Imperial College London

Dr Catriona M. McGilvery

Faculty of EngineeringDepartment of Materials

Research Facility Manager (Microscopy)
 
 
 
//

Contact

 

+44 (0)20 7594 2579catriona.mcgilvery

 
 
//

Location

 

LGM 05KRoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

34 results found

Lin CJ, Wang D, Peng L, Zois A, McGilvery CM, Li Q, Gourlay CMet al., 2024, Carbides in AZ91 and their role in the grain refinement of magnesium, Journal of Alloys and Compounds, Vol: 971, ISSN: 0925-8388

Carbon inoculation is a well-known method to grain refine Mg-Al-based alloys, but the underlying mechanisms remain unclear. Here we study carbides and their relationship with the surrounding magnesium in inoculated Mg-9Al-0.7Zn-0.2Mn (wt.%, AZ91) by combining controlled solidification experiments with analytical electron microscopy. Up to three carbides formed depending on the solidification conditions: T1-Al2MgC2, T2-Al2MgC2 and Al4C3. All carbides grew with their basal planes as the largest facet and the trigonal carbides, T2-Al2MgC2 and Al4C3, often contained basal planar growth faults and growth twins. In many cases there was evidence of eutectic-like Al4C3 growing off T2-Al2MgC2, indicating that Al4C3 formed later in the solidification sequence after α-Mg had nucleated, consistent with recent phase diagram calculations. A basal-to-basal OR was measured between α-Mg and T2-Al2MgC2 for approximately 10% of particles, indicating that T2-Al2MgC2 is the heterogeneous nucleant for α-Mg. Particles with the OR had diverse locations including near grain boundaries and near the centre of grains, suggesting that the OR can form by pushing and engulfment as well as by heterogeneous nucleation.

Journal article

Depalle B, McGilvery CM, Nobakhti S, Aldegaither N, Shefelbine SJ, Porter AEet al., 2021, Osteopontin regulates type I collagen fibril formation in bone tissue, Acta Biomaterialia, Vol: 120, Pages: 194-202, ISSN: 1742-7061

Osteopontin (OPN) is a non-collagenous protein involved in biomineralization of bone tissue. Beyond its role in biomineralization, we show that osteopontin is essential to the quality of collagen fibrils in bone. Transmission electron microscopy revealed that, in Opn−/− tissue, the organization of the collagen fibrils was highly heterogeneous, more disorganized than WT bone and comprised of regions of both organized and disorganized matrix with a reduced density. The Opn−/− bone tissue also exhibited regions in which the collagen had lost its characteristic fibrillar structure, and the crystals were disorganized. Using nanobeam electron diffraction, we show that damage to structural integrity of collagen fibrils in Opn−/- bone tissue and their organization causes mineral disorganization, which could ultimately affect its mechanical integrity.

Journal article

McGilvery C, Jiang J, Rounthwaite N, Williams R, Giuliani F, Britton Tet al., 2020, Characterisation of carbonaceous deposits on diesel injector nozzles, Fuel: the science and technology of fuel and energy, Vol: 274, Pages: 1-9, ISSN: 0016-2361

Diesel injector nozzles are highly engineered components designed to optimise delivery of fuel into the combustion chamber of modern engines. These components contain narrow channels to enhance spray formation and penetration, hence mixing and combustion. Over time, these injectors can become clogged due to fouling by carbonaceous deposits which may affect the long-term performance of a diesel engine. In this paper we explore the chemical composition and structure of deposits formed within the nozzle at the nanometre scale using electron microscopy. We focus on comparing deposits generated using a chassis dynamometer-based test with Zn fouled fuel with a DW10B dirty up test. We have developed and applied a method to precisely section the deposits for ‘top view’ scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis of the morphology and relative accumulation of deposits formed during chassis dynamometer and engine based dirty-up tests. We extend this analysis to finer length scales through lift-out of ~70 nm thick electron transparent cross section foils, including both the metal substrate and deposit, using focussed ion beam (FIB) machining. These foils are analysed using scanning transmission electron microscopy (STEM) and STEM-EDS. These thin foils reveal thin-film growth and chemical stratification of Zn, C, O and other elements in the organic deposit layers developed during growth on the steel substrate during industry standard fouling tests.

