Imperial College London

DrConnorMyant

Faculty of EngineeringDyson School of Design Engineering

Senior Lecturer
 
 
 
//

Contact

 

connor.myant Website

 
 
//

Location

 

M224Royal College of ScienceSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

54 results found

Hong F, Tendera L, Myant C, Boyle Det al., 2022, Vacuum-Formed 3D Printed Electronics: Fabrication of Thin, Rigid and Free-Form Interactive Surfaces, SN Computer Science, Vol: 3

<jats:title>Abstract</jats:title><jats:p>Vacuum-forming is a common manufacturing technique for constructing thin plastic shell products by pressing heated plastic sheets onto a mold using atmospheric pressure. Vacuum-forming is ubiquitous in packaging and casing products in the industry, spanning fast moving consumer goods to connected devices. Integrating advanced functionality, which may include sensing, computation and communication, within thin structures is desirable for various next-generation interactive devices. Hybrid additive manufacturing techniques like thermoforming are becoming popular for prototyping freeform surfaces owing to their design flexibility, speed and cost-effectiveness. This paper presents a new hybrid method for constructing thin, rigid and free-form interconnected surfaces via fused deposition modelling (FDM) 3D printing and vacuum-forming that builds on recent advances in thermoforming circuits. 3D printing the sheet material allows for the embedding of conductive traces within thin layers of the substrate, which can be vacuum-formed but remain conductive and insulated. This is an unexplored fabrication technique within the context of designing and manufacturing connected things. In addition to explaining the method, this paper characterizes the behavior of vacuum-formed 3D printed sheets, analyses the electrical performance of printed traces after vacuum-forming, and showcases a range of sample artefacts constructed using the technique. In addition, the paper describes a new design interface for designing conformal interconnects that allows designers to draw conductive patterns in 3D and export pre-distorted sheet models ready to be printed.</jats:p>

Journal article

Burge T, Jeffers J, Myant C, 2022, A Computational Design of Experiments Based Method for Evaluation of Off-the-Shelf Total Knee Replacement Implants, Computer Methods in Biomechanics and Biomedical Engineering, ISSN: 1025-5842

Journal article

Bahshwan M, Gee M, Nunn J, Myant CW, Reddyhoff Tet al., 2022, In situ observation of anisotropic tribological contact evolution in 316L steel formed by selective laser melting, Wear, Vol: 490-491, Pages: 1-12, ISSN: 0043-1648

A consensus on the tribological performance of components by additive-versus conventional manufacturing has not been achieved; mainly because the tribological test set-ups thus far were not suited for investigating the underlying microstructure's influence on the tribological properties. As a result, utilization of additive manufacturing techniques, such as selective laser melting (SLM), for tribological applications remains questionable. Here, we investigate the anisotropic tribological response of SLM 316L stainless steel via in situ SEM reciprocating micro-scratch testing to highlight the microstructure's role. As-built 316L SLM specimens were compared against annealed wire-drawn 316L. We found that: (i) microgeometric conformity was the main driver for achieving steady-state friction, (ii) the anisotropic friction of the additively manufactured components is limited to the break-in and is caused by the lack of conformity, (iii) the cohesive bonds, whose strength is proportional to frictional forces, are stronger in the additively manufactured specimens likely due to the dislocation-dense, cellular structures, (iv) low Taylor-factor grains with large dimension stimulate microcutting in the form of long, thin sheets with serrated edges. These findings uncover some microstructurally driven tribological complexities when comparing additive to conventional manufacturing.

