Imperial College London

Charlie Whittaker

Faculty of MedicineSchool of Public Health

Research Fellow
 
 
 
//

Contact

 

charles.whittaker16

 
 
//

Location

 

Sir Michael Uren HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

177 results found

Sheppard RJ, Watson OJ, Pieciak R, Lungu J, Kwenda G, Moyo C, Chanda SL, Barnsley G, Brazeau NF, Gerard-Ursin ICG, Olivera Mesa D, Whittaker C, Gregson S, Okell LC, Ghani AC, MacLeod WB, Del Fava E, Melegaro A, Hines JZ, Mulenga LB, Walker PGT, Mwananyanda L, Gill CJet al., 2024, Author Correction: Using mortuary and burial data to place COVID-19 in Lusaka, Zambia within a global context., Nat Commun, Vol: 15

Journal article

de Souza WM, Ribeiro GS, de Lima STS, de Jesus R, Moreira FRR, Whittaker C, Sallum MAM, Carrington CVF, Sabino EC, Kitron U, Faria NR, Weaver SCet al., 2024, Chikungunya: a decade of burden in the Americas., Lancet Reg Health Am, Vol: 30

In the Americas, one decade following its emergence in 2013, chikungunya virus (CHIKV) continues to spread and cause epidemics across the region. To date, 3.7 million suspected and laboratory-confirmed chikungunya cases have been reported in 50 countries or territories in the Americas. Here, we outline the current status and epidemiological aspects of chikungunya in the Americas and discuss prospects for future research and public health strategies to combat CHIKV in the region.

Journal article

Ramos A, Koch CE, Liu-Lupo Y, Hellinger RD, Kyung T, Abbott KL, Fröse J, Goulet D, Gordon KS, Eidell KP, Leclerc P, Whittaker CA, Larson RC, Muscato AJ, Yates KB, Dubrot J, Doench JG, Regev A, Vander Heiden MG, Maus MV, Manguso RT, Birnbaum ME, Hemann MTet al., 2023, Leukemia-intrinsic determinants of CAR-T response revealed by iterative in vivo genome-wide CRISPR screening., Nat Commun, Vol: 14

CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.

Journal article

Cuomo-Dannenburg G, McCain K, McCabe R, Unwin HJT, Doohan P, Nash RK, Hicks JT, Charniga K, Geismar C, Lambert B, Nikitin D, Skarp J, Wardle J, Kont M, Bhatia S, Imai N, van Elsland S, Cori A, Morgenstern Cet al., 2023, Marburg virus disease outbreaks, mathematical models, and disease parameters: a systematic review, Lancet Infectious Diseases, ISSN: 1473-3099

Recent Marburg virus disease (MVD) outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this highly lethal infectious pathogen. We conducted a systematic review (PROSPERO CRD42023393345), reported according to PRISMA guidelines, of peer-reviewed papers reporting historical outbreaks, modelling studies and epidemiological parameters focused on MVD. We searched PubMed and Web of Science until 31/03/2023. Two reviewers evaluated all titles and abstracts, with consensus-based decision-making. To ensure agreement, 31% (13/42) of studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from MVD. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected MVD outbreaks, asymptomatic transmission and/or cross-reactivity with other pathogens. Only one study presented a mathematical model of MVD transmission. We estimate an unadjusted, pooled total random effect case fatality ratio for MVD of 61.9% (95% CI: 38.8-80.6%, I^2=93%). We identify important epidemiological parameters relating to transmission and natural history for which there are few estimates. This review and the accompanying database provide a comprehensive overview of MVD epidemiology, and identify key knowledge gaps, contributing crucial information for mathematical models to support future MVD epidemic responses.

Journal article

Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JTet al., 2023, Molecular logic of synaptic diversity between Drosophila tonic and phasic motoneurons., Neuron, Vol: 111, Pages: 3554-3569.e7

Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features are poorly understood. To identify molecular pathways that contribute to synaptic diversity, single-neuron Patch-seq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated that synaptic active zones in phasic motoneurons are more compact and display enhanced Ca2+ influx compared with their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications, and intracellular Ca2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.

Journal article

Moreira FRR, Menezes MTD, Salgado-Benvindo C, Whittaker C, Cox V, Chandradeva N, Paula HHSD, Martins AF, Chagas RRD, Brasil RDV, Cândido DDS, Herlinger AL, Ribeiro MDO, Arruda MB, Alvarez P, Tôrres MCDP, Dorigatti I, Brady O, Voloch CM, Tanuri A, Iani F, Souza WMD, Cardozo SV, Faria NR, Aguiar RSet al., 2023, Epidemiological and genomic investigation of chikungunya virus in Rio de Janeiro state, Brazil, between 2015 and 2018, PLoS Neglected Tropical Diseases, Vol: 17, ISSN: 1935-2727

