Imperial College London

Professor Dan Balint

Faculty of EngineeringDepartment of Mechanical Engineering

Professor in Solid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 7084d.balint Website

 
 
//

Location

 

519City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

168 results found

Luan Q, Wang J, Huang Y, Balint D, Jiang Jet al., 2021, How would the deformation bands affect recrystallization in pure aluminium?, Materials and Design, Vol: 209, ISSN: 0264-1275

Deformation bands (DBs), formed after plastic deformation, are known to have an impact on the recrystallization (RX) process. The exact mechanisms of how DBs influence grain nucleation and grain growth remain unclear. In this paper, deformed single and multicrystal pure aluminium samples are annealed to explore the likely effects of DBs on the grain nucleation and the subsequent grain growth. Regarding the prediction of the recrystallized (RXed) texture, it is noticeable that the orientations of nucleated grains nearby DB are originated from the orientation in DB. Regarding the nucleated positions, it is demonstrated that potential nucleation sites are more likely located in DBs in comparison with the initial grain boundary. Regarding the rate of RX, the number of nucleated grains is also predicted to have a strong positive correlation with the area fraction of DBs, which would consequently affect the kinetics of the grain growth in the deformed microstructure. All the above observations imply that the RX process is strongly controlled by the ensemble characteristics of DBs rather than the initial grain boundaries.

Journal article

Reali L, Balint DS, Sutton A, Wenman Met al., 2021, Plastic relaxation and solute segregation to β-Nb second phase particles in Zr-Nb alloys: a discrete dislocation plasticity study, Journal of the Mechanics and Physics of Solids, Vol: 156, ISSN: 0022-5096

There is clear evidence in the literature that iron segregates to the interface of second phase particles (SPPs) in unirradiated Zr-Nb alloys, and that it does not do so in the presence of radiation damage. In this work, a discrete dislocation plasticity model is developed that takes into account the long-range stress field of the SPP interface. A simple analytical model is also outlined, providing an upper bound for estimating the amount of interstitial segregation. The model provides a possible mechanism to explain both the iron segregation to coherent SPPs and its subsequent loss after irradiation. Qualitatively, the model proved to be insensitive to variations of all geometrical and computational parameters, allowing for general conclusions to be drawn. The model suggests that the segregation originates from a tensile field of order 1 GPa induced by the dislocations generated during the plastic relaxation around the SPP. This leads to the six-fold increase in the iron concentration observed in experiments. In the model, the loss of SPP/matrix coherency after irradiation causes the dislocations to drift away from the interface, and the iron concentration is homogenised accordingly. The hydrogen concentration was also predicted and found to be about 50% higher than in the bulk zirconium matrix at room temperature. The computational framework is built to be fast, making possible a statistical analysis on over five hundred simulations for improved reliability of the predictions.Keywords: Discrete dislocation plasticity; Zr-Nb alloys; second phase particles; interfacial segregation.

Journal article

Charalambides M, Zhang R, Taylor A, Balint D, Wood J, Young Cet al., 2021, A numerical investigation of interfacial and channelling crack growth rates under low-cycle fatigue in bi-layer materials relevant to cultural heritage, Journal of Cultural Heritage, Vol: 49, Pages: 70-78, ISSN: 1296-2074

In traditional and modern paintings on canvas or wood, two crack types have been identified, these are: (i) delamination between two of the many layers and (ii) channelling through the paint layer, terminating at the paint-substrate interface. One cause of this damage can be attributed to environment-induced low-cycle fatigue, specifically through relative humidity and temperature fluctuations. We present novel 2D as well as 3D finite element models that, for the first time, identify the time for each type of crack to initiate under a variety of realistic relative humidity (RH) cycles, as well as the corresponding crack growth rates. The focus is on modern paintings that have some layers executed in alkyd paint, found to be a vulnerable layer in a relatively short period of time. The paintings are idealised as a two-layer construction with a visco-hyperelastic alkyd paint layer on a linear elastic (acrylic) primed canvas substrate. Cracks, both interfacial and channelling, are represented using cohesive elements. To simulate the damage caused by a relative humidity cycle, a fatigue damage parameter was incorporated in the traction-separation law using a user-defined field. It was found that channelling cracks initiate slightly earlier than interfacial cracks for all the environmental conditions studied. Specifically, for an RH cycle of 35%–90%, channelling cracks initiate at 2.2 years and grow at an accelerating rate, while the interfacial crack initiates at 2.6 years and grows at a stable rate of approximately 0.1 mm/year. Narrower RH cycles lead to longer crack initiation times, e.g. the channelling crack initiates at 13.9 years under 40%–65% RH, and when the RH cycle was further narrowed to 45%–55%, the initiation time increased to 86 years. Our models are applicable to other painted or coated cultural heritage objects and can be used to inform preservation and environmental control strategies.

