Imperial College London

ProfessorDannyAltmann

Faculty of MedicineDepartment of Immunology and Inflammation

Professor of Immunology
 
 
 
//

Contact

 

+44 (0)20 3313 8212d.altmann

 
 
//

Location

 

5S5CHammersmith HospitalHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

272 results found

Boyton RJ, Altmann DM, 2021, Risk of SARS-CoV-2 reinfection after natural infection, The Lancet, Vol: 397, Pages: 1161-1163, ISSN: 0140-6736

Journal article

Manisty C, Otter AD, Treibel TA, McKnight A, Altmann DM, Brooks T, Noursadeghi M, Boyton RJ, Semper A, Moon JCet al., 2021, Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals, The Lancet, Vol: 397, Pages: 1057-1058, ISSN: 0140-6736

Journal article

Altmann DM, 2021, Children and the return to school: how much should we worry about covid-19 and long covid?, BMJ-BRITISH MEDICAL JOURNAL, Vol: 372, ISSN: 0959-535X

Journal article

Altmann DM, Boyton RJ, Beale R, 2021, Immunity to SARS-CoV-2 variants of concern, Science, Vol: 371, Pages: 1103-1104, ISSN: 1095-9203

Journal article

Manisty C, Treibel TA, Jensen M, Semper A, Joy G, Gupta RK, Cutino-Moguel T, Andiapen M, Jones J, Taylor S, Otter A, Pade C, Gibbons J, Lee J, Bacon J, Thomas S, Moon C, Jones M, Williams D, Lambourne J, Fontana M, Altmann DM, Boyton R, Maini M, McKnight A, Chain B, Noursadeghi M, Moon JCet al., 2021, Time series analysis and mechanistic modelling of heterogeneity and sero-reversion in antibody responses to mild SARS‑CoV-2 infection, EBioMedicine, Vol: 65, ISSN: 2352-3964

BACKGROUND: SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. METHODS: Healthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements. FINDINGS: A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r = 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r = 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). INTERPRETATION: Mild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate

Journal article

Adrielle Dos Santos L, Filho PGDG, Silva AMF, Santos JVG, Santos DS, Aquino MM, de Jesus RM, Almeida MLD, da Silva JS, Altmann DM, Boyton RJ, Alves Dos Santos C, Santos CNO, Alves JC, Santos IL, Magalhães LS, Belitardo EMMA, Rocha DJPG, Almeida JPP, Pacheco LGC, Aguiar ERGR, Campos GS, Sardi SI, Carvalho RH, de Jesus AR, Rezende KF, de Almeida RPet al., 2021, Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers, Journal of Infection, Vol: 82, Pages: 399-406, ISSN: 0163-4453

BACKGROUND: There is growing concern about individuals reported to suffer repeat COVID-19 disease episodes, these in a small number of cases characterised as de novo infections with distinct sequences, indicative of insufficient protective immunity even in the short term. METHODS: Observational case series and case-control studies reporting 33 cases of recurrent, symptomatic, qRT-PCR positive COVID-19. Recurrent disease was defined as symptomatic recurrence after symptom-free clinical recovery, with release from isolation >14 days from the beginning of symptoms confirmed by qRT-PCR. The case control study-design compared this group of patients with a control group of 62 patients randomly selected from the same COVID-19 database. RESULTS: Of 33 recurrent COVID-19 patients, 26 were female and 30 were HCW. Mean time to recurrence was 50.5 days which was associated with being a HCW (OR 36.4 (p <0.0001)), and blood type A (OR 4.8 (p = 0.002)). SARS-CoV-2 antibodies were signifcantly lower in recurrent patients after initial COVID-19  (2.4 ± 0.610; p<0.0001) and after recurrence (6.4 ± 11.34; p = 0.007).  Virus genome sequencing identified reinfection by a different isolate in one patient. CONCLUSIONS: This is the first detailed case series showing COVID-19 recurrence with qRT-PCR positivity. For one individual detection of phylogenetically distinct genomic sequences in the first and second episodes confirmed bona fide renfection, but in most cases the data do not formally distinguish between reinfection and re-emergence of a chronic infection reservoir. These episodes were significantly associated with reduced Ab response during initial disease and argue the need for ongoing vigilance without an assumption of protection after a first episode.