Since 2014, Brazil has experienced an unprecedented epidemic caused by chikungunya virus (CHIKV), with several waves of East-Central-South-African (ECSA) lineage transmission reported across the country. In 2018, Rio de Janeiro state, the third most populous state in Brazil, reported 41% of all chikungunya cases in the country. Here we use evolutionary and epidemiological analysis to estimate the timescale of CHIKV-ECSA-American lineage and its epidemiological patterns in Rio de Janeiro. We show that the CHIKV-ECSA outbreak in Rio de Janeiro derived from two distinct clades introduced from the Northeast region in mid-2015 (clade RJ1, n = 63/67 genomes from Rio de Janeiro) and mid-2017 (clade RJ2, n = 4/67). We detected evidence for positive selection in non-structural proteins linked with viral replication in the RJ1 clade (clade-defining: nsP4-A481D) and the RJ2 clade (nsP1-D531G). Finally, we estimate the CHIKV-ECSA's basic reproduction number (R0) to be between 1.2 to 1.6 and show that its instantaneous reproduction number (Rt) displays a strong seasonal pattern with peaks in transmission coinciding with periods of high Aedes aegypti transmission potential. Our results highlight the need for continued genomic and epidemiological surveillance of CHIKV in Brazil, particularly during periods of high ecological suitability, and show that selective pressures underline the emergence and evolution of the large urban CHIKV-ECSA outbreak in Rio de Janeiro.

Journal article

Wilson MM, Danielian PS, Salus G, Ferretti R, Whittaker CA, Lees JAet al., 2023, BMI1 is required for melanocyte stem cell maintenance and hair pigmentation., Pigment Cell Melanoma Res, Vol: 36, Pages: 399-406

The epigenetic repressor BMI1 plays an integral role in promoting the self-renewal and proliferation of many adult stem cell populations, and also tumor types, primarily through silencing the Cdkn2a locus, which encodes the tumor suppressors p16Ink4a and p19Arf . However, in cutaneous melanoma, BMI1 drives epithelial-mesenchymal transition programs, and thus metastasis, while having little impact on proliferation or primary tumor growth. This raised questions about the requirement and role for BMI1 in melanocyte stem cell (McSC) biology. Here, we demonstrate that murine melanocyte-specific Bmi1 deletion causes premature hair greying and gradual loss of melanocyte lineage cells. Depilation enhances this hair greying defect, accelerating depletion of McSCs in early hair cycles, suggesting that BMI1 acts to protect McSCs against stress. RNA-seq of McSCs, harvested before onset of detectable phenotypic defects, revealed that Bmi1 deletion derepresses p16Ink4a and p19Arf , as observed in many other stem cell contexts. Additionally, BMI1 loss downregulated the glutathione S-transferase enzymes, Gsta1 and Gsta2, which can suppress oxidative stress. Accordingly, treatment with the antioxidant N-acetyl cysteine (NAC) partially rescued melanocyte expansion. Together, our data establish a critical function for BMI1 in McSC maintenance that reflects a partial role for suppression of oxidative stress, and likely transcriptional repression of Cdkn2a.

Journal article

Pakkanen MS, Miscouridou X, Penn MJ, Whittaker C, Berah T, Mishra S, Mellan TA, Bhatt Set al., 2023, Unifying incidence and prevalence under a time-varying general branching process, Journal of Mathematical Biology, Vol: 87, ISSN: 0303-6812

Renewal equations are a popular approach used in modelling the number of new infections, i.e., incidence, in an outbreak. We develop a stochastic model of an outbreak based on a time-varying variant of the Crump–Mode–Jagers branching process. This model accommodates a time-varying reproduction number and a time-varying distribution for the generation interval. We then derive renewal-like integral equations for incidence, cumulative incidence and prevalence under this model. We show that the equations for incidence and prevalence are consistent with the so-called back-calculation relationship. We analyse two particular cases of these integral equations, one that arises from a Bellman–Harris process and one that arises from an inhomogeneous Poisson process model of transmission.We also show that the incidence integral equations that arise from both of these specific models agree with the renewal equation used ubiquitously in infectious disease modelling. We present a numerical discretisation scheme to solve these equations, and use this scheme to estimate rates of transmission from serological prevalence of SARS-CoV-2 in the UK and historical incidence data on Influenza, Measles, SARS and Smallpox.

Journal article

Ma L, Hostetler A, Morgan DM, Maiorino L, Sulkaj I, Whittaker CA, Neeser A, Pires IS, Yousefpour P, Gregory J, Qureshi K, Dye J, Abraham W, Suh H, Li N, Love JC, Irvine DJet al., 2023, Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity., Cell, Vol: 186, Pages: 3148-3165.e20

Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.

Journal article

Sheppard R, Watson OJ, Pieciak R, Lungu J, Kwenda G, Moyo C, Longa Chanda S, Barnsley G, Brazeau NF, Gerard-Ursin ICG, Olivera Mesa D, Whittaker C, Gregson S, Okell LC, Ghani AC, MacLeod WB, Del Fava E, Melegaro A, Hines JZ, Mulenga LB, Walker P, Mwananyanda L, Gill CJet al., 2023, Using mortuary and burial data to place COVID-19 in Lusaka, Zambia within a global context, Nature Communications, Vol: 14, Pages: 1-15, ISSN: 2041-1723

Reported COVID-19 cases and associated mortality remain low in many sub-Saharan countries relative to global averages, but true impact is difficult to estimate given limitations around surveillance and mortality registration. In Lusaka, Zambia, burial registration and SARS-CoV-2prevalence data during 2020 allow estimation of excess mortality and transmission. Relative to pre-pandemic patterns, we estimate age-dependent mortality increases, totalling 3,212 excess deaths (95% CrI: 2,104-4,591), representing an 18.5% (95% CrI: 13.0-25.2%) increase relative to pre-pandemic levels. Using a dynamical model-based inferential framework, we find that these mortalitypatterns and SARS-CoV-2 prevalence data are in agreement with established COVID-19 severity estimates. Our results support hypotheses that COVID-19 impact in Lusaka during 2020 was consistent with COVID-19 epidemics elsewhere, without requiring exceptional explanations for low reported figures. For more equitable decision-making during future pandemics, barriers to ascertaining attributable mortality in low-income settings must be addressed and factored into discourse around reported impact differences.