Journal article

Patel M, Reali L, Sutton AP, Balint DS, Wenman MRet al., 2021, A fast efficient multi-scale approach to modelling the development of hydride microstructures in zirconium alloys, COMPUTATIONAL MATERIALS SCIENCE, Vol: 190, ISSN: 0927-0256

Journal article

Mulakkal M, Castillo Castillo A, Taylor A, Blackman B, Balint D, Pimenta S, Charalambides Met al., 2021, Advancing mechanical recycling of multilayer plastics through finite element modelling and environmental policy, Resources, Conservation and Recycling, Vol: 166, ISSN: 0921-3449

Plastics are attracting negative publicity due to the scale of current pollution levels, yet they are irreplaceable in several applications such as food packaging, where different types of plastics are combined in laminate form to produce multilayered packaging (MLP) materials which extend the life of food items packaged within them. Increased plastic recycling is urgently needed, however for MLP it is particularly difficult. For the first time, this study combines engineering tools with environmental policy towards developing solutions for current single use plastic packaging. This study investigates recycling challenges for MLP and emerging melt-blending based mechanical recycling solutions as this is the main current method for material recovery of conventional plastics. Melt-blending of MLP with compatibilisers is explored, and the current lack of models addressing the influence of compatibilisers is identified. This gap in knowledge is addressed using novel engineering models based on the finite element (FE) micromechanical modelling technique to estimate the mechanical properties of recycled blends. Our model output is compared with experimental data available in literature and the good agreement highlights its predictive ability, providing a fast and cost-effective novel method for optimising recycled plastics. The policy aspect proposes the introduction of twenty policies based on mission-oriented innovation strategy to enable deployment of the recycling technologies studied whilst improving the viability of recycling of material currently not recycled. Implementation of these measures by the stakeholders will enable adoption of new MLP recycling techniques, create demand for recycled materials from MLP and incentivise MLP collection to mitigate pollution.

Journal article

Xu Y, Ruebeling F, Balint DS, Greiner C, Dini Det al., 2021, On the origin of microstructural discontinuities in sliding contacts: a discrete dislocation plasticity analysis, International Journal of Plasticity, Vol: 138, Pages: 1-15, ISSN: 0749-6419

Two-dimensional discrete dislocation plasticity (DDP) calculations that simulate single crystal films bonded to a rigid substrate under sliding by a rigid sinusoid-shaped asperity are performed with various contact sizes. The contact between the thin film and the asperity is established by a preceding indentation and modelled using a cohesive zone method (CZM), whose behavior is governed by a traction-displacement relation. The emergence of microstructural changes observed in sliding tests has been interpreted as a localized lattice rotation band produced by the activity of dislocations underneath the contact. The depth of the lattice rotation band is predicted to be well commensurate with that observed in the corresponding tests. Furthermore, the dimension and magnitude of the lattice rotation band have been linked to the sliding distance and contact size. This research reveals the underpinning mechanisms for the microstructural changes observed in sliding tests by explicitly modelling the dislocation patterns and highly localized plastic deformation of materials under various indentation and sliding scenarios.

Journal article

Reali L, Wenman MR, Sutton AP, Balint DSet al., 2021, Plasticity of zirconium hydrides: a coupled edge and screw discrete dislocation model, JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, Vol: 147, ISSN: 0022-5096

Journal article

Aldegaither N, Sernicola G, Mesgarnejad A, Karma A, Balint D, Wang J, Saiz E, Shefelbine SJ, Porter AE, Giuliani Fet al., 2021, Fracture toughness of bone at the microscale, Acta Biomaterialia, Vol: 121, Pages: 475-483, ISSN: 1742-7061

Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites.