Journal article

Altmann DM, Boyton RJ, 2021, Decoding the unknowns in long covid, BMJ: British Medical Journal, Vol: 372, Pages: 1-2, ISSN: 0959-535X

Journal article

Reynolds CJ, Swadling L, Gibbons JM, Pade C, Jensen MP, Diniz MO, Schmidt NM, Butler DK, Amin OE, Bailey SNL, Murray SM, Pieper FP, Taylor S, Jones J, Jones M, Lee W-YJ, Rosenheim J, Chandran A, Joy G, Di Genova C, Temperton N, Lambourne J, Cutino-Moguel T, Andiapen M, Fontana M, Smit A, Semper A, O'Brien B, Chain B, Brooks T, Manisty C, Treibel T, Moon JC, COVIDsortium investigators, Noursadeghi M, COVIDsortium immune correlates network, Altmann DM, Maini MK, McKnight Á, Boyton RJet al., 2020, Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection., Science Immunology, Vol: 5, Pages: 1-19, ISSN: 2470-9468

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.

Journal article

Gregorova M, Morse D, Brignoli T, Steventon J, Hamilton F, Albur M, Arnold D, Thomas M, Halliday A, Baum H, Rice C, Avison MB, Davidson AD, Santopaolo M, Oliver E, Goenka A, Finn A, Wooldridge L, Amulic B, Boyton RJ, Altmann DM, Butler DK, McMurray C, Stockton J, Nicholls S, Cooper C, Loman N, Cox MJ, Rivino L, Massey RCet al., 2020, Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring AMR bacterial pneumonia, eLife, Vol: 9, ISSN: 2050-084X

Here we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.

Journal article

Alcantara DR, Jones C, Altmann DM, Boyton RJ, Haniffa M, Newport MJet al., 2020, Multiplexed gene expression analysis of HLA class II-associated podoconiosis implicates chronic immune activation in its pathogenesis, Transactions of the Royal Society of Tropical Medicine and Hygiene, Vol: 114, Pages: 926-936, ISSN: 0035-9203

BackgroundPodoconiosis is a tropical lymphoedema of the leg resulting from barefoot exposure to irritant volcanic soils. Approximately 4 million people are affected, mainly in African highland regions. The pathogenesis of this neglected tropical disease is still largely unknown, although HLA class II (HLAII) polymorphisms are associated with the disease.MethodsNanoString technology was used to assess expression of 579 immune-related genes in formalin-fixed and paraffin-embedded lymph node archival samples from podoconiosis patients and unaffected controls.ResultsForty-eight genes were upregulated and 21 downregulated in podoconiosis samples compared with controls. Gene ontology analysis showed differentially expressed genes to be closely related to major histocompatibility complex protein, cytokine and TNF receptor binding genes. Pathway enrichment analysis revealed involvement of lymphocyte activation, adaptive immunity, cytokine signalling, antigen processing and the IL-12 pathways.ConclusionsThis exploratory study reports a multiplex gene expression analysis in podoconiosis and shows upregulation of pro-inflammatory transcripts compatible with the notion of local, chronic immune activation in this HLAII-associated disease. Implicated pathways will inform future research into podoconiosis immunopathogenesis.

Journal article

Campbell VL, Nguyen L, Snoey E, McClurkan CL, Laing KJ, Dong L, Sette A, Lindestam Arlehamn CS, Altmann DM, Boyton RJ, Roby JA, Gale M, Stone M, Busch MP, Norris PJ, Koelle DMet al., 2020, Proteome-wide Zika virus CD4 T cell epitope and HLA restriction determination, ImmunoHorizons, Vol: 4, Pages: 444-453, ISSN: 2573-7732