Journal article

Penn MJJ, Laydon DJJ, Penn J, Whittaker C, Morgenstern C, Ratmann O, Mishra S, Pakkanen MSS, Donnelly CAA, Bhatt Set al., 2023, Intrinsic randomness in epidemic modelling beyond statistical uncertainty, Communications Physics, Vol: 6, ISSN: 2399-3650

Uncertainty can be classified as either aleatoric (intrinsic randomness) or epistemic (imperfect knowledge of parameters). The majority of frameworks assessing infectious disease risk consider only epistemic uncertainty. We only ever observe a single epidemic, and therefore cannot empirically determine aleatoric uncertainty. Here, we characterise both epistemic and aleatoric uncertainty using a time-varying general branching process. Our framework explicitly decomposes aleatoric variance into mechanistic components, quantifying the contribution to uncertainty produced by each factor in the epidemic process, and how these contributions vary over time. The aleatoric variance of an outbreak is itself a renewal equation where past variance affects future variance. We find that, superspreading is not necessary for substantial uncertainty, and profound variation in outbreak size can occur even without overdispersion in the offspring distribution (i.e. the distribution of the number of secondary infections an infected person produces). Aleatoric forecasting uncertainty grows dynamically and rapidly, and so forecasting using only epistemic uncertainty is a significant underestimate. Therefore, failure to account for aleatoric uncertainty will ensure that policymakers are misled about the substantially higher true extent of potential risk. We demonstrate our method, and the extent to which potential risk is underestimated, using two historical examples.

Journal article

Jailkhani N, Clauser KR, Mak HH, Rickelt S, Tian C, Whittaker CA, Tanabe KK, Purdy SR, Carr SA, Hynes ROet al., 2023, Proteomic Profiling of Extracellular Matrix Components from Patient Metastases Identifies Consistently Elevated Proteins for Developing Nanobodies That Target Primary Tumors and Metastases., Cancer Res, Vol: 83, Pages: 2052-2065

UNLABELLED: Metastases are hard to detect and treat, and they cause most cancer-related deaths. The relative lack of therapies targeting metastases represents a major unmet clinical need. The extracellular matrix (ECM) forms a major component of the tumor microenvironment in both primary and metastatic tumors, and certain ECM proteins can be selectively and abundantly expressed in tumors. Nanobodies against ECM proteins that show selective abundance in metastases have the potential to be used as vehicles for delivery of imaging and therapeutic cargoes. Here, we describe a strategy to develop phage-display libraries of nanobodies against ECM proteins expressed in human metastases, using entire ECM-enriched preparations from triple-negative breast cancer (TNBC) and colorectal cancer metastases to different organs as immunogens. In parallel, LC-MS/MS-based proteomics were used to define a metastasis-associated ECM signature shared by metastases from TNBC and colorectal cancer, and this conserved set of ECM proteins was selectively elevated in other tumors. As proof of concept, selective and high-affinity nanobodies were isolated against an example protein from this signature, tenascin-C (TNC), known to be abundant in many tumor types and to play a role in metastasis. TNC was abundantly expressed in patient metastases and widely expressed across diverse metastatic sites originating from several primary tumor types. Immuno-PET/CT showed that anti-TNC nanobodies bind TNBC tumors and metastases with excellent specificity. We propose that such generic nanobodies against tumors and metastases are promising cancer-agnostic tools for delivery of therapeutics to tumor and metastatic ECM. SIGNIFICANCE: Nanobodies specific for extracellular matrix markers commonly expressed in primary tumors and metastases are promising agents for noninvasive detection of tumors and metastases and potential tools for targeted therapy.

Journal article

McCabe R, Sheppard R, Abdelmagid N, Ahmed A, Alabdeen IZ, Brazeau N, Abd Elhameed AEA, Bin-Ghouth AS, Hamlet A, AbuKoura R, Barnsley G, Hay J, Alhaffar M, Besson EK, Saje SM, Sisay BG, Gebreyesus SH, Sikamo AP, Worku A, Ahmed YS, Mariam DH, Sisay MM, Checchi F, Dahab M, Endris BS, Ghani A, Walker P, Donnelly C, Watson Oet al., 2023, Alternative epidemic indicators for COVID-19 in three settings with incomplete death registration systems, Science Advances, Vol: 23, Pages: 1-10, ISSN: 2375-2548

Not all COVID-19 deaths are officially reported, and particularly in low-income and humanitarian settings, the magnitude of reporting gaps remains sparsely characterized. Alternative data sources, including burial site worker reports, satellite imagery of cemeteries, and social media–conducted surveys of infection may offer solutions. By merging these data with independently conducted, representative serological studies within a mathematical modeling framework, we aim to better understand the range of underreporting using examples from three major cities: Addis Ababa (Ethiopia), Aden (Yemen), and Khartoum (Sudan) during 2020. We estimate that 69 to 100%, 0.8 to 8.0%, and 3.0 to 6.0% of COVID-19 deaths were reported in each setting, respectively. In future epidemics, and in settings where vital registration systems are limited, using multiple alternative data sources could provide critically needed, improved estimates of epidemic impact. However, ultimately, these systems are needed to ensure that, in contrast to COVID-19, the impact of future pandemics or other drivers of mortality is reported and understood worldwide.