Journal article

Croteau J-F, Kulyadi EP, Kale C, Siu D, Kang D, Fontenla ATP, Valdivieso EG-T, Bieler TR, Eisenlohr P, Solanki KN, Balint D, Hooper PA, Atieh S, Jacques N, Cantergiani Eet al., 2020, Effect of strain rate on tensile mechanical properties of high-purity niobium single crystals for SRF applications, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, Vol: 797, ISSN: 0921-5093

Journal article

Zhou X, Shao Z, Pruncu CI, Hua L, Balint D, Lin J, Jiang Jet al., 2020, A study on central crack formation in cross wedge rolling, Journal of Materials Processing Technology, Vol: 279, ISSN: 0924-0136

Cross wedge rolling (CWR) is an innovative roll forming process, used widely in the transportation industry. It has high production efficiency, consistent quality and efficient material usage. However, the continual occurrence of crack formation in the centre of the workpiece is a critical problem excluding the CWR technique from more safety-critical applications, in particular, aerospace components. The mechanisms of central fracture formation are still unclear because of a combination of complicated stress and strain states at various stages of CWR. Thus, the aim of this study is to understand the stress/strain distribution and evolution during the CWR process and identify the key variables which determine central crack formation. A comprehensive investigation was then conducted to simulate 27 experimental cases. The stress and strain distributions in the workpiece were evaluated by finite element analysis. Various damage models from literature were applied and compared. A new fracture criterion was proposed, which was able to successfully determine the central crack formation in all 27 experimental cases. This criterion can be applied in CWR tool and process design, and the enhanced understanding may enable the adoption of CWR by the aerospace industry.

Journal article

Bhowmik A, Lee J, Adande S, Wang-Koh M, Jun T-S, Sernicola G, Ben Britton T, Rae CMF, Balint D, Giuliani Fet al., 2020, Investigating spatio-temporal deformation in single crystal Ni-based superalloys using in-situ diffraction experiments and modelling, Materialia, Vol: 9, Pages: 1-14, ISSN: 2589-1529

In this study, we perform a detailed analysis of room temperature deformation of a [100]–orientated singlecrystal Ni-based superalloy, CMSX-4 micropillar, using a combinatorial and complimentary characterisation approach of micro-Laue diffraction coupled with post-deformation microscopy and crystal plasticity modelling.Time-resolved micro-Laue data indicated that deformation was initiated by activation of multiple slip (after 5%engineering strain) which led to the generation of a plastic strain accumulation accompanied by a two-foldincrease in the dislocation density within the micropillar. Subsequent to that, slip occurred primarily on two systems (11̄1)[101] and (111)[1̄01] with the highest Schmid factor in the single crystal micropillar thereby resultingin little accumulation of unpaired GNDs during a major part of the loading cycle, upto 20% strain in this case.Finite element crystal plasticity modelling also showed good agreement with the experimental analyses, wherebysignificant strains were found to develop in the above slip systems with a localisation near the centre of themicropillar. Post-deformation transmission electron microscopy study confirmed that deformation was mediatedthrough a/2<110> dislocations on {111} planes in the 𝛾-phase, while high stress levels led to shearing of the 𝛾′precipitates by a/2<110> partials bounding an anti-phase boundary free to glide on the {111} planes. Duringthe deformation of the single crystal micropillar, independent rotations of the 𝛾 and 𝛾′ phases were quantified byspatially resolved post-deformation micro-Laue patterns. The degree of lattice rotation in the 𝛾-phase was higherthan that in the 𝛾′-phase.

Journal article

Prastiti NG, Xu Y, Balint DS, Dunne FPEet al., 2020, Discrete dislocation, crystal plasticity and experimental studies of fatigue crack nucleation in single-crystal nickel, International Journal of Plasticity, Vol: 126, Pages: 1-14, ISSN: 0749-6419

Dislocation configurational energy and stored energy densities are determined in discrete dislocation and crystal plasticity modelling respectively and assessed with respect to experiments on single crystal nickel fatigue crack nucleation. Direct comparisons between the three techniques are provided for two crystal orientation fatigue tests. These provide confirmation that both quantities correctly identify the sites of fatigue crack nucleation and that stored energy density is a reasonable approximation to the more rigorous dislocation configurational energy. GND density is shown to be important in locating crack nucleation sites because of its role in the local configurational energy density.