Journal article

McGilvery CM, Abellan P, Klosowski MM, Livingston AG, Cabral JT, Ramasse QM, Porter AEet al., 2020, Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications, ACS Applied Materials & Interfaces, Vol: 12, Pages: 19890-19902, ISSN: 1944-8244

Reverse osmosis membranes are used within the oil and gas industry for seawater desalination on off-shore oilrigs. The membranes consist of three layers of material: a polyester backing layer, a polysulfone support and a polyamide (PA) thin film separating layer. It is generally thought that the PA layer controls ion selectivity within the membrane but little is understood about its structure or chemistry at the molecular scale. This active polyamide layer is synthesized by interfacial polymerization at an organic/aqueous interface between m-phenylenediamine and trimesoyl chloride, producing a highly cross-linked PA polymer. It has been speculated that the distribution of functional chemistry within this layer could play a role in solute filtration. The only technique potentially capable of probing the distribution of functional chemistry within the active PA layer with sufficient spatial and energy resolution is scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS). Its use is a challenge because organic materials suffer beam-induced damage at relatively modest electron doses. Here we show that it is possible to use the N K-edge to map the active layer of a PA film using monochromated EELS spectrum imaging. The active PA layer is 12 nm thick, which supports previous neutron reflectivity data. Clear changes in the fine structure of the C K-edge across the PA films are measured and we use machine learning to assign fine structure at this edge. Using this method, we map highly heterogeneous intensity variations in functional chemistry attributed to N—C═C bonds within the PA. Similarities are found with previous molecular dynamics simulations of PA showing regions with a higher density of amide bonding as a result of the aggregation process at similar length scales. The chemical pathways that can be deduced may offer a clearer understanding of the transport mechanisms through the membrane.

Journal article

Tsai C-Y, McGilvery CM, Aguadero A, Skinner SJet al., 2019, Phase evolution and reactivity of Pr2NiO4+δ and Ce0.9Gd0.1O2-δ composites under solid oxide cell sintering and operation temperatures, International Journal of Hydrogen Energy, Vol: 44, Pages: 31458-31465, ISSN: 0360-3199

In developing a new compositae air electrode for Solid Oxide Cells (SOCs) it is essential to fully understand the phase chemistry of all components. Ruddlesden-Popper type electrodes such as Pr2NiO4+δ have previously been proposed as attractive alternatives to conventional La0·6Sr0·4Fe0·8Co0·2O3-δ/Ce1-xGdxO2-δ compositae air electrodes for both fuel cell and electrolyser modes of operation. However, Pr2NiO4+δ have been shown to have limited stability, reacting with a Ce1-xGdxO2-δ interlayer to form a Ce1-x-yGdxPryO2-δ (CGPO) phase of unknown stoichiometry. Additionally, Pr2NiO4+δ are known to decompose to Pr4Ni3O10 ± δ under certain conditions.In this work detailed understanding of the chemical reaction between Pr2NiO4+δ and Ce0.9Gd0.1O2-δ (CGO10) under normal solid oxide cell fabrication and operating temperatures was obtained, identifying the composition of the resulting CGPO phase reaction products. It is shown that, in addition to the unreacted CGO10 present after sintering the compositae at 1100 °C for up to 12 h, a series of CGPO chemical compositions were formed with various Ce, Gd and Pr ratios depending on the relative distance of the doped ceria phases from the Pr2NiO4+δ phases. The extent of the chemical reaction was found to depend on the sintering time and the contact area of the two phases. Further thermal treatment of the resulting products under SOC air electrode operating temperature (800 °C) resulted in the initiation of Pr2NiO4+δ decomposition, forming Pr4Ni3O10 ± δ and Pr6O11 with no detectable change in the composition of previously formed Pr-substituted ceria phases. It is apparent that the Pr2NiO4+δ/CGO10 compositae is unsuitable as an air electrode, but there is evidence that the decomposition products, Pr4Ni3O10 ± δ and Ce1-x-yGdxPryO2-δ are stable and suitable candidates for SOC electrodes.