Journal article

de Souza WM, de Lima STS, Simões Mello LM, Candido DS, Buss L, Whittaker C, Claro IM, Chandradeva N, Granja F, de Jesus R, Lemos PS, Toledo-Teixeira DA, Barbosa PP, Firmino ACL, Amorim MR, Duarte LMF, Pessoa IB, Forato J, Vasconcelos IL, Maximo ACBM, Araújo ELL, Perdigão Mello L, Sabino EC, Proença-Módena JL, Faria NR, Weaver SCet al., 2023, Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: an epidemiological study, The Lancet Microbe, Vol: 4, Pages: e319-e329, ISSN: 2666-5247

BACKGROUND: Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused large epidemics linked to acute, chronic, and severe clinical outcomes. Currently, Brazil has the highest number of chikungunya cases in the Americas. We aimed to investigate the spatiotemporal dynamics and recurrence pattern of chikungunya in Brazil since its introduction in 2013. METHODS: In this epidemiological study, we used CHIKV genomic sequencing data, CHIKV vector information, and aggregate clinical data on chikungunya cases from Brazil. The genomic data comprised 241 Brazilian CHIKV genome sequences from GenBank (n=180) and the 2022 CHIKV outbreak in Ceará state (n=61). The vector data (Breteau index and House index) were obtained from the Brazilian Ministry of Health for all 184 municipalities in Ceará state and 116 municipalities in Tocantins state in 2022. Epidemiological data on laboratory-confirmed cases of chikungunya between 2013 and 2022 were obtained from the Brazilian Ministry of Health and Laboratory of Public Health of Ceará. We assessed the spatiotemporal dynamics of chikungunya in Brazil via time series, mapping, age-sex distribution, cumulative case-fatality, linear correlation, logistic regression, and phylogenetic analyses. FINDINGS: Between March 3, 2013, and June 4, 2022, 253 545 laboratory-confirmed chikungunya cases were reported in 3316 (59·5%) of 5570 municipalities, mainly distributed in seven epidemic waves from 2016 to 2022. To date, Ceará in the northeast has been the most affected state, with 77 418 cases during the two largest epidemic waves in 2016 and 2017 and the third wave in 2022. From 2016 to 2022 in Ceará, the odds of being CHIKV-positive were higher in females than in males (odds ratio 0·87, 95% CI 0·85-0·89, p<0·0001), and the cumulative case-fatality ratio was 1·3 deaths per 1000 cases. Chikungunya recurrences in the states of Ceará

Journal article

Whittaker CA, Kucukural A, Gates C, Wilkins OM, Bell GW, Hutchinson JN, Polson SW, Dragon Jet al., 2023, Functional Annotation Routines Used by ABRF Bioinformatics Core Facilities - Observations, Comparisons, and Considerations., J Biomol Tech, Vol: 34

The functional annotation of gene lists is a common analysis routine required for most genomics experiments, and bioinformatics core facilities must support these analyses. In contrast to methods such as the quantitation of RNA-Seq reads or differential expression analysis, our research group noted a lack of consensus in our preferred approaches to functional annotation. To investigate this observation, we selected 4 experiments that represent a range of experimental designs encountered by our cores and analyzed those data with 6 tools used by members of the Association of Biomolecular Resource Facilities (ABRF) Genomic Bioinformatics Research Group (GBIRG). To facilitate comparisons between tools, we focused on a single biological result for each experiment. These results were represented by a gene set, and we analyzed these gene sets with each tool considered in our study to map the result to the annotation categories presented by each tool. In most cases, each tool produces data that would facilitate identification of the selected biological result for each experiment. For the exceptions, Fisher's exact test parameters could be adjusted to detect the result. Because Fisher's exact test is used by many functional annotation tools, we investigated input parameters and demonstrate that, while background set size is unlikely to have a significant impact on the results, the numbers of differentially expressed genes in an annotation category and the total number of differentially expressed genes under consideration are both critical parameters that may need to be modified during analyses. In addition, we note that differences in the annotation categories tested by each tool, as well as the composition of those categories, can have a significant impact on results.

Journal article

Hemilembolo MC, Niama AC, Campillo JT, Pion SD, Missamou F, Whittaker C, Kankou JM, Ndziessi G, Bileckot RR, Boussinesq M, Chesnais CBet al., 2023, Excess Mortality Associated with Loiasis: Confirmation by a New Retrospective Cohort Study Conducted in the Republic of Congo, Open Forum Infectious Diseases, Vol: 10

Background. Loiasis (Loa loa filariasis) is considered a benign disease and is currently not included in the World Health Organization’s (WHO’s) list of Neglected Tropical Diseases, despite mounting evidence suggesting significant disease burden in endemic areas. We conducted a retrospective cohort study to assess the mortality associated with L. loa microfilaremia in the Southwestern Republic of Congo. Methods. The cohort included 3329 individuals from 53 villages screened for loiasis in 2004. We compared mortality rates in 2021 for individuals initially diagnosed as with or without L. loa microfilariae 17 years earlier. Data were analyzed at the community level to calculate crude mortality rates. Survival models were used to estimate the effect of L. loa microfilaremia on mortality in the population. Results. At baseline, prevalence of microfilaremia was 16.2%. During 17.62 years of cohort follow-up, 751 deaths were recorded, representing a crude mortality rate of 15.36 (95% CI, 14.28–16.50) per 1000 person-years. Median survival time was 58.5 (95% CI, 49.7–67.3) years and 39.2 (95% CI, 32.6–45.8) years for amicrofilaremic and microfilaremic indiviudals, respectively. Conclusions. A significant reduction in life expectancy was associated with L. loa microfilaremia, confirming previous observations from Cameroon. This adds to the evidence that loiasis is not a benign disease and deserves to be included in the WHO’s list of Neglected Tropical Diseases.