Journal article

Bordas SPA, Balint DS, 2020, Preface

Book

Bordas SPA, Balint DS, 2020, Advances in Applied Mechanics Preface, ADVANCES IN APPLIED MECHANICS, VOL 53, Editors: Bordas, Balint, Publisher: ELSEVIER ACADEMIC PRESS INC, Pages: IX-IX

Book chapter

Reali L, El Chamaa S, Balint DS, Davies CM, Wenman MRet al., 2020, Deformation and fracture of zirconium hydrides during the plastic straining of Zr-4, MRS ADVANCES, Vol: 5, Pages: 559-567, ISSN: 2059-8521

Journal article

Xu Y, Balint D, Dini D, 2019, A new hardness formula incorporating the effect of source density on indentation response: a discrete dislocation plasticity analysis, Surface and Coatings Technology, Vol: 374, Pages: 763-773, ISSN: 0257-8972

Planar discrete dislocation plasticity (DDP) calculations that simulate thin single crystal films bonded to a rigid substrate indented by a rigid wedge are performed for different values of film thickness and dislocation source density. As in prior studies, an indentation size effect (ISE) is observed when indentation depth is sufficiently small relative to the film thickness. Thedependence of the ISE on dislocation source density is quantified in this study, and a modified form of the scaling law for the dependence of hardness on indentation depth, first derived by Nix and Gao, is proposed, which is valid over the entire range of indentation depths and correlates the length scale parameter with the average dislocation source spacing. Nanoindentation experimental data from the literature are fitted using this formula, which further verifies the proposed scaling of indentation pressure on dislocation source density.

Journal article

Wood J, Gauvin C, Young C, Taylor A, Balint D, Charalambides Met al., 2019, Reconstruction of historical temperature and relative humidity cycles within Knole House, Kent, Journal of Cultural Heritage, Vol: 39, Pages: 212-220, ISSN: 1296-2074

It is essential for the preservation of cultural heritage that the effects of climate change are investigated. With this in mind, the daily temperature and relative humidity (RH) cycles within the Brown Gallery at Knole House, Kent, have been reconstructed for the period 1605 – 2015 enabling the study of low-cycle environmental fatigue on a set of 17th century panel paintings. By establishing a relationship between the temperature in the Brown Gallery and the Hadley Centre Central England Temperature (HadCET) dataset over a sixteen year period (2000 – 2015), it is possible to use the full HadCET dataset to obtain the daily minimum and maximum temperatures in the Brown Gallery for the period 1878 – 2015. Using a Fourier series to fit the periodic data it is then possible to extrapolate back to 1605. Furthermore, correction factors derived using the HadCET average daily temperature in the period 1772 – 1877 and average monthly temperature in the period 1659 – 1771 are applied to the temperature data to increase the model accuracy. The daily minimum and maximum RH for the period 1605 – 2015 are obtained using the Brown Gallery maximum and minimum temperatures respectively, and assuming that the daily dew point temperature at Knole is calculated by subtracting a monthly-dependent constant from the daily minimum temperature at Knole, thus enabling the calculation of the daily actual water vapour pressure of air. Changes in RH are a result of the daily temperature cycle changing the saturation vapour pressure of air in the gallery. This data is valuable as it enables a study of the effects of low-cycle fatigue on the 17th century panel paintings housed in the Brown Gallery at Knole House, Kent due to these temperature and relative humidity cycles. Furthermore, the method presented offers a technique that can be utilised to replicate the internal environment for any unheated monument building so that the effects of past and future temper

Journal article

Zheng Z, Prastiti NG, Balint DS, Dunne FPEet al., 2019, The dislocation configurational energy density in discrete dislocation plasticity, Journal of the Mechanics and Physics of Solids, Vol: 129, Pages: 39-60, ISSN: 0022-5096