Journal article

Burge TA, Jeffers JRT, Myant CW, 2022, Development of an automated mass-customization pipeline for knee replacement surgery using biplanar X-Rays, Journal of Mechanical Design, Vol: 144, Pages: 1-11, ISSN: 1050-0472

For standard “off-the-shelf” knee replacement procedures, surgeons use X-ray images to aid implant selection from a limited number of models and sizes. This can lead to complications and the need for implant revision due to poor implant fit. Customized solutions have been shown to improve results but require increased preoperative assessment (Computed Tomography or Magnetic Resonance Imaging), longer lead times, and higher costs which have prevented widespread adoption. To attain the benefits of custom implants, whilst avoiding the limitations of currently available solutions, a fully automated mass-customization pipeline, capable of developing customized implant designs for fabrication via additive manufacturing from calibrated X-rays, is proposed. The proof-of-concept pipeline uses convolutional neural networks to extract information from biplanar X-ray images, point depth, and statistical shape models to reconstruct the anatomy, and application programming interface scripts to generate various customized implant designs. The pipeline was trained using data from the Korea Institute of Science and Technology Information. Thirty subjects were used to test the accuracy of the anatomical reconstruction, ten from this data set, and a further 20 independent subjects obtained from the Osteoarthritis Initiative. An average root-mean-squared error of 1.00 mm was found for the femur test cases and 1.07 mm for the tibia. Three-dimensional (3D) distance maps of the output components demonstrated these results corresponded to well-fitting components, verifying automatic customization of knee replacement implants is feasible from 2D medical imaging.

Journal article

Butt H, Nissim L, Gao L, Myant C, de Boer G, Hewson Ret al., 2021, Transient mixed lubrication model of the human knee implant, Biosurface and Biotribology, Vol: 7, Pages: 206-218

The human knee implant is computationally modelled in the mixed lubrication regime to investigate the tribological performance of the implant. This model includes the complex geometry of the implant components, unlike elliptical contact models that approximate this geometry. Film thickness and pressure results are presented for an ISO gait cycle to determine the lubrication regime present within the implant during its operation. It was found that it was possible for the lubrication regime to span between elastohydrodynamic, mixed and boundary lubrication depending on the operating conditions of the implant. It was observed that the tribological conditions present in one condyle were not necessarily representative of the other. Multiple points of contact were found within the same condyle, which cannot be computed by the elliptical contact solvers. This model can be used to balance forces in all directions, instead of only the normal loads, as often done in elliptical contact models. This work is an initial step towards understanding the role of the complex geometry in the tribological characteristics of the human knee implant when operating in physiological conditions.

Journal article

Nissim L, Butt H, Gao L, Myant C, Hewson Ret al., 2021, Role of protein concentration on transient film thickness in synovial fluid lubricated joints, Biotribology, Vol: 28, Pages: 1-14, ISSN: 2352-5738

A computational model of protein aggregation lubrication has been developed for predicting transient behaviour in lubricated prosthetics. The model uses an advection-diffusion equation to simulate protein transport in order to map concentration changes throughout the contact and inlet zones of an elasto-hydrodynamic contact. Concentration increases lead to exponential increase in fluid viscosity giving rise to lubricating film thicknesses an order of magnitude larger than would be expected using conventional elasto-hydrodynamic theory. The model parameters have been calibrated such that good agreement in transient film thickness is achieved with observed experimental results.KeywordsProtein aggregation lubrication; Elasto-hydrodynamic lubrication; Prostheses

Journal article

Kalossaka LM, Mohammed AA, Sena G, Barter L, Myant Cet al., 2021, 3D printing nanocomposite hydrogels with lattice vascular networks using stereolithography, JOURNAL OF MATERIALS RESEARCH, Vol: 36, Pages: 4249-4261, ISSN: 0884-2914

Journal article

Li S, Tan Y, Willis S, Bahshwan M, Folkes J, Kalossaka L, Waheed M, Myant Cet al., 2021, Toward mass customization through additive manufacturing: an automated design pipeline for respiratory protective equipment validated against 205 faces, International Journal of Bioprinting, Vol: 7, ISSN: 2424-7723

Respiratory protective equipment (RPE) is traditionally designed through anthropometric sizing to enable mass production. However, this can lead to long-standing problems of low-compliance, severe skin trauma, and higher fit test failure rates among certain demographic groups, particularly females and non-white ethnic groups. Additive manufacturing could be a viable solution to produce custom-fitted RPE, but the manual design process is time-consuming, cost-prohibitive and unscalable for mass customization. This paper proposes an automated design pipeline which generates the computer-aided design models of custom-fit RPE from unprocessed three-dimensional (3D) facial scans. The pipeline successfully processed 197 of 205 facial scans with <2 min/scan. The average and maximum geometric error of the mask were 0.62 mm and 2.03 mm, respectively. No statistically significant differences in mask fit were found between male and female, Asian and White, White and Others, Healthy and Overweight, Overweight and Obese, Middle age, and Senior groups.