Journal article

Constantinou A, Marie-Sainte U, Peng L, Carroll D, McGilvery C, Dunlop I, Georgiou Tet al., 2019, Effect of block copolymer architecture and composition on gold nanoparticle fabrication, Polymer Chemistry, Vol: 10, Pages: 4632-4642, ISSN: 1759-9954

Gold nanoparticles (AuNPs) have many biomedical applications. Their size is a crucial parameter, as it affects cellular uptake. Here, we investigate how the formation of AuNPs is affected by the composition and architecture (AB, BAB and ABA) of the copolymers, which were used as templates for the fabrication of AuNPs.

Journal article

Gonzalez-Carter DA, Ong ZY, McGilvery CM, Dunlop IE, Dexter DT, Porter AEet al., 2019, L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles, Nanomedicine: Nanotechnology, Biology and Medicine, Vol: 15, Pages: 1-11, ISSN: 1549-9634

The blood-brain barrier (BBB) is a protective endothelial barrier lining the brain microvasculature which prevents brain delivery of therapies against brain diseases. Hence, there is an urgent need to develop vehicles which efficiently penetrate the BBB to deliver therapies into the brain. The drug L-DOPA efficiently and specifically crosses the BBB via the large neutral amino acid transporter (LAT)-1 protein to enter the brain. Thus, we synthesized L-DOPA-functionalized multi-branched nanoflower-like gold nanoparticles (L-DOPA-AuNFs) using a seed-mediated method involving catechols as a direct reducing-cum-capping agent, and examined their ability to cross the BBB to act as brain-penetrating nanovehicles. We show that L-DOPA-AuNFs efficiently penetrate the BBB compared to similarly sized and shaped AuNFs functionalized with a non-targeting ligand. Furthermore, we show that L-DOPA-AuNFs are efficiently internalized by brain macrophages without inducing inflammation. These results demonstrate the application of L-DOPA-AuNFs as a non-inflammatory BBB-penetrating nanovehicle to efficiently deliver therapies into the brain.

Journal article

Hindley JW, Elani Y, McGilvery CM, Ali S, Bevan CL, Law R, Ces Oet al., 2018, Light-triggered enzymatic reactions in nested vesicle reactors, Nature Communications, Vol: 9, Pages: 1-6, ISSN: 2041-1723

Cell-sized vesicles have tremendous potential both as miniaturised pL reaction vessels and in bottom-up synthetic biology as chassis for artificial cells. In both these areas the introduction of light-responsive modules affords increased functionality, for example, to initiate enzymatic reactions in the vesicle interior with spatiotemporal control. Here we report a system composed of nested vesicles where the inner compartments act as phototransducers, responding to ultraviolet irradiation through diacetylene polymerisation-induced pore formation to initiate enzymatic reactions. The controlled release and hydrolysis of a fluorogenic β-galactosidase substrate in the external compartment is demonstrated, where the rate of reaction can be modulated by varying ultraviolet exposure time. Such cell-like nested microreactor structures could be utilised in fields from biocatalysis through to drug delivery.

Journal article

Marchesini S, McGilvery CM, Bailey J, Petit Cet al., 2017, Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption, ACS Nano, Vol: 11, Pages: 10003-10011, ISSN: 1936-0851

Production of biocompatible and stable porous materials, e.g., boron nitride, exhibiting tunable and enhanced porosity is a prerequisite if they are to be employed to address challenges such as drug delivery, molecular separations, or catalysis. However, there is currently very limited understanding of the formation mechanisms of porous boron nitride and the parameters controlling its porosity, which ultimately prevents exploiting the material’s full potential. Herein, we produce boron nitride with high and tunable surface area and micro/mesoporosity via a facile template-free method using multiple readily available N-containing precursors with different thermal decomposition patterns. The gases are gradually released, creating hierarchical pores, high surface areas (>1900 m2/g), and micropore volumes. We use 3D tomography techniques to reconstruct the pore structure, allowing direct visualization of the mesopore network. Additional imaging and analytical tools are employed to characterize the materials from the micro- down to the nanoscale. The CO2 uptake of the materials rivals or surpasses those of commercial benchmarks or other boron nitride materials reported to date (up to 4 times higher), even after pelletizing. Overall, the approach provides a scalable route to porous boron nitride production as well as fundamental insights into the material’s formation, which can be used to design a variety of boron nitride structures.