Zika virus (ZIKV) is a mosquito-borne pathogen that caused an epidemic in 2015-2016. ZIKV-specific T cell responses are functional in animal infection models, and helper CD4 T cells promote avid Abs in the vaccine context. The small volumes of blood available from field research limit the determination of T cell epitopes for complex microbes such as ZIKV. The goal of this project was efficient determination of human ZIKV CD4 T cell epitopes at the whole proteome scale, including validation of reactivity to whole pathogen, using small blood samples from convalescent time points when T cell response magnitude may have waned. Polyclonal enrichment of candidate ZIKV-specific CD4 T cells used cell-associated virus, documenting that T cells in downstream peptide analyses also recognize whole virus after Ag processing. Sequential query of bulk ZIKV-reactive CD4 T cells with pooled/single ZIKV peptides and molecularly defined APC allowed precision epitope and HLA restriction assignments across the ZIKV proteome and enabled discovery of numerous novel ZIKV CD4 T cell epitopes. The research workflow is useful for the study of emerging infectious diseases with a very limited human blood sample availability.

Journal article

Altmann DM, Boyton RJ, 2020, SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection, Science Immunology, Vol: 5, ISSN: 2470-9468

In efforts to synthesize a clear understanding of SARS-CoV-2 protective immunity, antibody analysis has been paralleled by T cell studies across asymptomatic, mild and severe COVID-19. Defining CD4 and CD8 effector functions in protection is important considering that antibody responses appear short-lived and T cell memory is potentially more durable. To fully understand population level immunity, screening for both antibody and T cell immunity using standardized testing methods would be beneficial.

Journal article

Altmann DM, Douek DC, Boyton RJ, 2020, What policy makers need to know about COVID-19 protective immunity, The Lancet, Vol: 395, Pages: 1527-1529, ISSN: 0140-6736

Journal article

Reynolds CJ, Watber P, Santos CNO, Ribeiro DR, Alves JC, Fonseca ABL, Bispo AJB, Porto RLS, Bokea K, de Jesus AMR, de Almeida RP, Boyton RJ, Altmann DMet al., 2020, Strong CD4 T cell responses to Zika virus antigens in a cohort of Dengue virus immune mothers of congenital Zika virus syndrome infants, Frontiers in Immunology, Vol: 11, ISSN: 1664-3224

Background: There is an urgent need to understand the complex relationship between cross-reactive anti-viral immunity, disease susceptibility, and severity in the face of differential exposure to related, circulating Flaviviruses. Co-exposure to Dengue virus and Zika virus in Brazil is a case in point. A devastating aspect of the 2015-2016 South American Zika outbreak was the dramatic increase in numbers of infants born with microcephaly to mothers exposed to Zika virus during pregnancy. It has been proposed that this is more likely to ensue from Zika infection in women lacking cross-protective Dengue immunity. In this case series we measure the prevalence of Dengue immunity in a cohort of mothers exposed to Zika virus during pregnancy in the 2015-2016 Zika outbreak that gave birth to an infant affected by microcephaly and explore their adaptive immunity to Zika virus. Results: Fifty women from Sergipe, Brazil who gave birth to infants with microcephaly following Zika virus exposure during the 2015-16 outbreak were tested for serological evidence of Dengue exposure and IFNγ ELISpot spot forming cell (SFC) response to Zika virus. The majority (46/50) demonstrated Dengue immunity. IFNγ ELISpot responses to Zika virus antigens showed the following hierarchy: Env>NS1>NS3>C protein. Twenty T cell epitopes from Zika virus Env were identified. Responses to Zika virus antigens Env and NS1 were polyfunctional with cells making IFNγ, TNFα, IL-4, IL-13, and IL-10. In contrast, responses to NS5 only produced the immune regulatory TGFβ1 cytokine. There were SFC responses against Zika virus Env (1-20) and variant peptide sequences from West Nile virus, Dengue virus 1-4 and Yellow Fever virus. Conclusion: Almost all the women in our study showed serological evidence of Dengue immunity, suggesting that microcephaly can occur in DENV immune mothers. T cell immunity to Zika virus showed a multifunctional response to the antigens Env and NS1 and i