Journal article

Kalossaka LM, Sena G, Barter LMC, Myant Cet al., 2021, Review: 3D printing hydrogels for the fabrication of soilless cultivation substrates, Applied Materials Today, Vol: 24, Pages: 1-16, ISSN: 2352-9407

The use of hydrogels in academic research is fast evolving, and becoming more relevant to real life applications across varying fields. Additive Manufacturing (AM) has paved the way towards manufacturing hydrogel substrates with tailored properties which allow for new functionalities and applications. In this review, we introduce the idea of fabricating hydrogels as bioreceptive structures to be used as soilless cultivation substrates. AM is suggested as the fabrication process to achieve structures with features similar to soil. To evaluate this, we first review hydrogel fabrication processes, highlighting their key differences in terms of resolution, printing speed and build volume. Thus, we illustrate the examples from the literature where hydrogels were 3D printed with microorganisms such as algae. Finally, the challenges and future perspectives of printing soilless cultivation substrates are explored.

Journal article

Li S, Waheed U, Bahshwan M, Wang LZ, Kalossaka LM, Choi J, Kundrak F, Lattas A, Ploumpis S, Zafeiriou S, Myant CWet al., 2021, A scalable mass customisation design process for 3D-printed respirator mask to combat COVID-19, Rapid Prototyping Journal, Vol: 27, Pages: 1302-1317, ISSN: 1355-2546

PurposeA three-dimensional (3D) printed custom-fit respirator mask has been proposed as a promising solution to alleviate mask-related injuries and supply shortages during COVID-19. However, creating a custom-fit computer-aided design (CAD) model for each mask is currently a manual process and thereby not scalable for a pandemic crisis. This paper aims to develop a novel design process to reduce overall design cost and time, thus enabling the mass customisation of 3D printed respirator masks.Design/methodology/approachFour data acquisition methods were used to collect 3D facial data from five volunteers. Geometric accuracy, equipment cost and acquisition time of each method were evaluated to identify the most suitable acquisition method for a pandemic crisis. Subsequently, a novel three-step design process was developed and scripted to generate respirator mask CAD models for each volunteer. Computational time was evaluated and geometric accuracy of the masks was evaluated via one-sided Hausdorff distance.FindingsRespirator masks were successfully generated from all meshes, taking <2 min/mask for meshes of 50,000∼100,000 vertices and <4 min for meshes of ∼500,000 vertices. The average geometric accuracy of the mask ranged from 0.3 mm to 1.35 mm, depending on the acquisition method. The average geometric accuracy of mesh obtained from different acquisition methods ranged from 0.56 mm to 1.35 mm. A smartphone with a depth sensor was found to be the most appropriate acquisition method.Originality/valueA novel and scalable mass customisation design process was presented, which can automatically generate CAD models of custom-fit respirator masks in a few minutes from a raw 3D facial mesh. Four acquisition methods, including the use of a statistical shape model, a smartphone with a depth sensor, a light stage and a structured light scanner were compared; one method was recommended for use in a pandemic crisis consider

Journal article

Xu Y, Cartwright B, Advincula L, Myant C, Stokes JRet al., 2021, Generalised scaling law for soft contact tribology: Influence of load and asymmetric surface deformation, TRIBOLOGY INTERNATIONAL, Vol: 163, ISSN: 0301-679X

Journal article

Whitehouse S, Myant C, Cann PM, Stephens Aet al., 2021, Fluorescent imaging of razor cartridge/skin lubrication, SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, Vol: 9, ISSN: 2051-672X