Journal article

Whittaker C, Hamlet A, Sherrard-Smith E, Winskill P, Cuomo-Dannenburg G, Walker PGT, Sinka M, Pironon S, Kumar A, Ghani A, Bhatt S, Churcher TSet al., 2023, Seasonal dynamics of Anopheles stephensi and its implications for mosquito detection and emergent malaria control in the Horn of Africa, Proceedings of the National Academy of Sciences of USA, Vol: 120, Pages: 1-9, ISSN: 0027-8424

Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens control efforts across the continent, particularly in urban settings where the vector is able to proliferate. Malaria transmission is primarily determined by the abundance of dominant vectors, which often varies seasonally with rainfall. However, it remains unclear how An. stephensi abundance changes throughout the year, despite this being a crucial input to surveillance and control activities. We collate longitudinal catch data from across its endemic range to better understand the vector's seasonal dynamics and explore the implications of this seasonality for malaria surveillance and control across the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of which are poorly predicted by rainfall patterns. Instead, they are associated with temperature and patterns of land use; frequently differing between rural and urban settings. Our results show that timing entomological surveys to coincide with rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating these results into a malaria transmission model, we show that timing indoor residual spraying campaigns to coincide with peak rainfall offers little improvement in reducing disease burden compared to starting in a random month. Our results suggest that unlike other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need for longitudinal entomological monitoring of the vector in its new environments given recent invasion and potential spread across the continent.

Journal article

de Menezes MT, Moreira FRR, Whittaker C, Santos FM, Queiroz DC, Geddes V, Fonseca PLC, de Jesus JG, Mendes-Oliveira F, Reis-Souza V, Santos B, Zauli DAG, de Lima AB, de Brito Mendonça C, Alvim LB, do Prado Silva J, Malta FSV, de Souza Ferreira AC, Faria NR, Sabino EC, Aguiar RSet al., 2023, Dynamics of early establishment of SARS-CoV-2 VOC Omicron lineages in Minas Gerais, Brazil, Viruses, Vol: 15, Pages: 1-13, ISSN: 1999-4915

Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG.

Journal article

Flaxman S, Whittaker C, Semenova E, Rashid T, Parks RM, Blenkinsop A, Unwin HJT, Mishra S, Bhatt S, Gurdasani D, Ratmann Oet al., 2023, Assessment of COVID-19 as the underlying cause of death among children and young people aged 0 to 19 years in the US., Jama Network Open, Vol: 6, Pages: 1-9, ISSN: 2574-3805

IMPORTANCE: COVID-19 was the underlying cause of death for more than 940 000 individuals in the US, including at least 1289 children and young people (CYP) aged 0 to 19 years, with at least 821 CYP deaths occurring in the 1-year period from August 1, 2021, to July 31, 2022. Because deaths among US CYP are rare, the mortality burden of COVID-19 in CYP is best understood in the context of all other causes of CYP death. OBJECTIVE: To determine whether COVID-19 is a leading (top 10) cause of death in CYP in the US. DESIGN, SETTING, AND PARTICIPANTS: This national population-level cross-sectional epidemiological analysis for the years 2019 to 2022 used data from the US Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (WONDER) database on underlying cause of death in the US to identify the ranking of COVID-19 relative to other causes of death among individuals aged 0 to 19 years. COVID-19 deaths were considered in 12-month periods between April 1, 2020, and August 31, 2022, compared with deaths from leading non-COVID-19 causes in 2019, 2020, and 2021. MAIN OUTCOMES AND MEASURES: Cause of death rankings by total number of deaths, crude rates per 100 000 population, and percentage of all causes of death, using the National Center for Health Statistics 113 Selected Causes of Death, for ages 0 to 19 and by age groupings (<1 year, 1-4 years, 5-9 years, 10-14 years, 15-19 years). RESULTS: There were 821 COVID-19 deaths among individuals aged 0 to 19 years during the study period, resulting in a crude death rate of 1.0 per 100 000 population overall; 4.3 per 100 000 for those younger than 1 year; 0.6 per 100 000 for those aged 1 to 4 years; 0.4 per 100 000 for those aged 5 to 9 years; 0.5 per 100 000 for those aged 10 to 14 years; and 1.8 per 100 000 for those aged 15 to 19 years. COVID-19 mortality in the time period of August 1, 2021, to July 31, 2022, was among the 10 leading causes of death in CYP aged 0 to 19 years in the US

Journal article

Terhorst A, Sandikci A, Whittaker CA, Szórádi T, Holt LJ, Neurohr GE, Amon Aet al., 2023, The environmental stress response regulates ribosome content in cell cycle-arrested S. cerevisiae, Frontiers in Cell and Developmental Biology, Vol: 11

