Imperial College London

DrDiagarajenCarpanen

Faculty of EngineeringDepartment of Bioengineering

 
 
 
//

Contact

 

d.carpanen Website

 
 
//

Location

 

B304Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

27 results found

Rebelo EA, Grigoriadis G, Carpanen D, Bull A, Masouros Set al., 2021, An experimentally validated finite element model of the lower limb to investigate the efficacy of blast mitigation systems, Frontiers in Bioengineering and Biotechnology, Vol: 9, ISSN: 2296-4185

Improvised explosive devices (IEDs) used in the battlefield cause damage to vehicles and their occupants. The injury burden to the casualties is significant. The biofidelity and practicality of current methods for assessing current protection to reduce the injury severity is limited. In this study, a finite-element (FE) model of the leg was developed and validated in relevant blast-loading conditions, and then used to quantify the level of protection offered by a combat boot. An FE model of the leg of a 35 years old male cadaver was developed. The cadaveric leg was tested physically in a seated posture using a traumatic injury simulator and the results used to calibrate the FE model. The calibrated model predicted hindfoot forces that were in good correlation (using the CORrelation and Analysis or CORA tool) with data from force sensors; the average correlation and analysis rating (according to ISO18571) was 0.842. The boundary conditions of the FE model were then changed to replicate pendulum tests conducted in previous studies which impacted the leg at velocities between 4 and 6.7 m/s. The FE model results of foot compression and peak force at the proximal tibia were within the experimental corridors reported in the studies. A combat boot was then incorporated into the validated computational model. Simulations were run across a range of blast-related loading conditions. The predicted proximal tibia forces and associated risk of injury indicated that the combat boot reduced the injury severity for low severity loading cases with higher times to peak velocity. The reduction in injury risk varied between 6 and 37% for calcaneal minor injuries, and 1 and 54% for calcaneal major injuries. No injury-risk reduction was found for high severity loading cases. The validated FE model of the leg developed here was able to quantify the protection offered by a combat boot to vehicle occupants across a range of blast-related loading conditions. It can now be used as a design an

Journal article

Carpanen D, Masouros SD, Stinner DJ, 2021, Biomechanical evaluation of a tool-less external fixator., BMJ Mil Health

INTRODUCTION: Current external fixator systems used by the US and UK military for stabilising extremity fractures require specialised tools to build a construct. The goal of obtaining and maintaining limb length and alignment is not achieved if these tools are misplaced. An alternative, tool-less system is currently available, namely the Dolphix Temporary Fixation System. The aim of this study was to compare the stiffness of the Dolphix system with the existing Hoffmann III system. METHODS: Three Hoffmann III and three Dolphix constructs were assembled on a bone (tibia) surrogate. A 30 mm fracture gap was created to simulate a comminuted proximal tibia or distal femur fracture. The constructs were then tested in cyclic axial compression once daily for 3 consecutive days. RESULTS: The length and alignment of the surrogate limb was restored following each testing cycle with both external fixation systems. The stiffness of the constructs was maintained throughout each sequential test, with the Dolphix exhibiting 54% the stiffness of the Hoffmann III construct. CONCLUSION: Given the Dolphix's performance in mechanical testing and the unique advantage of having a tool-less manual locking clamp mechanism, this tool-less system should be considered for use in the mobile austere environment.

Journal article

Rankin IA, Thuy-Tien N, Carpanen D, Darwood A, Clasper JC, Masouros SDet al., 2021, Pelvic Protection Limiting Lower Limb Flail Reduces Mortality, JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, Vol: 143, ISSN: 0148-0731

Journal article

Nguyen TT, Carpanen D, Rankin I, Ramasamy A, Breeze J, Proud W, Clasper J, Masouros Set al., 2020, Mapping the risk of fracture of the tibia from penetrating fragments, Frontiers in Bioengineering and Biotechnology, Vol: 8, Pages: 1-11, ISSN: 2296-4185