Journal article

Hart M, White ER, Chen J, McGilvery CM, Pickard CJ, Michaelides A, Sella A, Shaffer MSP, Salzmann CGet al., 2017, Encapsulation and polymerization of white phosphorus inside single-wall carbon nanotubes, Angewandte Chemie International Edition, Vol: 56, Pages: 8144-8148, ISSN: 1521-3757

Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT “nanoreactors”. The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.

Journal article

Robinson RK, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Chen S, McGilvery CM, Hu S, Shaffer MSP, Bonvini SJ, Maher SA, Mudway IS, Porter AE, Carlsten C, Tetley TD, Belvisi MGet al., 2017, Mechanistic link between diesel exhaust particles and respiratory reflexes, Journal of Allergy and Clinical Immunology, Vol: 141, Pages: 1074-1084.e9, ISSN: 1097-6825

BackgroundDiesel exhaust particles (DEPs) are a major component of particulate matter in Europe's largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm.ObjectiveWe sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs.MethodsIn this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus.ResultsWe demonstrate a direct interaction between DEP and airway C-fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C-fibers. The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers.ConclusionsThis study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.

Journal article

Li Y, Klosowski MM, McGilvery CM, Porter AE, Livingston AG, Cabral JTet al., 2017, Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers, JOURNAL OF MEMBRANE SCIENCE, Vol: 534, Pages: 9-17, ISSN: 0376-7388

We investigate the flow activity of the nanostructured polyamide layer in reverse osmosis (RO) membrane, using gold nanoparticle (NP) tracers of 1–40 nm diameter. Following a detailed structural examination of a commercial SW30RH membrane selected for this study, NP solutions were infiltrated from either the polyamide front or the polysulfone support side. The permeate was then analyzed spectroscopically while the entrapment of NPs within the membrane was mapped by high resolution electron microscopy. Results show that back-filtered NPs exhibited a fractionated distribution according to size: 1 nm nanoparticles permeate across the polyamide-polysulfone interface reaching the interior of the polyamide corrugations, while the larger ones (>10 nm) are retained within the polysulfone and gradually arrested at approximately 100 nm below the polyamide-polysulfone interface. Intermediate-sized 5 nm nanoparticles reached the undulating folds just below the polyamide layer. Permeation pathways across polyamide layer appear to exclude all tracers above 1 nm, which become selectively distributed across the polyamide layer: positively charged NPs label the outer surface of the polyamide film (expected to be carboxylate-rich), while negatively charged particles are uniformly distributed within the layer. Diafiltration measurements quantify the transient kinetics of NP retention and permeation. Overall, our results establish the flow activity of the polyamide nodular surface and provide estimates for the dimensions of permeation pathways.

Journal article

Chung KF, Seiffert J, Chen S, Theodorou IG, Goode AE, Leo BF, McGilvery CM, Hussain F, Wiegman C, Rossios C, Zhu J, Gong J, Tariq F, Yufit V, Monteith AJ, Hashimoto T, Skepper JN, Ryan MP, Zhang J, Tetley TD, Porter AEet al., 2017, Inactivation, clearance, and functional effects of lung-instilled short and long silver nanowires in rats, ACS Nano, Vol: 11, Pages: 2652-2664, ISSN: 1936-086X

There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague–Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health.