Prolonged cell cycle arrests occur naturally in differentiated cells and in response to various stresses such as nutrient deprivation or treatment with chemotherapeutic agents. Whether and how cells survive prolonged cell cycle arrests is not clear. Here, we used S. cerevisiae to compare physiological cell cycle arrests and genetically induced arrests in G1-, meta- and anaphase. Prolonged cell cycle arrest led to growth attenuation in all studied conditions, coincided with activation of the Environmental Stress Response (ESR) and with a reduced ribosome content as determined by whole ribosome purification and TMT mass spectrometry. Suppression of the ESR through hyperactivation of the Ras/PKA pathway reduced cell viability during prolonged arrests, demonstrating a cytoprotective role of the ESR. Attenuation of cell growth and activation of stress induced signaling pathways also occur in arrested human cell lines, raising the possibility that the response to prolonged cell cycle arrest is conserved.

Journal article

Brito AF, Semonva E, Dudas G, Hassler GW, Kalinich CC, Kraemer MUG, Ho J, Houriyah T, Githinji G, Agoti CN, Matkin LE, Whittaker C, Bulgarian SARS-CoV-2 sequencing group, Communicable Diseases Genomics Network Australia and New Zealand, COVID-19 Impact Project, Danish Covid-19 Genome Consortium; Fiocruz COVID-19 Genomic Surveillance Network, GISAID core curation team, Network for Genomic Surveillance in South Africa NGS-SA, Swiss SARS-CoV-2 Sequencing Consortium, Howden BP, Sintchenko V, Zuckerman NS, Mor O, Blankenship HM, de Oliveira T, Lin RTP, Siqueira MM, Resende PC, Vasconcelos TR, Spilki FR, Aguiar RS, Alexiev I, Ivanov IN, Philipova I, Carrington CVF, Sahadeo NSD, Branda B, Gurry C, Maurer-Stroh S, Naidoo D, von Eije KJ, Perkins MD, von Kerkhove M, Hill SC, Sabino EC, Pybus OG, Dye C, Bhatt S, Flaxman S, Suchard MA, Grubaugh ND, Baele G, Faria NMet al., 2022, Global disparities in SARS-CoV-2 genomic surveillance, Nature Communications, Vol: 13, Pages: 1-13, ISSN: 2041-1723

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times (TAT) on variant detection in 189 countries. In two years of pandemic, 78% of high income countries (HICs) sequenced >0.5% of their COVID-19 cases, while 42% of low (LICs) and middle income countries (MICs) reached that mark. Around 25% of the genomes from HICs were submitted within 21 days, a pattern observed in 5% of the genomes from LICs and MICs. We found that sequencing around 0.5% of the cases, with a TAT <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support LICs and MICs improve their local sequencing capacity.

Journal article

Morgenstern C, Laydon D, Whittaker C, Mishra S, Haw D, Bhatt S, Ferguson Net al., 2022, The interaction of transmission intensity, mortality, and the economy: a retrospective analysis of the COVID-19 pandemic

<jats:title>Abstract</jats:title> <jats:p>The COVID-19 pandemic has caused over 6.4 million registered deaths to date, and has had a profound impact on economic activity. Here, we study the interaction of transmission, mortality, and the economy during the SARS-CoV-2 pandemic from January 2020 to December 2022 across 25 European countries. We adopt a Bayesian vector autoregressive model with both fixed and random effects. We find that increases in disease transmission intensity decreases Gross domestic product (GDP) and increases daily excess deaths, with a longer lasting impact on excess deaths in comparison to GDP, which recovers more rapidly. Broadly, our results reinforce the intuitive phenomenon that significant economic activity arises from diverse person-to-person interactions. We report on the effectiveness of non-pharmaceutical interventions (NPIs) on transmission intensity, excess deaths and changes in GDP, and resulting implications for policy makers. Our results highlight a complex cost-benefit trade off from individual NPIs. For example, banning international travel increases GDP however reduces excess deaths. We consider country random effects and their associations with excess changes in GDP and excess deaths. For example, more developed countries in Europe typically had more cautious approaches to the COVID-19 pandemic, prioritising healthcare and excess deaths over economic performance. Long term economic impairments are not fully captured by our model, as well as long term disease effects (Long Covid). Our results highlight that the impact of disease on a country is complex and multifaceted, and simple heuristic conclusions to extract the best outcome from the economy and disease burden are challenging.</jats:p>

Journal article

Whittaker C, Chesnais CB, Pion SDS, Kamgno J, Walker M, Basanez M-G, Boussinesq Met al., 2022, Factors associated with variation in single-dose albendazole pharmacokinetics: A systematic review and modelling analysis, PLOS NEGLECTED TROPICAL DISEASES, Vol: 16, ISSN: 1935-2735

Journal article

Prete CA, Buss LF, Whittaker C, Salomon T, Oikawa MK, Pereira RHM, Moura ICG, Delerino L, Barral-Netto M, Tavares NM, Franca RFO, Boaventura VS, Miyajima F, Mendrone-Junior A, de Almeida-Neto C, Salles NA, Ferreira SC, Fladzinski KA, de Souza LM, Schier LK, Inoue PM, Xabregas LA, Crispim MAE, Fraiji N, Araujo FLV, Carlos LMB, Pessoa V, Ribeiro MA, de Souza RE, da Silva SMN, Cavalcante AF, Valença MIB, da Silva MV, Lopes E, Filho LA, Mateos SOG, Nunes GT, Silva-Junior AL, Busch MP, Castro MC, Dye C, Ratmann O, Faria NR, Nascimento VH, Sabino ECet al., 2022, SARS-CoV-2 antibody dynamics in blood donors and COVID-19 epidemiology in eight Brazilian state capitals: A serial cross-sectional study, eLife, Vol: 11, ISSN: 2050-084X