Dislocation configurational energy is the term assigned to describe the elastically-stored energy associated with the interaction of dislocations and their structures. It is the energy which is over and above that from the summation of the dislocation line energies when considered isolated and non-interacting. It is therefore different to the free energy and the stored energy. This paper presents a formulation for its determination utilising discrete dislocation plasticity. The total geometrically necessary (GND) and statistically stored dislocation density mean free distance allows the configurational energy density to be determined, thus providing a length scale over which the configurational energy is stored. This quantity is assessed in polycrystals undergoing fatigue loading showing that clear microstructural locations, often associated with high GND density, become established at which the progressive, cyclic, increasing configurational energy occurs. A higher length scale crystal plasticity stored energy density has recently been introduced which attempts to capture local dislocation configurational energy density as an indicator of fatigue crack nucleation and growth. The former is compared and assessed against the dislocation configurational energy density in this paper.

Journal article

Ebrahimi M, Balint D, Sutton A, Dini Det al., 2019, A discrete crack dynamics model of toughening in brittle polycrystalline material by crack deflection, Engineering Fracture Mechanics, Vol: 214, Pages: 95-111, ISSN: 0013-7944

This paper focuses on the study of the effect of the interfacial strength of grain boundaries and elliptical inclusions on crack path deflection. The method is developed to channel a crack into a toughening configuration (arrays of elliptical holes and inclusions are considered) in order to obtain the optimised microstructure required to enhance fracture toughness through different mechanisms. The proposed technique is shown to reproduce experimental crack propagation paths in various configurations and is capable of capturing the effect of that variation of the GB and the inclusion interfacial strength; it provides a powerful tool to understand the interplay between microstructural features and improve materials performance.

Journal article

Li Y, Shao Z, Rong Q, Shi Z, Balint D, Sun X, Meng L, Lin Jet al., 2019, Development of similarity-based scaling criteria for creep age forming of large/extra-large panels, The International Journal of Advanced Manufacturing Technology, Vol: 101, Pages: 1537-1551, ISSN: 0268-3768

A scaling method is developed for the creep age forming (CAF) process to downscale manufacturing of large/extra-large panels to lab-scale experimental trials for industrial application. Similarity theory is applied to identify both the geometrical and physical (non-geometrical) similarities between large-size prototypes and scaled-down models in all process stages of CAF, including loading, stress-relaxation and unloading (springback). A constitutive model is incorporated into the theory in order to identify the similarity in the highly non-linear stress-relaxation behaviour for aluminium alloy plates during CAF, and to obtain the effective scaling criteria for the CAFed plates after springback. The method was demonstrated by scaling down CAF manufacturing of both singly curved and doubly curved large plates under both proportional and non-proportional geometrical scaling conditions. The analytical results of the scaling method and numerical results obtained by CAF FE modelling were found to be in good agreement. Scaling diagrams linking the key deformation (springback) and structural (flexural rigidity) variables to scaling ratios under both proportional and non-proportional conditions were generated, and the developed scaling diagrams have been validated by corresponding CAF experiments. The scaling method developed in this study provides guidance on the design of scaled-down CAF experimental trials and will be used in the practical CAF process of large/extra-large panels.

Journal article

Cimbaro L, Sutton A, Balint D, Paxton A, Hardy Met al., 2019, Embrittlement of an elasto-plastic medium by an inclusion, International Journal of Fracture, Vol: 216, Pages: 87-100, ISSN: 0376-9429

A mathematical model for the embrittlement of a long elastic-plastic crack by a relatively small, misfitting inclusion is presented. The model makes direct contact with the Dugdale–Bilby–Cottrell–Swinden model as a limiting case. The particular case of an oxide inclusion with a triangular cross-section at the tip of an intergranular crack in the Ni-based superalloy RR1000 at 650∘C is considered. The positive misfit of the intrusion provides an additional tensile load on the crack tip and on the plastic zone, raising the local stress intensity factor kI and the crack tip opening displacement Δu above those when the inclusion is replaced by a dislocation-free zone of the same length. It is shown that for a given misfit strain and inclusion shape, the enhancement of kI and Δu is controlled by a dimensionless parameter ω=(σ/σ1)c/(2l)−−−−−√ where σ is the applied stress, σ1 is the yield stress, c is the crack length and l is the length of the inclusion. The anti-shielding effect of the intrusion is significant only when ω≲6. As a result of the anti-shielding effect of the intrusion, the stress singularity at the crack tip always exceeds the compressive normal stress that exists within the thickest part of the intrusion when it is isolated. It is also shown that the gradient of the hydrostatic stress within the intrusion subjected to different applied stresses drives the oxygen diffusion and, hence, assists the oxidation at the grain boundary. The fracture toughness is considerably greater than that of a bulk sample of the oxide particle, which we attribute to the plastic zone.