Journal article

Rounthwaite N, McGilvery CM, Jiang J, Williams R, Giuliani F, Britton TBet al., 2017, A chemical and morphological study of diesel injector nozzle deposits - insights into their formation and growth mechanisms, SAE 2017 World Congress and Exhibition, Publisher: SAE International, Pages: 106-114, ISSN: 1946-3960

Modern diesel passenger car technology continues to develop rapidly in response to demanding emissions, performance, refinement, cost and fuel efficiency requirements. This has included the implementation of high pressure common rail fuel systems employing high precision injectors with complex injection strategies, higher hydraulic efficiency injector nozzles and in some cases <100µm nozzle hole diameters. With the trend towards lower diameter diesel injector nozzle holes and reduced cleaning through cavitation with higher hydraulic efficiency nozzles, it is increasingly important to focus on understanding the mechanism of diesel injector nozzle deposit formation and growth. In this study such deposits were analysed by cross-sectioning the diesel injector along the length of the nozzle hole enabling in-depth analysis of deposit morphology and composition change from the inlet to the outlet, using state-of-the-art electron microscopy techniques. Deposits produced in the injector nozzles of the industry standard fouling test (CEC F-98-08 DW10B bench engine) were compared with those formed in a vehicle driven on a chassis dynamometer, using a drive cycle more representative of real world vehicle conditions, to explore the effects of differing drive cycles and engine technologies. Fouling in all tests was accelerated with the addition of 1ppm zinc neodecanoate, as specified in the CEC DW10B test. This in-depth characterisation revealed a complex multi-layered system of deposits inside the diesel injector nozzle. Through analysing these layers the mechanisms enabling the initial deposit formation and growth can be postulated.

Conference paper

Calderon L, Han TT, McGilvery CM, Yang L, Subramaniam P, Lee K-B, Schwander S, Tetley TD, Georgopoulos PG, Ryan M, Porter AE, Smith R, Chung KF, Lioy PJ, Zhang J, Mainelis Get al., 2017, Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure, ATMOSPHERIC ENVIRONMENT, Vol: 155, Pages: 85-96, ISSN: 1352-2310

The increasing prevalence and use of nanotechnology-enabled consumer products have increased potential consumer exposures to nanoparticles; however, there is still a lack of data characterizing such consumer exposure. The research reported here investigated near-field airborne exposures due to the use of 13 silver (Ag)-based and 5 zinc (Zn)-based consumer sprays. The products were sprayed into a specially designed glove box, and all products were applied with equal spraying duration and frequency. Size distribution and concentration of the released particles were assessed using a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the presence of metals in all investigated products. Spray liquids and airborne particles from select products were examined using transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDS). We found that all sprays produced airborne particles ranging in size from nano-sized particles (<100 nm) to coarse particles (>2.5 μm); however, there was a substantial variation in the released particle concentration depending on a product. The total aerosol mass concentration was dominated by the presence of coarse particles, and it ranged from ∼30 μg/m3 to ∼30,000 μg/m3. The TEM verified the presence of nanoparticles and their agglomerates in liquid and airborne states. The products were found to contain not only Ag and Zn compounds - as advertised on the product labeling - but also a variety of other metals including lithium, strontium, barium, lead, manganese and others. The results presented here can be used as input to model population exposures as well as form a basis for human health effects studies due to the use nanotechnology-enabled products.

Journal article

Constantinou A, Zhao H, McGilvery C, Porter A, Georgiou Tet al., 2017, A comprehensive systematic study on thermoresponsive gels: beyond the common architectures of linear terpolymers, Polymers, Vol: 9, ISSN: 2073-4360

In this study, seven thermoresponsive methacrylate terpolymers with the same molar mass (MM) and composition but various architectures were successfully synthesized using group transfer polymerization (GTP). These terpolymers were based on tri(ethylene glycol) methyl ether methacrylate (TEGMA, A unit), n-butyl methacrylate (BuMA, B unit), and 2-(dimethylamino)ethyl methacrylate (DMAEMA, C unit). Along with the more common ABC, ACB, BAC, and statistical architectures, three diblock terpolymers were also synthesized and investigated for the first time, namely (AB)C, A(BC), and B(AC); where the units in the brackets are randomly copolymerized. Two BC diblock copolymers were also synthesized for comparison. Their hydrodynamic diameters and their effective pKas were determined by dynamic light scattering (DLS) and hydrogen ion titrations, respectively. The self-assembly behavior of the copolymers was also visualized by transmission electron microscopy (TEM). Both dilute and concentrated aqueous copolymer solutions were extensively studied by visual tests and their cloud points (CP) and gel points were determined. It is proven that the aqueous solution properties of the copolymers, with specific interest in their thermoresponsive properties, are influenced by the architecture, with the ABC and A(BC) ones to show clear sol-gel transition.