Penetrating injuries are commonly inflicted in attacks with explosive devices. The extremities, and especially the leg, are the most commonly affected body areas, presenting high risk of infection, slow recovery, and threat of amputation. The aim of this study was to quantify the risk of fracture to the anteromedial, posterior, and lateral aspects of the tibia from a metal fragment-simulating projectile (FSP). A gas gun system and a 0.78-g cylindrical FSP were employed to perform tests on an ovine tibia model. The results from the animal study were subsequently scaled to obtain fracture-risk curves for the human tibia using the cortical thickness ratio. The thickness of the surrounding soft tissue was also taken into account when assessing fracture risk. The lateral cortex of the tibia was found to be most susceptible tofracture,whose impact velocity at 50% risk of EF1+, EF2+, EF3+, and EF4+ fracture types –according to the modified Winquist-Hansen classification –were 174, 190, 212,and 282 m/s respectively. The findings of this study will be used to increase the fidelity of predictive models of projectile penetration.

Journal article

Rankin I, Nguyen TT, Carpanen D, Clasper J, Masouros Set al., 2020, A new understanding of the mechanism of injury to the pelvis and lower limbs in blast, Frontiers in Bioengineering and Biotechnology, Vol: 8, ISSN: 2296-4185

Dismounted complex blast injury (DCBI) has been one of the most severe forms of trauma sustained in recent conflicts. This injury has been partially attributed to limb flail; however, the full causative mechanism has not yet been fully determined. Soil ejecta has been hypothesized as a significant contributor to the injury but remains untested. In this study, a small-animal model of gas-gun mediated high velocity sand blast was used to investigate this mechanism. The results demonstrated a correlation between increasing sand blast velocity and injury patterns of worsening severity across the trauma range. This study is the first to replicate high velocity sand blast and the first model to reproduce the pattern of injury seen in DCBI. These findings are consistent with clinical and battlefield data. They represent a significant change in the understanding of blast injury, producing a new mechanistic theory of traumatic amputation. This mechanism of traumatic amputation is shown to be high velocity sand blast causing the initial tissue disruption, with the following blast wind and resultant limb flail completing the amputation. These findings implicate high velocity sand blast, in addition to limb flail, as a critical mechanism of injury in the dismounted blast casualty.

Journal article

Nguyen TT, Carpanen D, Stinner D, Rankin I, Ramasamy A, Breeze J, Proud W, Clasper J, Masouros Set al., 2020, The risk of fracture to the tibia from a fragment simulating projectile, Journal of The Mechanical Behavior of Biomedical Materials, Vol: 102, ISSN: 1751-6161

Penetrating injuries due to fragments energised by an explosive event are life threatening and are associated with poor clinical and functional outcomes. The tibia is the long bone most affected in survivors of explosive events, yet the risk of penetrating injury to it has not been quantified. In this study, an injury-risk assessment of penetrating injury to the tibia was conducted using a gas-gun system with a 0.78-g cylindrical fragment simulating projectile. An ovine tibia model was used to generate the injury-risk curves and human cadaveric tests were conducted to validate and scale the results of the ovine model. The impact velocity at 50% risk (±95% confidence intervals) for EF1+, EF2+, EF3+, and EF4+ fractures to the human tibia – using the modified Winquist-Hansen classification – was 271 ± 30, 363 ± 46, 459 ± 102, and 936 ± 182 m/s, respectively. The scaling factor for the impact velocity from cadaveric ovine to human was 2.5. These findings define the protection thresholds to improve the injury outcomes for fragment penetrating injury to the tibia.

Journal article

Boyle C, Carpanen D, Pandelani T, Higgins C, Masen M, Masouros Set al., 2020, Lateral pressure equalisation as a principle for designing support surfaces to prevent deep tissue pressure ulcers, PLoS One, Vol: 15, ISSN: 1932-6203

When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this ‘pressure equalisation’ approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure.A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion (from 113 kPa to 47 kPA) — a greater effect than that achieved by using a more conformable cushion, which reduced von Mises stress to 75 kPa. Combining both a conformable cushion and lateral pressure reduced peak von Mises stresses to 25 kPa. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid.Our results explain the lack of efficacy in current support surfaces and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.

