations of dense particulate systems, Computational Particle Mechanics, Vol: 9, Pages: 199-219, ISSN: 2196-4378

The discrete element method (DEM) is a well-established approach to study granular materials in numerous fields of application; each granular particle is modelled individually to predict the overall behaviour. This behaviour can be then extracted by averaging, or coarse graining, the sample using a suitable method. The choice of appropriate coarse-graining method entails a compromise between accuracy and computational cost, especially in the large-scale simulations typically required by industry. A number of coarse-graining methods have been proposed in the literature, and these are reviewed and categorized in this work. Within this contribution, two novel porosity coarse-graining strategies are proposed including a voxel method where a secondary dense grid of “pixel cells” is implemented adopting a binary logic for the coarse graining and a hybrid method where both analytical formulas and pixels are utilized. The proposed methods are compared with four coarse-graining schemes that have been documented in the literature, including the particle centroid method, an analytical method, a method which solves the diffusion equation and an approach which employs averaging using kernels. The novel methods are validated for problems in both two and three dimensions through comparison with the “accurate” analytical method. It is shown that, once validated, both the proposed schemes can approximate the exact solutions quite accurately; however, there is a high computational cost associated with the voxel method. The accuracy of both methods can be adjusted allowing the user to decide between accuracy and computational time. A detailed comparison is then presented for all six schemes considering “accuracy”, “smoothness” and “computational cost”. Optimal parameters are obtained for all six methods, and recommendations for coarse-graining DEM samples are discussed.

Journal article

Su TC, O'Sullivan C, Yasuda H, Gourlay CMet al., 2022, Understanding the rheological transitions in semi-solid alloys by a combined <i>In Situ</i> Imaging and granular micromechanics modeling approach, Solid State Phenomena, Vol: 327, Pages: 127-132, ISSN: 1012-0394

To gain better understanding of rheological transitions from suspension flow to granular deformation and shear cracking, this research conducted shear-deformation on globular semi-solid Al-Cu alloys to study the rheological behavior of semi-solid as a function of solid fraction (38% - 85%) and shear rate (10<jats:sup>-4</jats:sup> – 10<jats:sup>-1</jats:sup> s<jats:sup>-1</jats:sup>) under real-time synchrotron radiography observation. By analyzing 17 X-ray imaging datasets, we define three rheological transitions: (i) the critical solid fraction from a suspension to a loosely percolating assembly; (ii) from the net contraction of a loose assembly to the net dilation of a densely packed assembly, and (iii) to shear cracking at high solid fraction and shear rate. Inspired by in-situ observations of semi-solid deformation showing a disordered assembly of percolating crystals in partially-cohesive contact with liquid flow, we reproduced a two-phase sample using the coupled lattice Boltzmann method-discrete element method (LBM-DEM) simulation approach for granular micromechanical modeling. In DEM, each globular Al grain is represented by a discrete element, and the flow of interstitial liquid is solved by LBM. The LBM-DEM simulations show quantitative agreement of semi-solid strain localization with the experiments and are used to explore the components involved in the shear rate dependence of the transitions, and the role of liquid pressure on the initiation of shear cracking.

Journal article

Zhao B, O'Sullivan C, 2022, Fluid particle interaction in packings of monodisperse angular particles, Powder Technology, Vol: 395, Pages: 133-148, ISSN: 0032-5910

Understanding fluid flow in granular materials is essential for many engineering applications, including petroleum recovery, groundwater movement and embankment stability. This study investigates the influence of particle angularity on permeability and fluid-particle interaction forces. A random shape generator based on spherical harmonics is used to create irregular-shaped particles with different levels of angularity. Granular packings of uniformly sized (monodisperse) particles are then constructed with the discrete element method (DEM), and pore scale computational fluid dynamics (CFD) simulations are used to determine the flow fields and the resulted fluid-particle interaction. The more angular particle assemblies thus generated are less permeable, and their fluid-particle interaction forces are higher. However, angularity has limited influence on flow rate distribution and flow tortuosity. The influence of angularity is localized. An increase in angularity generates a larger variance of the pressure distribution on the particle surfaces, thus increasing the pressure component of the fluid-particle interaction force.