Journal article

Hong F, Myant C, Boyle D, 2021, Thermoformed Circuit Boards: Fabrication of highly conductive freeform 3D printed circuit boards with heat bending, CHI Conference on Human Factors in Computing Systems, Pages: 1-10

Fabricating 3D printed electronics using desktop printers has become moreaccessible with recent developments in conductive thermoplastic filaments.Because of their high resistance and difficulties in printing traces invertical directions, most applications are restricted to capacitive sensing. Inthis paper, we introduce Thermoformed Circuit Board (TCB), a novel approachthat employs the thermoformability of the 3D printed plastics to constructvarious double-sided, rigid and highly conductive freeform circuit boards thatcan withstand high current applications through copper electroplating. Toillustrate the capability of the TCB, we showcase a range of examples withvarious shapes, electrical characteristics and interaction mechanisms. We alsodemonstrate a new design tool extension to an existing CAD environment thatallows users to parametrically draw the substrate and conductive trace, andexport 3D printable files. TCB is an inexpensive and highly accessiblefabrication technique intended to broaden HCI researcher participation.

Conference paper

Vlădescu S-C, Bozorgi S, Hu S, Baier SK, Myant C, Carpenter G, Reddyhoff Tet al., 2021, Effects of beverage carbonation on lubrication mechanisms and mouthfeel, Journal of Colloid and Interface Science, Vol: 586, Pages: 142-151, ISSN: 0021-9797

The perception of carbonation is an important factor in beverage consumption which must be understood in order to develop healthier products. Herein, we study the effects of carbonated water on oral lubrication mechanisms involved in beverage mouthfeel and hence taste perception. Friction was measured in a compliant PDMS-glass contact simulating the tongue-palate interface (under representative speeds and loads), while fluorescence microscopy was used to visualise both the flow of liquid and oral mucosal pellicle coverage.When carbonated water is entrained into the contact, CO2 cavities form at the inlet, which limit flow and thus reduce the hydrodynamic pressure. Under mixed lubrication conditions, when the fluid film thickness is comparable to the surface roughness, this pressure reduction results in significant increases in friction (>300% greater than under non-carbonated water conditions). Carbonated water is also shown to be more effective than non-carbonated water at debonding the highly lubricious, oral mucosal pellicle, which again results in a significant increase in friction. Both these transient mechanisms of starvation and salivary pellicle removal will modulate the flow of tastants to taste buds and are suggested to be important in the experience of taste and refreshment. For example this may be one reason why flat colas taste sweeter.

Journal article

Bin M, Cheung PYK, Crisostomi E, Ferraro P, Lhachemi H, Murray-Smith R, Myant C, Parisini T, Shorten R, Stein S, Stone Let al., 2021, Post-lockdown abatement of COVID-19 by fast periodic switching, PLOS COMPUTATIONAL BIOLOGY, Vol: 17, ISSN: 1553-734X

Journal article

Hong F, Myant C, Boyle DE, 2021, Thermoformed Circuit Boards: Fabrication of highly conductive freeform 3D printed circuit boards with heat bending., Publisher: ACM, Pages: 669:1-669:1

Conference paper

Bahshwan M, Myant CW, Reddyhoff T, Pham MSet al., 2020, The role of microstructure on wear mechanisms and anisotropy of additively manufactured 316L stainless steel in dry sliding, Materials and Design, Vol: 196, ISSN: 0264-1275

Wear control, which relies on understanding the mechanisms of wear, is crucial in preserving the life of mechanical components and reducing costs. Additive manufacturing (AM) techniques can produce parts with tailored microstructure, however, little has been done to understand how this impacts the mechanisms of wear. Here we study the impact of initial grain arrangement and crystal orientation on the wear mechanisms of austenitic stainless steel (SS) in dry sliding contact. Specifically, the anisotropic sliding wear behavior of as-built, AM-ed 316L SS is compared against annealed, wire-drawn counterparts. We describe, in-detail, how the sliding wear mechanisms of delamination, abrasion, oxidation, and plastic deformation are attributed to the initial surface microstructure under different loading conditions using a number of techniques. This new understanding sheds light on how different AM-induced microstructures affect wear, thereby allowing for better utilization of this technology to develop components with enhanced wear properties.

