Imperial College London

Prof. Chris Phillips

Faculty of Natural SciencesDepartment of Physics

Professor of Experimental Solid State Physics
 
 
 
//

Contact

 

+44 (0)20 7594 7575chris.phillips

 
 
//

Assistant

 

Mrs Carolyn Dale +44 (0)20 7594 7579

 
//

Location

 

911Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Hart:2019:2053-1583/ab0051,
author = {Hart, WS and Panchal, V and Melios, C and Strupiski, W and Kazakova, O and Phillips, CC},
doi = {2053-1583/ab0051},
journal = {2D Materials},
title = {Highly resonant graphene plasmon hotspots in complex nanoresonator geometries},
url = {http://dx.doi.org/10.1088/2053-1583/ab0051},
volume = {6},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Van der Waals surface polariton nanostructures are promising candidates for miniaturisation of electromagnetic devices through the nanoscale confinement of infrared light. To fully exploit these nanoresonators, a computationally efficient model is necessary to predict polariton behaviour in complex geometries. Here, we develop a general wave model of surface polaritons in 2D geometries smaller than the polariton wavelength. Using geometric approximation widely tuneable infrared nanoimaging and local work function microscopy, we test this model against complex mono-/bi-layer graphene plasmon nanoresonators. Direct imaging of highly resonant graphene plasmon hotspots confirms that the model provides quantitatively accurate, analytical predictions of nanoresonator behaviour. The insights built with such models are crucial to the development of practical plasmonic nanodevices.
AU - Hart,WS
AU - Panchal,V
AU - Melios,C
AU - Strupiski,W
AU - Kazakova,O
AU - Phillips,CC
DO - 2053-1583/ab0051
PY - 2019///
SN - 2053-1583
TI - Highly resonant graphene plasmon hotspots in complex nanoresonator geometries
T2 - 2D Materials
UR - http://dx.doi.org/10.1088/2053-1583/ab0051
UR - http://hdl.handle.net/10044/1/65974
VL - 6
ER -