Journal article

Morimoto T, O'Sullivan C, Taborda D, 2021, Exploiting DEM to Link Thermal Conduction and Elastic Stiffness in Granular Materials, Journal of Engineering Mechanics, Vol: 148, ISSN: 0733-9399

Estimating the effective thermal conductivity (ETC) of granular materials is important in various engineering disciplines. The ETC of a granular material is not unique, rather it depends upon the material's packing characteristics, i.e. porosity and coordination number. Directly measuring the ETC of granular materials with a particular packing density and subjected to specific stress conditions is experimentally challenging. There is a need to develop reliable, indirect experimental methods to measure the ETC of granular materials. Here we explore the possibility of linking the ETC of granular materials to their elastic moduli.This study used a thermal pipe network model implemented in a Discrete Element Method (DEM) code to generate ETC data for ideal, virtual two-phase granular samples with stagnant pore fluid. Parametric studies considered the sensitivity of the ETC to the sample packing. Data from small deformation probes were used to explore links between the samples' elastic moduli and their ETCs. The results provide a theoretical background for the development of an indirect experimental method to predict the ETC or trends in the variation in the ETC by considering stiffness data which are relatively straightforward to acquire. The study shows how DEM can be used as a sophisticated thought experiment to explore novel ideas for developing experimental procedures.

Journal article

Yu M, Reddyhoff T, Dini D, Holmes A, O'Sullivan Cet al., 2021, Using ultrasonic reflection resonance to probe stress wave velocity in assemblies of spherical particles, IEEE Sensors Journal, Vol: 21, Pages: 22489-22498, ISSN: 1530-437X

A high-sensitivity method to measure acousticwave speed in soils by analyzing the reflected ultrasonic signalfrom a resonating layered interface is proposed here.Specifically, an ultrasonic transducer which can be used to bothtransmit and receive signals is installed on a low-high acousticimpedance layered structure of hard PVC and steel, which in turnis placed in contact with the soil deposit of interest. The acousticimpedance of the soil (the product of density and wave velocity)is deduced from analysis of the waves reflected back to thetransducer. A system configuration design is enabled bydeveloping an analytical model that correlates the objectivewave speed with the measurable reflection coefficient spectrum.The physical viability of this testing approach is demonstratedby means of a one-dimensional compression device that probesthe stress-dependence of compression wave velocity of differentsizes of glass ballotini particles. Provided the ratio of thewavelength of the generated wave to the soil particle size issufficiently large the data generated are in agreement with dataobtained using conventional time-of-flight measurements. Inprinciple, this high-sensitivity approach avoids the need for thewave to travel a long distance between multiple transmitterreceiver sensors as is typically the case in geophysical testingof soil. Therefore it is particularly suited to in-situ observation ofsoil properties in a highly compact setup, where only a single transducer is required. Furthermore, high spatialresolution of local measurements can be achieved, and the data are unaffected by wave attenuation as transmitted insoil.

Journal article

Bandera S, Angioletti-Uberti S, Tangney P, O'Sullivan Cet al., 2021, Coarse-grained molecular dynamics simulations of clay compression, Computers and Geotechnics, Vol: 138, Pages: 1-18, ISSN: 0266-352X

This paper outlines a framework for using molecular dynamics to simulate the compression of kaolinite saturated at alkaline pH (=8) in a low (1 mM) concentration solution. The particles are modelled as flat (3D) ellipsoids and their interactions are described by a modified form of the Gay-Berne potential, calibrated against DLVO theory. The LAMMPS software was used to generate monodisperse and slightly polydisperse samples, and to simulate isotropic compression to 100 kPa. The influences of sample size and strain rate on the void ratio and the arrangement of particles within the samples were investigated via parametric studies. It is useful to consider the extent to which the system temperature (a measure of the average kinetic energy) is controlled when assessing whether the applied strain rate is appropriate. It is found that the number of particles that can be considered a representative element volume is orders of magnitude larger than the number simulated in earlier studies and that larger number of particles are required in polydisperse samples than in the monodisperse case. A comparison between the results obtained and those of published experimental studies show that the methodology proposed can deliver sensible results for the material considered.

Journal article

O'Sullivan C, Cheng H, Zhao J, 2021, Use of DEM in geomechanics: Special issue associated with the DEM 8 conference, Computers and Geotechnics, Vol: 137, Pages: 1-4, ISSN: 0266-352X

Journal article

Schnaider Bortolotto M, Taborda DMG, O'Sullivan C, 2021, Thermal effects on the hydraulic conductivity of a granular geomaterial, 20th International Conference on Soil Mechanics and Geotechnical Engineering 2022, Publisher: 2022 Australian Geomechanics Society, Pages: 5017-5022

Geotechnical challenges arising from thermal loading are associated with many engineering applications such as ground source energy systems (5℃-40℃) and nuclear waste disposal (in excess of 100℃). The effects of temperature on soils have been the subject of limited research, particularly in terms of the fundamental characterisation of the non-isothermal behaviour of granular geomaterials. This study describes challenges associated with determining the hydraulic conductivity (k_ℎ) of such materials at different temperatures using a bespoke temperature-controlled triaxial apparatus. A methodology is proposed for interpreting thermo-hydro-mechanical (THM) tests on isotropically consolidated specimens and is applied to data obtained for a uniform sand. It is shown that the intrinsic head losses of the system need to be minimised in order to obtain reliable measurements; this requires a detailed calibration procedure. The developed approach is used to determine the hydraulic conductivity at ambient temperature and at 40℃, showing that the increase in k_ℎ with temperature is mostly due to the reduction in the viscosity of water. A detailed analysis of the volumetric response of the sample during heating is also carried out.