Journal article

Klosowski MM, McGilvery CM, Li Y, Abellan P, Ramasse Q, Cabral JT, Livingston AG, Porter AEet al., 2016, Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers, Journal of Membrane Science, Vol: 520, Pages: 465-476, ISSN: 1873-3123

The development of new reverse osmosis (RO) membranes with enhanced performance would benefit from a detailed knowledge of the membrane structures which participate in the filtration process. Here, we examined the hierarchical structures of the polyamide (PA) active layer of the SW30HR RO membrane. Scanning electron microscopy combined with focused ion beam milling (FIB-SEM) was used to obtain the 3-D reconstructions of membrane morphology with 5 nm cross-sectional resolution (comparable with the resolution of low magnification TEM imaging in 2D) and 30 nm slice thickness. The complex folding of the PA layer was examined in 3 dimensions, enabling the quantification of key structural properties of the PA layer, including the local thickness, volume, surface area and their derivatives. The PA layer was found to exhibit a much higher and convoluted surface area than that estimated via atomic force microscopy (AFM). Cross-sectional scanning transmission electron microscopy (STEM) was used to observe the distribution of a tracer stain under various conditions. The behaviour of stain in dry and wet PA indicated that the permeation pathways have a dynamic nature and are activated by water. High resolution STEM imaging of the stained PA nano-films revealed the presence of <1 nm pore-like structures with a size compatible with free volume estimations by positron annihilation lifetime spectroscopy (PALS). This study presents a comprehensive map of the active PA layer across different length scales (from micro- to sub-nanometre) and mechanistic insight into their role in the permeation process.

Journal article

Nitiputri K, Ramasse QM, Autefage H, McGilvery CM, Boonrungsiman S, Evans ND, Stevens MM, Porter AEet al., 2016, Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors, ACS Nano, Vol: 10, Pages: 6826-6835, ISSN: 1936-086X

A direct observation and an in-depth characterization of the steps by which bone mineral nucleates and grows in the extracellular matrix during the earliest stages of maturation, using relevant biomineralization models as they grow into mature bone mineral, is an important research goal. To better understand the process of bone mineralization in the extracellular matrix, we used nanoanalytical electron microscopy techniques to examine an in vitro model of bone formation. This study demonstrates the presence of three dominant CaP structures in the mineralizing osteoblast cultures: <80 nm dense granules with a low calcium to phosphate ratio (Ca/P) and crystalline domains; calcium phosphate needles emanating from a focus: “needle-like globules” (100–300 nm in diameter) and mature mineral, both with statistically higher Ca/P compared to that of the dense granules. Many of the submicron granules and globules were interspersed around fibrillar structures containing nitrogen, which are most likely the signature of the organic phase. With high spatial resolution electron energy loss spectroscopy (EELS) mapping, spatially resolved maps were acquired showing the distribution of carbonate within each mineral structure. The carbonate was located in the middle of the granules, which suggested the nucleation of the younger mineral starts with a carbonate-containing precursor and that this precursor may act as seed for growth into larger, submicron-sized, needle-like globules of hydroxyapatite with a different stoichiometry. Application of analytical electron microscopy has important implications in deciphering both how normal bone forms and in understanding pathological mineralization.