Journal article

Newell N, Carpanen D, Grigoriadis G, Little JP, Masouros Set al., 2019, Material properties of human lumbar intervertebral discs across strain rates, Spine Journal, Vol: 19, Pages: 2013-2024, ISSN: 1529-9430

Background context:The use of finite-element (FE) methods to study the biomechanics of the intervertebral disc (IVD) has increased over recent decades due to their ability to quantify internal stresses and strains throughout the tissue. Their accuracy is dependent upon realistic, strain-rate dependent material properties, which are challenging to acquire. Purpose:The aim of this study was to use the inverse FE technique to characterize the material properties of human lumbar IVDs across strain rates.Study Design:A human cadaveric experimental study coupled with an inverse finite element study.Methods:To predict the structural response of the IVD accurately, the material response of the constituent structures was required. Therefore, compressive experiments were conducted on 16 lumbar IVDs (39 ± 19 years) to obtain the structural response. An FE model of each of these experiments was developed and then run through an inverse FE algorithm to obtain subject-specific constituent material properties, such that the structural response was accurate.Results:Experimentally, a log-linear relationship between IVD stiffness and strain rate was observed. The material properties obtained through the subject-specific inverse FE optimization of the anulus fibrosus (AF) fiber and AF fiber ground matrix allowed a good match between the experimental and FE response. This resulted in a Young’s Modulus of AF fibers (YMAF - MPa) to strain rate (ε ̇ - /s) relationship of YMAF=31.5ln(ε ̇ )+435.5, and the C10 parameter of the Neo-Hookean material model of the AF ground matrix was found to be strain-rate independent with an average value of 0.68 MPa.Conclusions:These material properties can be used to improve the accuracy, and therefore predictive ability of FE models of the spine that are used in a wide range of research areas and clinical applications.Clinical SignificanceFinite element models can be used for many applications including investigating low-back p

Journal article

Rankin IA, Thuy-Tien N, Carpanen D, Clasper JC, Masouros SDet al., 2019, Restricting Lower Limb Flail is Key to Preventing Fatal Pelvic Blast Injury, ANNALS OF BIOMEDICAL ENGINEERING, Vol: 47, Pages: 2232-2240, ISSN: 0090-6964

Journal article

Carpanen D, Kedgley A, Shah D, Edwards D, Plant D, Masouros Set al., 2019, Injury risk of interphalangeal and metacarpophalangeal joints under impact loading, Journal of the Mechanical Behavior of Biomedical Materials, Vol: 97, Pages: 306-311, ISSN: 1751-6161

Injuries to the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the hand are particularly disabling. However, current standards for hand protection from blunt impact are not based on quantitative measures of the likelihood of damage to the tissues. The aim of this study was to evaluate the probability of injury of the MCP and PIP joints of the human hand due to blunt impact.Impact testing was conducted on 21 fresh-frozen cadaveric hands. Unconstrained motion at every joint was allowed. All hands were imaged with computed tomography and dissected post-impact to quantify injury. An injury-risk curve was developed for each joint using a Weibull distribution with dorsal impact force as the predictive variable.The injury risks for PIP joints were similar, as were those for MCP joints. The risk of injury of the MCP joints from a given applied force was significantly greater than that of the PIP joints (p = 0.0006). The axial forces with a 50% injury risk for the MCP and PIP joints were 3.0 and 4.2 kN, respectively.This is the first study to have investigated the injury tolerance of the MCP and PIP joints. The proposed injury curves can be used for assessing the likelihood of tissue damage, for designing targeted protective solutions such as gloves, and for developing more biofidelic standards for assessing these solutions.