Journal article

Waheed U, Myant CW, Dobson SN, 2020, Boolean AND/OR mechanical logic using multi-plane mechanical metamaterials, EXTREME MECHANICS LETTERS, Vol: 40, ISSN: 2352-4316

Journal article

Li S, Ploumpis S, Zafeiriou S, Myant Cet al., 2020, Design automation for mass customisation via additive manufacture: A case study on continuous positive airway pressure mask

Additive Manufacturing (AM) has been identified as a key enabler for Mass Customization (MC) due to its negligible tooling cost associated with producing one-off items. This is especially valuable for the medical industry where the ability to create patient-specific products can greatly improve performance and comfort. However, the use of AM so far has only been limited to previously custom-made devices due to the prohibitive design costs associated with a knowledge-intensive and highly manual design process. The research community has often overlooked this area and as yet no study has shown a completely automated process that can reduce or even eliminate this design cost for existing mass-produced ergonomic products (e.g. respirators). This study investigates the methodology of developing a completely automated design pipeline through a case study on Continuous Positive Airway Pressure (CPAP) mask. Through a parametric design approach, a fully automated pipeline was constructed based on a large-scale statistical shape model "learnt"from 9,663 high-resolution facial scans. The pipeline accepts a single "in-the-wild"facial image as the only data input and produces a CAD model of CPAP mask in under a minute. The significant reduction in design time, ease of data acquisition and the complete removal of a manual CAD modelling process can make AM more accessible for CPAP masks manufacturers. The same workflow can potentially be employed to construct automation pipelines for other types of wearables, therefore encouraging the adoption of AM for MC of a wider selection of products.

Conference paper

Waheed U, Myant C, 2020, Passive mechanical metamaterial sensor and actuator

In recent years, and with the continual development of additive manufacturing technologies, mechanical metamaterials have been explored for their programmable nature. This has opened a new design space into devices using functional materials. In this paper, a novel mechanical metamaterial device is designed, combining anisotropic 3D unit cells to slender beams. By controlling the separation distance between the fixed ends of a slender beam, the mechanism can be tuned to transition between monostable and bistable states. This behaves as a sensor and actuator, allowing mechanical signals to pass only when the correct actuation pattern is received. The device is shown to be inherently passive as it returns to a monostable state after actuation. Two different designs have successfully demonstrated this repeatable behaviour. A multi-material PolyJet printed mechanism joining unit cells to a Von Mises Truss, and an SLA printed compliant mechanism coupling unit cells to thin slender beams. A novel approach in performing AND/OR mechanical logic has also been successfully demonstrated by manipulating the mechanical metamaterial when in a bias state. The proposed devices have application in soft robotic systems, the aerospace industry and in the nuclear sector, where there is a need for passive safety systems that are not reliant on electronic systems, and respond to environmental stimuli. The printed mechanisms highlight the potential for mechanical metamaterials to be used as tunable sensors and actuators for future engineering applications.

Conference paper

Shin S, Alyasiri, D'Auria M, Otter W, Myant C, Stokes, Tian Z, Ridler NM, Lucyszyn Set al., 2019, Polymer-based 3-D printed Ku-band steerable phased-array antenna subsystem, IEEE Access, Vol: 7, Pages: 106662-106673, ISSN: 2169-3536

This paper introduces the first fully 3-D printed tunable microwave subsystem, consisting of 26 circuit elements. Here, a polymer-based 3-D printed Ku-band 4-element steerable phased-array antenna with fully integrated beam forming network is demonstrated. Polyjet was adopted for fabricating the main body of the subsystem, as it is capable of producing a geometrically complex structure with high resolution over a large volume. Low-cost fused deposition modeling was chosen to manufacture the dielectric inserts and brackets for the phase shifters. The measured radiation pattern revealed that the phased-array antenna subsystem has total beam steering angles of 54° and 52° at 15 GHz and 17 GHz, respectively. Excellent input return loss behavior was observed across the optimum operational frequency range of 15 to 17 GHz; with a worst-case measured return loss of 12.9 dB. This work clearly shows the potential of using 3-D printing technologies for manufacturing fully integrated subsystems with complex geometric features.