Journal article

Robinson RK, Birrell MA, Wortley MA, Dubuis ED, Chen S, McGilvery CM, Hu S, Bonvini SJ, Maher SA, Adcock JJ, Mudway I, Porter AE, Tetley TD, Belvisi MGet al., 2016, Diesel Activates Airway Sensory Nerves To Initiate Respiratory Symptoms, International Conference of the American-Thoracic-Society (ATS), Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Quirk JB, Rasander M, McGilvery CM, Palgrave R, Moram MAet al., 2014, Band gap and electronic structure of MgSiN<sub>2</sub>, APPLIED PHYSICS LETTERS, Vol: 105, ISSN: 0003-6951

Journal article

McGilvery CM, De Gendt S, Payzant EA, MacKenzie M, Craven AJ, McComb DWet al., 2012, Investigation of Crystallization Processes from Hafnium Silicate Powders Prepared from an Oxychloride Sol-Gel, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Vol: 95, Pages: 3985-3991, ISSN: 0002-7820

Journal article

McGilvery CM, Goode AE, Shaffer MSP, McComb DWet al., 2012, Contamination of holey/lacey carbon films in STEM, MICRON, Vol: 43, Pages: 450-455, ISSN: 0968-4328

Journal article

Liberti E, McGilvery CM, Menzel R, Shaffer MSP, McComb DWet al., 2012, Size effects in nanoscale dielectric materials, Conference on Electron-Microscopy-and-Analysis-Group (EMAG), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

McGilvery CM, McComb DW, De Gendt S, Payzant EA, MacKenzie M, Craven AJet al., 2011, Characterization of Hafnia Powder Prepared from an Oxychloride Sol-Gel, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Vol: 94, Pages: 886-894, ISSN: 0002-7820

Journal article

Ivanov AP, Instuli E, McGilvery C, Baldwin G, McComb DW, Albrecht T, Edel JBet al., 2010, DNA tunneling detector embedded in a nanopore, Nano Letters, Vol: 11, Pages: 279-285, ISSN: 1530-6992

We report on the fabrication and characterization of a DNA nanopore detector with integrated tunneling electrodes. Functional tunneling devices were identified by tunneling spectroscopy in different solvents and then used in proof-of-principle experiments demonstrating, for the first time, concurrent tunneling detection and ionic current detection of DNA molecules in a nanopore platform. This is an important step toward ultrafast DNA sequencing by tunneling.

Journal article

Ayub M, Ivanov A, Instuli E, Cecchini M, Chansin G, McGilvery C, Hong J, Baldwin G, McComb D, Edel JB, otherset al., 2010, Nanopore/electrode structures for single-molecule biosensing, Electrochimica Acta, Vol: 55, Pages: 8237-8243

Journal article

Moore JD, Cohen LF, Yeshurun Y, Caplin AD, Morrison K, Yates KA, McGilvery CM, Perkins JM, McComb DW, Trautmann C, Ren ZA, Yang J, Lu W, Dong XL, Zhao ZXet al., 2009, The effect of columnar defects on the pinning properties of NdFeAsO0.85 conglomerate particles, Superconductor Science & Technology, Vol: 22, ISSN: 1361-6668

Journal article

Moore JD, Morrison K, Yates KA, Caplin AD, Yeshurun Y, Cohen LF, Perkins JM, McGilvery CM, McComb DW, Ren ZA, Yang J, Lu W, Dong XL, Zhao ZXet al., 2008, Evidence for supercurrent connectivity in conglomerate particles in NdFeAsO(1-delta), Superconductor Science & Technology, Vol: 21, ISSN: 1361-6668

Journal article

Docherty FT, MacKenzie M, Craven AJ, McComb DW, De Gendt S, McFadzean S, McGilvery CMet al., 2008, A nanoanalytical investigation of elemental distributions in high-<i>k</i> dielectric gate stacks on silicon, IEEE International Symposium on Advanced Gate Stack Technology (ISAGST), Publisher: ELSEVIER, Pages: 61-64, ISSN: 0167-9317

Conference paper

McGilvery CM, McComb DW, MacKenzie M, Craven AJ, McFadzean S, De Gendt Set al., 2008, Analysis of hafnium containing powders and thin films for CMOS device applications, Electron Microscopy and Analysis Group Conference, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00411278&limit=30&person=true