Journal article

Altmann DM, 2020, Adaptive immunity to SARS-CoV-2., Oxf Open Immunol, Vol: 1

The majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 exposed individuals mount an antibody response within around 2-weeks and spike antigen-binding responses correlate well with functional virus neutralization. A minority makes little detectable antibody, generally those with either very mild/asymptomatic disease or those with severe/lethal infection. However, in general, antibody titre correlates with viral load and duration of exposure. There is evidence for cross-reactivity with the other human coronaviruses, though the functional impact of this is as yet unclear. Therapeutic use of neutralizing monoclonal antibodies offers potential for clinical use. While there is evidence for neutralizing antibody as a correlate of protection, some cases indicate the potential for full recovery in the absence of antibody. Studies of T-cell immunity following acute infection show CD4 and CD8 responses to epitopes across diverse viral antigens, possible cross-reactivity with epitopes from the common cold human coronaviruses and large-scale activation. However, in severe cases, there is evidence for T-cell lymphopaenia as well as expression of exhaustion markers. Analysis of serum biomarkers of disease severity implicates a hyperinflammatory contribution to pathogenesis, though this has not been mechanistically delineated beyond a likely role of raised IL-6, considered a therapeutic target. Despite rapid progress, there remain pressing unknowns. It seems likely that immune memory to SARS-CoV-2 may be relatively short lived, but this will need longitudinal investigation. Also, this is a disease of highly variable presentation and time course, with some progressing to protracted, chronic symptoms, which are not understood. The contribution of immunopathological mechanisms to tissue damage, whether in the lung, kidney, heart or blood vessels, is unclear. The immunology underlying the differential susceptibility between the very young and the very old is unreso

Journal article

Pinato DJ, Gramenitskaya D, Altmann DM, Boyton RJ, Mullish BH, Marchesi JR, Bower Met al., 2019, Antibiotic therapy and outcome from immune-checkpoint inhibitors, Journal for ImmunoTherapy of Cancer, Vol: 7, ISSN: 2051-1426

Sensitivity to immune checkpoint inhibitor (ICPI) therapy is governed by a complex interplay of tumor and host-related determinants. Epidemiological studies have highlighted that exposure to antibiotic therapy influences the probability of response to ICPI and predict for shorter patient survival across malignancies. Whilst a number of studies have reproducibly documented the detrimental effect of broad-spectrum antibiotics, the immune-biologic mechanisms underlying the association with outcome are poorly understood. Perturbation of the gut microbiota, an increasingly well-characterized factor capable of influencing ICPI-mediated immune reconstitution, has been indicated as a putative mechanism to explain the adverse effects attributed to antibiotic exposure in the context of ICPI therapy. Prospective studies are required to validate antibiotic-mediated gut perturbations as a mechanism of ICPI refractoriness and guide the development of strategies to overcome this barrier to an effective delivery of anti-cancer immunotherapy.

Journal article

Boyton RJ, Altmann DM, 2019, Muco-obstructive lung diseases, New England Journal of Medicine, Vol: 381, Pages: E20-+, ISSN: 0028-4793

Journal article

Chambers E, Byrne C, Morrison D, Murphy K, Preston T, Tedford MC, Garcia Perez I, Fountana S, Serrano Contreras J, Holmes E, Roberts J, Reynolds C, Boyton R, Altmann D, McDonald J, Marchesi J, Akbar A, Riddell N, Wallis G, Frost Get al., 2019, Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial, Gut, Vol: 68, Pages: 1430-1438, ISSN: 0017-5749

Objective: To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses.Design: Twelve non-diabetic adults with overweight and obesity received 20g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo controlled, crossover design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period.Results: Both IPE and inulin supplementation improved insulin resistance compared to cellulose supplementation, measured by homeostatic model assessment (HOMA) 2 (Mean±SEM 1.23±0.17 IPE vs. 1.59±0.17 cellulose, P=0.001; 1.17±0.15 inulin vs. 1.59±0.17 cellulose, P=0.009), with no differences between IPE and inulin (P=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased pro-inflammatory IL-8 levels compared to cellulose, whilst inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridales) compared to cellulose, with small differences at the species level observed between IPE and cellulose. Conclusion: These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.