BACKGROUND: The COVID-19 situation in Brazil is complex due to large differences in the shape and size of regional epidemics. Understanding these patterns is crucial to understand future outbreaks of SARS-CoV-2 or other respiratory pathogens in the country. METHODS: We tested 97,950 blood donation samples for IgG antibodies from March 2020 to March 2021 in 8 of Brazil's most populous cities. Residential postal codes were used to obtain representative samples. Weekly age- and sex-specific seroprevalence were estimated by correcting the crude seroprevalence by test sensitivity, specificity, and antibody waning. RESULTS: The inferred attack rate of SARS-CoV-2 in December 2020, before the Gamma variant of concern (VOC) was dominant, ranged from 19.3% (95% credible interval [CrI] 17.5-21.2%) in Curitiba to 75.0% (95% CrI 70.8-80.3%) in Manaus. Seroprevalence was consistently smaller in women and donors older than 55 years. The age-specific infection fatality rate (IFR) differed between cities and consistently increased with age. The infection hospitalisation rate increased significantly during the Gamma-dominated second wave in Manaus, suggesting increased morbidity of the Gamma VOC compared to previous variants circulating in Manaus. The higher disease penetrance associated with the health system's collapse increased the overall IFR by a minimum factor of 2.91 (95% CrI 2.43-3.53). CONCLUSIONS: These results highlight the utility of blood donor serosurveillance to track epidemic maturity and demonstrate demographic and spatial heterogeneity in SARS-CoV-2 spread. FUNDING: This work was supported by Itaú Unibanco 'Todos pela Saude' program; FAPESP (grants 18/14389-0, 2019/21585-0); Wellcome Trust and Royal Society Sir Henry Dale Fellowship 204311/Z/16/Z; the Gates Foundation (INV- 034540 and INV-034652); REDS-IV-P (grant HHSN268201100007I); the UK Medical Research Council (MR/S0195/1, MR/V038109/1); CAPES; CNPq (304714/2018-6); Fundação Faculdade de Me

Journal article

Buss L, Prete CA, Whittaker C, Salomon T, Oikawa MK, Pereira RHM, Moura ICG, Delerino L, Franca RFO, Miyajima F, Mendrone Jr A, Almeida-Neto C, Salles NA, Ferreira SC, Fladzinski KA, de Souza LM, Schier LK, Inoue PM, Xabregas LA, Crispim MAE, Fraiji N, Carlos LMB, Pessoa V, Ribeiro MA, de Souza RE, Cavalcante AF, Valenca MIB, da Silva M, Lopes E, Filho LA, Mateos SOG, Nunes GT, Schlesinger D, Nunes da Silva SM, Silva-Junior AL, Castro MC, Nascimento VH, Dye C, Busch MP, Faria NR, Sabino ECet al., 2022, Predicting SARS-CoV-2 variant spread in a completely seropositive population using semi-quantitative antibody measurements in blood donors, Vaccines, Vol: 10, Pages: 1-11, ISSN: 2076-393X

SARS-CoV-2 serologic surveys estimate the proportion of the population with antibodies against historical variants, which nears 100% in many settings. New approaches are required to fully exploit serosurvey data. Using a SARS-CoV-2 anti-Spike (S) protein chemiluminescent microparticle assay, we attained a semi-quantitative measurement of population IgG titers in serial cross-sectional monthly samples of blood donations across seven Brazilian state capitals (March 2021–November 2021). Using an ecological analysis, we assessed the contributions of prior attack rate and vaccination to antibody titer. We compared anti-S titer across the seven cities during the growth phase of the Delta variant and used this to predict the resulting age-standardized incidence of severe COVID-19 cases. We tested ~780 samples per month, per location. Seroprevalence rose to >95% across all seven capitals by November 2021. Driven by vaccination, mean antibody titer increased 16-fold over the study, with the greatest increases occurring in cities with the highest prior attack rates. Mean anti-S IgG was strongly correlated (adjusted R2 = 0.89) with the number of severe cases caused by Delta. Semi-quantitative anti-S antibody titers are informative about prior exposure and vaccination coverage and may also indicate the potential impact of future SARS-CoV-2 variants.