Conference paper

Morimoto T, O'Sullivan C, Taborda D, 2021, Analytical and DEM studies of thermal stress in granular materials, Powders and Grains 2021, Publisher: EDP Sciences, Pages: 1-4, ISSN: 2100-014X

The ability to predict thermal-induced stresses in granular materials is of practical importance across a range of disciplines ranging from process engineering to geotechnical engineering. This study presents an analytical formula to predict thermal-induced stress increments in mono-disperse granular materials subject to an initial isotropic stress state. A complementary series of DEM simulations were carried out to explore the applicability of the proposed analytical formula. The comparative analysis showed that the proposed expression can accurately predict stress changes in packings where there are negligible particle displacements as a consequence of the thermal loading (e.g. regular packings and medium/dense random packings); however large errors were observed in loose samples with a random packing.

Conference paper

Bernhardt-Barry M, Biscontin G, O'Sullivan C, 2021, Analysis of the stress distribution in a laminar direct simple shear device and implications for test data interpretation, Granular Matter, Vol: 23, ISSN: 1434-5021

Direct simple shear (DSS) testing allows observation of load-deformation response under rotation of the major principal stress plane, which is descriptive of many actual field problems. While the simplicity of the test configuration makes its use popular in research and industry, key uncertainties still remain regarding the interpretation of the laboratory data. This study uses laboratory validated discrete element method (DEM) models to examine the stress transmission in laminar-type direct simple shear devices under drained constant effective stress conditions. The DEM models (comprised of spheres) closely replicate physical specimens of precision chrome steel ball bearings for which the properties (e.g., shape, surface friction, and stiffness) were measured directly. The DEM models were also validated using experimental tests, so that conclusions regarding the system response can be derived with confidence from the available DEM data. The testing program included both loose and dense specimens, allowing for a comparison of the influence of density on stress state which has not been examined in previous simple shear DEM studies. Differences were observed between vertical effective stresses and shear stresses derived from boundary measurements (as commonly carried out in experimental programs) and those derived from force measurements within the DEM specimens. The failure state of the material in simple shear was also examined through Mohr’s circles of stress. The evolution of stresses on both the horizontally and vertically oriented planes were considered so that established methods of direct simple shear interpretation could be critically assessed. For the loose specimens, the angle of shearing resistance can be confidently estimated considering the maximum shear stress acting on the horizontal plane, which is easily inferred from measurements of the shear force during the physical test. This was true considering both internal and boundary calculated stress

Journal article

Sufian A, Artigaut M, Shire T, O'Sullivan Cet al., 2021, Influence of Fabric on Stress Distribution in Gap-Graded Soil, JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, Vol: 147, ISSN: 1090-0241

Journal article

Che H, O'Sullivan C, Sufian A, Smith Eet al., 2021, A novel CFD-DEM coarse-graining method based on the Voronoi tessellation, Powder Technology, Vol: 384, Pages: 479-493, ISSN: 0032-5910

In unresolved flow CFD-DEM simulations, the porosity values for each CFD cell are determined using a coarse-graining algorithm. While this approach enables coupled simulations of representative numbers of particles, the influence of the porosity local to the particles on the fluid-particle interaction force is not captured. This contribution considers a two-grid coarse-graining method that determines a local porosity for each particle using a radical Voronoi tessellation of the system. A relatively fine, regular point cloud is used to map these local porosity data to the CFD cells. The method is evaluated using two different cases considering both disperse and tightly packed particles. The data show that the method conserves porosity data, is reasonably grid-independent and can generate a relatively smooth porosity field. The new method can more accurately predict the fluid-particle interactive force for polydisperse particle system than alternative methods that have been implemented in unresolved CFD-DEM codes.

Journal article

Altuhafi FN, O'Sullivan C, Sammonds P, Su T-C, Gourlay Cet al., 2021, Triaxial compression on semi-solid alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol: 52, Pages: 2010-2023, ISSN: 1073-5623

Multi-axial compression of the mushy zone occurs in various pressurized casting processes. Here, we present a drained triaxial compression apparatus for semi-solid alloys that allow liquid to be drawn into or expelled from the sample in response to isotropic or triaxial compression. The rig is used to measure the pressure-dependent flow stress and volumetric response during isothermal triaxial compression of globular semi-solid Al-15 wt pct Cu at 70 to 85 vol pct solid. Analysis of the stress paths and the stress–volume data show that the combination of the solid fraction and mean effective pressure determines whether the material undergoes shear-induced dilation or contraction. The results are compared with the critical state soil mechanics (CSSM) framework and the similarities and differences in behavior between equiaxed semi-solid alloys and soils are discussed.