Journal article

Carpenter G, Bozorgi S, Vladescu S, Forte A, Myant C, Potineni R, Reddyhoff T, Baier Set al., 2019, A study of saliva lubrication using a compliant oral mimic, Food Hydrocolloids, Vol: 92, Pages: 10-18, ISSN: 0268-005X

Due to ethical issues and the difficulty in obtaining biological tissues, it is important to find synthetic elastomers that can be used as replacement test media for research purposes. An important example of this is friction testing to understand the mechanisms behind mouthfeel attributes during food consumption (e.g. syrupy, body and clean finish), which requires an oral mimic. In order to assess the suitability of possible materials to mimic oral surfaces, a sliding contact is produced by loading and sliding a hemispherical silica pin against either a polydimethyl siloxane (PDMS), agarose, or porcine tongue sample. Friction is measured and elastohydrodynamic film thickness is calculated based on the elastic modulus of the samples, which is measured using an indentation method. Tests were performed with both saliva and pure water as the lubricating fluid and results compared to unlubricated conditions.PDMS mimics the tongue well in terms of protein adhesion, with both samples showing significant reductions in friction when lubricated with saliva versus water, whereas agarose showed no difference between saliva and water lubricated conditions. This is attributed to PDMS's OSi(CH3)2- group which provides excellent adhesion for the saliva protein molecules, in contrast with the hydrated agarose surface. The measured modulus of the PDMS (2.2 MPa) is however significantly greater than that of tongue (3.5 kPa) and agarose (66–174 kPa). This affects both the surface (boundary) friction, at low sliding speeds, and the entrained elastohydrodynamic film thickness, at high speeds.Utilising the transparent PDMS sample, we also use fluorescence microscopy to monitor the build-up and flow of dyed-tagged saliva proteins within the contact during sliding. Results confirm the lubricous boundary film forming nature of saliva proteins by showing a strong correlation between friction and average protein intensity signals (cross correlation coefficient = 0.87). This demonstrates

Journal article

Shin S, Alyasiri D, D’Auria M, Otter W, Myant C, Stokes D, Tian Z, Ridler N, Lucyszyn Set al., 2019, Fully 3-D printed tunable microwave subsystem, International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP), Publisher: IEEE

Conference paper

Lucyszyn S, Shang X, Otter W, Myant C, Cheng R, Ridler Net al., 2018, Polymer-based 3D printed millimeter-wave components for spacecraft payloads, International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP), Publisher: IEEE MTT-S

This paper summarizes the current state of research & development within the U.K. for polymer-based 3D printed guided-wave and quasi-optical components for spacecraft payloads. Preliminary measured results look promising and show that this emerging technology may well overtake existing machined technologies in the not too distant future for general aerospace applications.

Conference paper

Wu B, Myant C, Weider SZ, 2017, The value of additive manufacturing: future opportunities, Briefing paper, 2