Journal article

Dixon-Zegeye M, Winskill P, Harrison W, Whittaker C, Schmidt V, Flórez Sánchez A, Cucunubá Perez ZM, Edia-Asuke A, Walker M, Basanez M-Get al., 2022, Global force-of-infection trends for human taenia solium taeniasis/cysticercosis, eLife, Vol: 11, ISSN: 2050-084X

Infection by Taenia solium poses a major burden across endemic countries. The World Health Organization (WHO) 2021–2030 Neglected Tropical Diseases roadmap has proposed that 30% of endemic countries achieve intensified T. solium control in hyperendemic areas by 2030. Understanding geographical variation in age-prevalence profiles and force-of-infection (FoI) estimates will inform intervention designs across settings. Human taeniasis (HTT) and human cysticercosis (HCC) age-prevalence data from 16 studies in Latin America, Africa and Asia were extracted through a systematic review. Catalytic models, incorporating diagnostic performance uncertainty, were fitted to the data using Bayesian methods, to estimate rates of antibody (Ab)-seroconversion, infection acquisition and Ab-seroreversion or infection loss. HCC FoI and Ab-seroreversion rates were also estimated across 23 departments in Colombia from 28,100 individuals. Across settings, there was extensive variation in all-ages seroprevalence. Evidence for Ab seroreversion or infection loss was found in most settings for both HTT and HCC and for HCC Ab seroreversion in Colombia. The average duration until humans became Ab-seropositive/infected decreased as all-age (sero)prevalence increased. There was no clear relationship between the average duration humans remain Ab-seropositive and all-age seroprevalence. Marked geographical heterogeneity in T. solium transmission rates indicate the need for setting43 specific intervention strategies to achieve the WHO goals.

Journal article

Brizzi A, Whittaker C, Servo LMS, Hawryluk I, Prete CA, de Souza WM, Aguiar RS, Araujo LJT, Bastos LS, Blenkinsop A, Buss LF, Candido D, Castro MC, Costa SF, Croda J, de Souza Santos AA, Dye C, Flaxman S, Fonseca PLC, Geddes VEV, Gutierrez B, Lemey P, Levin AS, Mellan T, Bonfim DM, Miscouridou X, Mishra S, Monod M, Moreira FRR, Nelson B, Pereira RHM, Ranzani O, Schnekenberg RP, Semenova E, Sonabend R, Souza RP, Xi X, Sabino EC, Faria NR, Bhatt S, Ratmann Oet al., 2022, Author correction: spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals, Nature Medicine, Vol: 28, Pages: 1509-1509, ISSN: 1078-8956

Correction to: Nature Medicine https://doi.org/10.1038/s41591-022-01807-1, published online 10 May 2022.

Journal article

Mancio-Silva L, Gural N, Real E, Wadsworth MH, Butty VL, March S, Nerurkar N, Hughes TK, Roobsoong W, Fleming HE, Whittaker CA, Levine SS, Sattabongkot J, Shalek AK, Bhatia SNet al., 2022, A single-cell liver atlas of Plasmodium vivax infection., Cell Host Microbe, Vol: 30, Pages: 1048-1060.e5

Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.

Journal article

Whittaker C, Watson O, Alvarez-Moreno C, Angkasekwinai N, Boonyasiri A, Triana LC, Chanda D, Charoenpong L, Chayakulkeeree M, Cooke G, Croda J, Cucunubá ZM, Djaafara A, Estofolete CF, Grillet M-E, Faria N, Costa SF, Forero-Peña DA, Gibb DM, Gordon A, Hamers RL, Hamlet A, Irawany V, Jitmuang A, Keurueangkul N, Kimani TN, Lampo M, Levin A, Lopardo G, Mustafa R, Nayagam AS, Ngamprasertchai T, Njeri NIH, Nogueira ML, Ortiz-Prado E, Perroud Jr MW, Phillips AN, Promsin P, Qavi A, Rodger AJ, Sabino EC, Sangkaew S, Sari D, Sirijatuphat R, Sposito AC, Srisangthong P, Thompson H, Udwadia Z, Valderrama-Beltrán S, Winskill P, Ghani A, Walker P, Hallett Tet al., 2022, Understanding the Potential Impact of Different Drug Properties On SARS-CoV-2 Transmission and Disease Burden: A Modelling Analysis, Clinical Infectious Diseases, Vol: 75, Pages: e224-e233, ISSN: 1058-4838

BackgroundThe public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear.MethodsUsing a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care.ResultsThe impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics.ConclusionsAdvances in the treatment of COVID-19 to date have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.

Journal article

Cotler MJ, Ramadi KB, Hou X, Christodoulopoulos E, Ahn S, Bashyam A, Ding H, Larson M, Oberg AL, Whittaker C, Jonas O, Kaufmann SH, Weroha SJ, Cima MJet al., 2022, Machine-learning aided in situ drug sensitivity screening predicts treatment outcomes in ovarian PDX tumors, Translational Oncology, Vol: 21

Long-term treatment outcomes for patients with high grade ovarian cancers have not changed despite innovations in therapies. There is no recommended assay for predicting patient response to second-line therapy, thus clinicians must make treatment decisions based on each individual patient. Patient-derived xenograft (PDX) tumors have been shown to predict drug sensitivity in ovarian cancer patients, but the time frame for intraperitoneal (IP) tumor generation, expansion, and drug screening is beyond that for tumor recurrence and platinum resistance to occur, thus results do not have clinical utility. We describe a drug sensitivity screening assay using a drug delivery microdevice implanted for 24 h in subcutaneous (SQ) ovarian PDX tumors to predict treatment outcomes in matched IP PDX tumors in a clinically relevant time frame. The SQ tumor response to local microdose drug exposure was found to be predictive of the growth of matched IP tumors after multi-week systemic therapy using significantly fewer animals (10 SQ vs 206 IP). Multiplexed immunofluorescence image analysis of phenotypic tumor response combined with a machine learning classifier could predict IP treatment outcomes against three second-line cytotoxic therapies with an average AUC of 0.91.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00731558&limit=30&person=true