Imperial College London

DrCeriHammond

Faculty of EngineeringDepartment of Chemical Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 2878ceri.hammond CV

 
 
//

Location

 

ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Padovan:2018:10.1039/c7re00180k,
author = {Padovan, D and Tolborg, S and Botti, L and Taarning, E and Sadaba, I and Hammond, C},
doi = {10.1039/c7re00180k},
journal = {Reaction Chemistry and Engineering},
pages = {155--163},
title = {Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximising the performance of Sn-Beta with a little drop of water},
url = {http://dx.doi.org/10.1039/c7re00180k},
volume = {3},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Producing chemicals from renewable resources represents one of the key challenges in chemical science. Whilst catalytic methods for converting renewables to chemicals offer several advantages over biological approaches, the solid catalysts developed to date are typically plagued by rapid rates of deactivation, prohibiting their greater exploitation. Here, we demonstrate, for the first time, that a Sn-containing zeolite, Sn-Beta, is capable of continuously converting saccharide solutions to value added chemicals with high levels of activity, selectivity and stability. For both the isomerisation of glucose to fructose, and the conversion of fructose to alkyl lactates, we observe that the addition of up to 10% of water to the methanol/sugar reaction feed increases reactivity by a factor of 2.5, and catalyst stability by one order of magnitude. Continuous operation for up to 1366 h (57 days) is demonstrated, with only limited loss of activity being observed over this period of time. Post-reaction characterisation indicates that the addition of water influences several elements of the catalytic system, which cooperatively result in improved performance.
AU - Padovan,D
AU - Tolborg,S
AU - Botti,L
AU - Taarning,E
AU - Sadaba,I
AU - Hammond,C
DO - 10.1039/c7re00180k
EP - 163
PY - 2018///
SN - 2058-9883
SP - 155
TI - Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximising the performance of Sn-Beta with a little drop of water
T2 - Reaction Chemistry and Engineering
UR - http://dx.doi.org/10.1039/c7re00180k
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000434387700004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://pubs.rsc.org/en/content/articlelanding/2018/RE/C7RE00180K
UR - http://hdl.handle.net/10044/1/76636
VL - 3
ER -