The global additive manufacturing (AM) – 3D printing – industr y was valued at $6 billion for 2016, and is predicted to grow to more than $26 billion by 20221. This rapid growth has arisen mainly because of the evolution of AM from primarily a prototyping tool to a useful end-product fabrication method in some high-value manufacturing applications (e.g., in the aerospace, medical device and automotive industries).• AM has the potential to offer many economic, technical and environmental advantages over traditional manufacturing approaches, including decreased production costs and times, the possibility of flexible and bespoke production, as well as a reduction in energy usage and waste. To realise these benefits, however, several barriers – across the entire AM process chain – need to be overcome. For example, improved design software, faster printing technology, increased automation and better industry standards are required.• To realise a more-efficient and more-profitable industr y, ‘game-changing’ AM research breakthroughs are thus required. Involving more researchers – from a wide array of scientific and engineering backgrounds – will be beneficial, as will a closer working relationship between academia and industr y.• The concept of molecular science and engineering2 – melding a deep understanding of molecular science with an engineering mind-set – provides an excellent framework for the ‘cross pollination’ of research ideas. In the pursuit of solving some of the biggest needs in AM, scientists and engineers – from a range of disciplines – can be brought together to communicate and collaborate at all stages of the AM research-to-final-product chain. In this way, costly late-stage changes can be avoided and the route to final, functional end-use products can be rapidly optimised. In addition, a new generation of scientists and engineers can be trained in a transdi

Report

Tsui S, Tandy J, Myant C, Masen M, Cann PMet al., 2016, Friction measurements with yoghurt in a simulated tongue-palate contact, Biotribology, Vol: 8, Pages: 1-11

© 2016 The perception of many food attributes is related to mechanical stimulation and friction experienced in the tongue-palate contact during mastication. Friction in the tongue-palate is determined by the changing film properties (composition, component distribution, thickness) in the conjunction. We suggest this evolution is essentially determined by tongue-palate film loss rather than shear flow entrainment which predominates in conventional bearing lubrication. The paper reports friction measurements in a simulated tongue-palate contact for a range of high and low fat dairy foods. A reciprocating, sliding contact with restricted stroke length ( <  contact width) was used; under these conditions there is negligible shear-entrainment of fluid from outside the contact area. The tongue-palate contact was simulated by a PDMS ball and glass surface. The effect of hydrophobic and hydrophilic surfaces on friction was investigated for different fat contents (0, 4.2, 9.5% wt fat). Friction was measured over 60 s of rubbing. Significant differences were observed in the friction change with time for different fat contents (μ 9.5  <  μ 4.2  <  μ 0 wt%) and for different surface energy conditions (μ hydrophilic  <  μ hydrophobic). Post-test visualisation of the rubbed films showed that low friction coefficient was associated with the formation of a thin oil film on deposited particulate solids.

Journal article

Li J, wu BILLY, Myant CONNOR, 2016, The Current Landscape for Additive Manufacturing Research

Report

Masen M, Myant C, 2015, Second International Conference on Biotribology (ICoBT), Tribology International, Vol: 89, Pages: 1-1, ISSN: 1879-2464

Journal article

Parkes M, Myant C, Cann PM, Wong JSSet al., 2015, Synovial fluid lubrication: The effect of protein interactions on adsorbed and lubricating films, Biotribology, Vol: 1-2, Pages: 51-60, ISSN: 2352-5738

© 2015 Elsevier Ltd. All rights reserved. Synovial fluid lubrication is dependent on protective protein films that form between joint surfaces. Under static conditions surface film formation occurs through adsorption, while under dynamic conditions protein aggregation under shear and load becomes the dominant mechanism. This work examines how the protein content of six model synovial fluids affects film formation under static and rolling conditions and if the changes in properties can be correlated. With an increase in the statically adsorbed mass and the rate of adsorption the film thickness under rolling increased. These increases did not correlate with the total protein content of the fluid, but were dependent on the type of protein. An increase in pH reduced the adsorbed mass, rate of adsorption and film thickness, but was of secondary importance to the type of protein. The rolling film thickness was also correlated with the viscoelastic properties of the films formed under static conditions. In this case thinner rolling films corresponded to the more hydrated, viscoelastic adsorbed films. The strong correlations found between the properties of the adsorbed films and those formed under rolling indicate that the same protein-protein and protein-surface interactions may govern both mechanisms of film formation despite the differences in the film structures.

Journal article

Parkes M, Myant C, Dini D, Cann Pet al., 2014, Tribology-optimised silk protein hydrogels for articular cartilage repair, Tribology International, Pages: ---, ISSN: 0301-679X

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00487411&limit=30&person=true