Journal article

Dzepina B, Balint D, Dini D, 2019, A phase field model of pressure-assisted sintering, Journal of the European Ceramic Society, Vol: 39, Pages: 173-182, ISSN: 0955-2219

The incorporation of an efficient contact mechanics algorithm into a phase field sintering model is presented. Contact stresses on the surface of arbitrarily shaped interacting bodies are evaluated and built into the model as an elastic strain energy field. Energy relaxation through deformation is achieved by diffusive fluxes along stress gradients and rigid body motion of the deforming particles maintain contact between the particles. The proposed model is suitable for diffusion deformation mechanisms occurring at stresses below the yield strength of a defect-free material; this includes Nabarro-Herring creep, Coble creep and pressure-solution. The effect of applied pressure on the high pressure-high temperature (HPHT) liquid phase sintering of diamond particles was investigated. Changes in neck size, particle coordination and contact flattening were observed. Densification rates due to the externally applied loads were found to be in good agreement with a new theory which implicitly incorporates the effect of applied external pressure.

Journal article

Hussein MI, Bordas SPA, Balint DS, 2019, Advances in Crystals and Elastic Metamaterials, Part 2 Preface, ADVANCES IN CRYSTALS AND ELASTIC METAMATERIALS, PT 2, Editors: Hussein, Publisher: ELSEVIER ACADEMIC PRESS INC, Pages: IX-X

Book chapter

Khosla G, Balint D, Farrugia D, Davies CMet al., 2019, Toughness measurements of a Cr martensitic high alloy steel susceptible to clinking, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol: 233, Pages: 63-72, ISSN: 1464-4207

'Clinking’ is an audible fracture that occurs during the cool down and reheating of as-cast high alloy materials. When this process occurs, audible fracture can be heard and observed as large transverse cracks that propagate through large slabs. This causes high material losses and major disruption to processing operations. Given the fracture is known to be brittle, this research is aimed at developing a way to predict the onset of clinking through the application of fracture mechanics. Linear elastic and elastic–plastic fracture mechanics were both used to assess the fracture behaviour. The stress state during cool down and reheating was estimated through finite element analysis using a three-dimensional finite element model. Tensile tests were conducted to obtain the stress–strain characteristics to be used in the fracture analysis. Charpy tests were completed to assess the relative toughness dependent on temperature across the temperature range for which the high alloy steel is susceptible to clinking. Four C(T) specimens were tested at a room temperature. Despite showing little ductile crack propagation on the fracture surface, the fractured samples did not meet the Linear Elastic Fracture Mechanics (LEFM) validity criterion but did meet the Jcvalidity criterion. This allows a minimum Jcvalue of 118 N/mm to be attributed to the onset of unstable fracture. Conversion into a KJcgives 164MP√m, which gives a minimum critical crack length of 138 mm for the onset of brittle fracture. Charpy tests showed a pronounced increase in the energy for fracture between 20 ℃ and 300 ℃ which is in line with practical observations, where the onset of clinking is reduced with a higher reheat temperature.

Journal article

Waheed S, Zheng Z, Balint D, Dunne Fet al., 2019, Microstructural effects on strain rate and dwell sensitivity in dual-phase titanium alloys, Acta Materialia, Vol: 162, Pages: 136-148, ISSN: 1359-6454