Journal article

Sim M, Rajagopalan S, Altmann D, Boyton R, Sun PD, Long Eet al., 2019, Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C, Proceedings of the National Academy of Sciences, Vol: 116, Pages: 12964-12973, ISSN: 0027-8424

Natural killer (NK) cells have an important role in immune defense against viruses and cancer. Activation of human NK cell cytotoxicity toward infected or tumor cells is regulated by killer cell immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen class I (HLA-I). Combinations of KIR with HLA-I are genetically associated with susceptibility to disease. KIR2DS4, an activating member of the KIR family with poorly defined ligands, is a receptor of unknown function. Here, we show that KIR2DS4 has a strong preference for rare peptides carrying a Trp at position 8 (p8) of 9-mer peptides bound to HLA-C*05:01. The complex of a peptide bound to HLA-C*05:01 with a Trp at p8 was sufficient for activation of primary KIR2DS4+ NK cells, independent of activation by other receptors and of prior NK cell licensing. HLA-C*05:01+ cells that expressed the peptide epitope triggered KIR2DS4+ NK cell degranulation. We show an inverse correlation of the worldwide allele frequency of functional KIR2DS4 with that of HLA-C*05:01, indicative of functional interaction and balancing selection. We found a highly conserved peptide sequence motif for HLA-C*05:01–restricted activation of human KIR2DS4+ NK cells in bacterial recombinase A (RecA). KIR2DS4+ NK cells were stimulated by RecA epitopes from multiple human pathogens, including Helicobacter, Chlamydia, Brucella, and Campylobacter. We predict that over 1,000 bacterial species could activate NK cells through KIR2DS4, and propose that human NK cells also contribute to immune defense against bacteria through recognition of a conserved RecA epitope presented by HLA-C*05:01.

Journal article

Altmann DM, 2019, Knowns and unknowns of tissue-resident memory T cells, Immunology, Vol: 157, Pages: 1-2, ISSN: 0019-2805

Advances in transcriptomics and other approaches are shedding considerable light on tissue‐resident immune cells as distinct from recirculating cells. The advances encompass antigen‐presenting cell subsets, Tregs and importantly, tissue‐resident memory cells (TRM). What are the transcriptional programmes and functional properties that distinguish the requirements for an effective tissue resident cell in brain relative to lung, skin, adipose tissue or the genital tract? Another important conundrum has been the extent to which TRM cells are specialized either as a ‘sense and alarm’ population or as a local, primed, effector cell population in themselves. These are questions that challenge immunologists to stop thinking in terms of a generic, model, immune response and focus instead on events in the tissue in question.

Journal article

Boyton R, Reynolds C, Chong D, Li Y, Black L, Cutler A, Webster Z, Manji J, Altmann Det al., 2019, Bioluminescent reporting of in vivo interferon gamma immune responses during infection and autoimmunity, Journal of Immunology, Vol: 202, Pages: 2502-2510, ISSN: 1550-6606

IFN-γ is a key cytokine of innate and adaptive immunity. It is important to understand temporal changes in IFN-γ production and how these changes relate to the role of IFN-γ in diverse models of infectious and autoimmune disease, making the ability to monitor and track IFN-γ production in vivo of a substantial benefit. IFN-γ ELISPOTs have been a central methodology to measure T cell immunity for many years. In this study, we add the capacity to analyze IFN-γ responses with high sensitivity and specificity, longitudinally, in vitro and in vivo. This allows the refinement of experimental protocols because immunity can be tracked in real-time through a longitudinal approach. We have generated a novel murine IFN-γ reporter transgenic model that allows IFN-γ production to be visualized and quantified in vitro and in vivo as bioluminescence using an imaging system. At baseline, in the absence of an inflammatory stimulus, IFN-γ signal from lymphoid tissue is detectable in vivo. Reporter transgenics are used in this study to track the IFN-γ response to Pseudomonas aeruginosa infection in the lung over time in vivo. The longitudinal development of the adaptive T cell immunity following immunization with Ag is identified from day 7 in vivo. Finally, we show that we are able to use this reporter transgenic to follow the onset of autoimmune T cell activation after regulatory T cell depletion in an established model of systemic autoimmunity. This IFN-γ reporter transgenic, termed “Gammaglow,” offers a valuable new modality for tracking IFN-γ immunity, noninvasively and longitudinally over time.