Journal article

Liu D, O'Sullivan C, Harb Carraro JA, 2021, Influence of particle size distribution on the proportion of stress-transmitting particles and implications for measures of soil state, Journal of Geotechnical and Geoenvironmental Engineering, Vol: 147, Pages: 04020182-1-04020182-14, ISSN: 0733-9410

It is generally accepted that the use of void ratio and bulk density as measures of soil8state have limitations in the case of gap-graded soils as the finer grains may not 9transmit stress. However, hitherto no one has systematically explored whether this 10issue also emerges for soils with continuous gradings. Building on a number of experimental and discrete element method (DEM) studies that have considered the idea of an effective void ratio for gap-graded or bi-modal soils, this contribution extends consideration of this concept to a broader range of particle size distributions. By exploiting high performance computers, this study considers a range of ideal isotropically compressed samples of spherical particles with linear, fractal and gap-graded (bimodal and trimodal) particle size distributions. The materials’ initial packing densities are controlled by varying the inter-particle coefficient of friction. The results show that even for soils with continuous particle size distributions, a significant proportion of the finer particles may not transmit stress and be inactive. Drawing on ideas put forward in relation to gap-graded soils, both a mechanical void ratio and mechanical bulk density that consider the inactive grains as part of the void space are determined. Even for the linear and fractal gradings considered here, the difference between the conventional measures and the mechanical measures is finite and density dependent. The difference is measurably larger in the looser samples considered. These data highlight a conceptual/fundamental limitation of using the global void ratio26as a measure of state in expressions to predict granular material behaviour

Journal article

Dutta TT, Otsubo M, Kuwano R, O'Sullivan Cet al., 2020, Evolution of shear wave velocity during triaxial compression, Soils and Foundations, Vol: 60, Pages: 1357-1370, ISSN: 0038-0806

Accurate design of geotechnical structures requires precise estimation of the shear wave velocity (Vs) and the small-strain shear modulus. However, the interpretation of Vs data measured in deformed/sheared soil has not been extensively considered. This study used a triaxial apparatus equipped with planar piezoelectric transducers to monitor the evolution of Vs during triaxial compression of cohesionless soils. Recognizing that the grain shape and surface characteristics affect the overall mechanical response of granular materials, various natural sands and glass bead samples were considered. Discrete element method (DEM) simulations using spherical particles were carried out to compute particle-scale responses that cannot be measured in the laboratory. The experimental results revealed that the Vs values for samples with different initial densities tend to approach one another and have similar values (merge) at large axial strains. This merging occurs at a lower strain level for spherical particles in comparison with non-spherical particles. The linear Vs-void ratio relationship, which is often developed and used for homogeneous and isotropic stress states, is no longer applicable during shearing. It is the mean coordination number that dictates the evolution of Vs during triaxial compression. Furthermore, the axial strain at which the peak Vs is achieved is found to be comparable to the axial strain at which specimen dilation takes place.

Journal article

Otsubo M, OSullivan C, Ackerley S, Parker Det al., 2020, Selecting an appropriate shear plate configuration to measure elastic wave velocities, Geotechnical Testing Journal, Vol: 43, ISSN: 0149-6115

The (small-strain) elastic moduli of soil can be determined from stress wave velocity measurements. Bender/extender elements are widely used in laboratory experiments; however, discussion on how to accurately determine wave velocities using this method continues. Planar piezoelectric transducers (sometimes called shear plates) are a relatively new technology, whose use is not yet widely established, that appear to offer some advantages in comparison with bender/extender elements for laboratory geophysics tests. This contribution critically assesses the use of planar piezoelectric elements experimentally and using discrete element method (DEM) simulations. Planar piezoelectric elements capable of generating and receiving either shear or compression waves were placed in the top and base caps of a triaxial apparatus. Samples of glass ballotini were used so that stress wave propagation simulations could be performed on equivalent virtual samples using DEM. The appropriate shear plate configuration to effectively measure the shear wave velocity is explored. Considering both time- and frequency-domain responses, it is revealed that shear plate signals are sensitive to the surface area and thickness of the piezoelectric elements and to the lateral boundary conditions. Using a shear plate with the widest possible surface area exposed to the soil specimen is recommended to increase the signal-to-noise ratio and to produce more planar shear waves, resulting in a more accurate measurement of shear wave velocity.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00406897&limit=30&person=true