In this study, stress relaxation tests are performed to determine and compare the strain rate sensitivity of different titanium alloy microstructures using discrete dislocation plasticity (DDP) and crystal plasticity finite element (CPFE) simulations. The anisotropic α and β phase properties of alloy Ti-6242 are explicitly included in both the thermally-activated DDP and CPFE models together with direct dislocation penetration across material-interfaces in the DDP model. Equiaxed pure α, colony, Widmanstatten and basketweave microstructures are simulated together with an analysis of the effect of α grain size and dislocation penetration on rate sensitivity. It is demonstrated that alloy morphology and texture significantly influence microstructural material rate sensitivity in agreement with experimental evidence in the literature, whereas dislocation penetration is found not to be as significant as previously considered for small deformations. The mechanistic cause of these effects is argued to be changes in dislocation mean free path and the total propensity for plastic slip in the specimen. Comparing DDP results with corresponding CPFE simulations, it is shown that discrete aspects of slip and hardening mechanisms have to be accounted for to capture experimentally observed rate sensitivity. Finally, the dwell sensitivity in a polycrystalline dual-phase titanium alloy specimen is shown to be strongly dependent on its microstructure.

Journal article

Hussein MI, Bordas SPA, Balint DS, 2019, Preface

Book

Wood JD, Gauvin C, Young CRT, Taylor AC, Balint DS, Charalambides MNet al., 2018, Cracking in paintings due to relative humidity cycles, 22nd European Conference on Fracture (ECF) - Loading and Environmental Effects on Structural Integrity, Publisher: Elsevier B.V., Pages: 379-384, ISSN: 2452-3216

A numerical study is performed using the finite element method to consider the effects of low-cycle fatigue, specifically induced through relative humidity cycles on paintings. It has been identified that there are two major crack types in paintings, these being (i) an interfacial crack (delamination) between paint and support and (ii) a through-thickness (channel) crack in the paint layer itself, arresting on the interface. Therefore a 2D plane strain model for each type of crack has been created, which both consist of an alkyd paint modelled using a visco-hyperelastic material model and a primed canvas which is assumed to behave in a linear elastic manner. To account for fatigue damage in both models, cohesive elements located along the interface or through the film thickness respectively, are used and the traction-separation law has been modified to incorporate a fatigue damage parameter. It is possible to expose the models to the same relative humidity cycles, which would typically be seen in museums, enabling the prediction of time to first crack and which crack type is more readily grown in the painting.

Conference paper

Mercer C, Lee J, Balint DS, 2018, An investigation of the mechanical behavior of three-dimensional low expansion lattice structures fabricated via laser printing, COMPOSITE STRUCTURES, Vol: 206, Pages: 80-94, ISSN: 0263-8223

Journal article

Tajabadi-Ebrahimi M, Dini D, Balint DS, Sutton AP, Ozbayraktar Set al., 2018, Discrete crack dynamics: a planar model of crack propagation and crack-inclusion interactions in brittle materials, International Journal of Solids and Structures, Vol: 152-153, Pages: 12-27, ISSN: 0020-7683

The Multipole Method (MPM) is used to simulate the many-body self-consistentproblem of interacting elliptical micro-cracks and inclusions in single crystals. Acriterion is employed to determine the crack propagation path based on the stressdistribution; the evolution of individual micro-cracks and their interactions withexisting cracks and inclusions is then predicted using what we coin the DiscreteCrack Dynamics (DCD) method. DCD is fast (semi-analytical) and particularlysuitable for the simulation of evolving low-speed crack networks in brittle orquasi-brittle materials. The method is validated against finite element analysispredictions and previously published experimental data.

Journal article

Verschueren J, Gurrutxaga-Lerma B, Balint D, Sutton A, Dini Det al., 2018, Instabilities of high speed dislocations, Physical Review Letters, Vol: 121, ISSN: 0031-9007

Despite numerous theoretical models and simulation results, a clear physical picture of dislocations traveling at velocities comparable to the speed of sound in the medium remains elusive. Using two complementary atomistic methods to model uniformly moving screw dislocations, lattice dynamics and molecular dynamics, the existence of mechanical instabilities in the system is shown. These instabilities are found at material-dependent velocities far below the speed of sound. We show that these are the onset of an atomistic kinematic generation mechanism, which ultimately results in an avalanche of further dislocations. This homogeneous nucleation mechanism, observed but never fully explained before, is relevant in moderate and high strain rate phenomena including adiabatic shear banding, dynamic fracture, and shock loading. In principle, these mechanical instabilities do not prevent supersonic motion of dislocations.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00499818&limit=30&person=true