Journal article

Altmann DM, 2019, "Just 17 if you know what I mean' ... but what do we really mean to say about Th17 immunity?, IMMUNOLOGY, Vol: 156, Pages: 297-298, ISSN: 0019-2805

Journal article

Altmann DM, 2019, The immune regulatory role of neutrophils, Immunology, Vol: 156, Pages: 215-216, ISSN: 0019-2805

Neutrophils are appreciated to perform a wide range of pro‐ and anti‐inflammatory effector functions in diverse settings. These go far beyond the response to acute infection, encompassing sterile injury, autoimmunity, allergy and tumours. There is growing appreciation of the nuances of their modes of action, especially elucidation of the nature and consequences of NETosis. New work suggests that it is time to give greater consideration to the anti‐inflammatory role of neutrophils, such as in the control of cytokine release during sepsis.

Journal article

Altmann DM, 2019, Natural killer cell transcriptional control, subsets, receptors and effector function, IMMUNOLOGY, Vol: 156, Pages: 109-110, ISSN: 0019-2805

Journal article

Altmann DM, 2018, T-cell immunology of the lung: maintaining the balance between host defence and immune pathology, IMMUNOLOGY, Vol: 156, Pages: 1-2, ISSN: 0019-2805

Journal article

Altmann DM, 2018, Functions of adipose-resident immune subsets and the impact on metabolic syndrome, IMMUNOLOGY, Vol: 155, Pages: 405-406, ISSN: 0019-2805

Journal article

Reynolds CJ, Quigley K, Cheng X, Suresh A, Tahir S, Ahmed-Jushuf F, Nawab K, Choy K, Walker SA, Mathie SA, Sim M, Stowell J, Manji J, Pollard T, Altmann DM, Boyton RJet al., 2018, Lung defense through interleukin-8 carries a cost of chronic lung remodeling and impaired function, American Journal of Respiratory Cell and Molecular Biology, Vol: 59, Pages: 557-571, ISSN: 1044-1549

RATIONALE: IL-8 dependent inflammation is a hallmark of host lung innate immunity to bacterial pathogens, yet in many human lung diseases including COPD, bronchiectasis, and pulmonary fibrosis, there are progressive, irreversible pathologic, changes associated with elevated levels of IL-8 in the lung. OBJECTIVES: To better understand the duality of IL-8 dependent host immunity to bacterial infection and lung pathology, we targeted human IL-8 to express transgenically in murine bronchial epithelium, investigating the impact of over-expression on lung bacterial clearance, host immunity, lung pathology and function. MEASUREMENTS AND MAIN RESULTS: Persistent IL-8 expression in bronchial epithelium resulted in neutrophilia, neutrophil maturation, activation and chemtoaxis. There was enhanced protection from challenge with Pseudomonas aeruginosa and significant changes in baseline expression of innate and adaptive immunity transcripts for Ccl5, Tlr6, IL2 and Tlr1. There was increased expression of Tbet and Foxp3 in response to the Pseudomonas antigen, OprF, indicating a regulatory T cell phenotype. However, this enhanced bacterial immunity comes at the high price of progressive lung remodelling, with increased inflammation, mucus hyper-secretion, and fibrosis. There is increased expression of Ccl3 and reduced expressioh of Claudin 18 and F11r, with damage to epithelial organization leading to leaky tight junctions, all resulting in impaired lung function with reduced compliance, increased resistance and bronchial hyperreactivity measured by whole body plethysmography. CONCLUSIONS: IL-8 over-expression in the bronchial epithelium benefits lung immunity to bacterial infection, but specifically drives lung damage through persistent inflammation, lung remodelling and damaged tight junctions, leading to impaired lung function.

Journal article

Altmann DM, 2018, A Nobel Prize-worthy pursuit: cancer immunology and harnessing immunity to tumour neoantigens, IMMUNOLOGY, Vol: 155, Pages: 283-284, ISSN: 0019-2805

Journal article

Altmann DM, 2018, Regulatory T-cells: receptors, repertoires and roles in disease, IMMUNOLOGY, Vol: 155, Pages: 153-154, ISSN: 0019-2805

Journal article

Altmann DM, 2018, Bioinformatics for immunologists, IMMUNOLOGY, Vol: 155, Pages: 1-2, ISSN: 0019-2805

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00169335&limit=30&person=true&page=3&respub-action=search.html