Journal article

Newell N, Carpanen D, Evans JH, Pearcy MJ, Masouros SDet al., 2019, Mechanical function of the nucleus pulposus of the intervertebral disc under high rates of loading, Spine, Vol: 44, Pages: 1035-1041, ISSN: 0362-2436

Study Design. Bovine motion segments were used to investigate the high-rate compression response of intervertebral discs (IVD) before and after depressurising the nucleus pulposus (NP) by drilling a hole through the cranial endplate into it.Objective. To investigate the effect of depressurising the NP on the force-displacement response, and the energy absorption in IVDs when compressed at high strain rates.Summary of Background Data. The mechanical function of the gelatinous NP located in the centre of the IVDs of the spine is unclear. Removal of the NP has been shown to affect the direction of bulge of the inner anulus fibrosus (AF), but at low loading rates removal of the NP pressure does not affect the IVD's stiffness. During sports or injurious events, IVDs are commonly exposed to high loading rates, however, no studies have investigated the mechanical function of the NP at these rates.Methods. Eight bovine motion segments were used to quantify the change in pressure caused by a hole drilled through the cranial endplate into the NP, and eight segments were used to investigate the high-rate response before and after a hole was drilled into the NP.Results. The hole caused a 28.5% drop in the NP pressure. No statistically significant difference was seen in peak force, peak displacement, or energy-absorption of the intact and depressurised NP groups under impact loading. The IVDs absorbed 72% of the input energy, and there was no rate dependency in the percentage energy absorbed.Conclusions. These results demonstrate that the NP pressure does not affect the transfer of load through, or energy absorbed by, the IVD at high loading rates and the AF, rather than the NP, may play the most important role in transferring load, and absorbing energy at these rates. This should be considered when attempting surgically to restore IVD function.Level of Evidence: N/A

Journal article

Boyle CJ, Carpanen D, Pandelani T, Higgins CA, Masen MA, Masouros SDet al., 2019, Lateral pressure equalisation as a principle for designing support surfaces to prevent deep tissue pressure ulcers, Publisher: Cold Spring Harbor Laboratory

<jats:title>Abstract</jats:title><jats:p>When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this ‘pressure equalisation’ approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure.</jats:p><jats:p>A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion — a greater effect than that achieved by using a more conformable cushion. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid.</jats:p><jats:p>Our results explain the lack of efficacy in current support surfaces, and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.</jats:p>

Working paper

Nguyen T-T, Pearce AP, Carpanen D, Sory D, Grigoriadis G, Newell N, Clasper J, Bull A, Proud WG, Masouros SDet al., 2019, Experimental platforms to study blast injury, Journal of the Royal Army Medical Corps, Vol: 165, Pages: 33-37, ISSN: 2052-0468

Injuries sustained due to attacks from explosive weapons are multiple in number, complex in nature, and not well characterised. Blast may cause damage to the human body by the direct effect of overpressure, penetration by highly energised fragments, and blunt trauma by violent displacements of the body. The ability to reproduce the injuries of such insults in a well-controlled fashion is essential in order to understand fully the unique mechanism by which they occur, and design better treatment and protection strategies to alleviate the resulting poor long-term outcomes. This paper reports a range of experimental platforms that have been developed for different blast injury models, their working mechanism, and main applications. These platforms include the shock tube, split-Hopkinson bars, the gas gun, drop towers and bespoke underbody blast simulators.

Journal article

Grigoriadis G, Carpanen D, Webster CE, Ramasamy A, Newell N, Masouros SDet al., 2019, Lower limb posture affects the mechanism of injury in under-body blast, Annals of Biomedical Engineering, Vol: 47, Pages: 306-316, ISSN: 0090-6964

Over 80% of wounded Service Members sustain at least one extremity injury. The 'deck-slap' foot, a product of the vehicle's floor rising rapidly when attacked by a mine to injure the limb, has been a signature injury in recent conflicts. Given the frequency and severity of these combat-related extremity injuries, they require the greatest utilisation of resources for treatment, and have caused the greatest number of disabled soldiers during recent conflicts. Most research efforts focus on occupants seated with both tibia-to-femur and tibia-to-foot angles set at 90°; it is unknown whether results obtained from these tests are applicable when alternative seated postures are adopted. To investigate this, lower limbs from anthropometric testing devices (ATDs) and post mortem human subjects (PMHSs) were loaded in three different seated postures using an under-body blast injury simulator. Using metrics that are commonly used for assessing injury, such as the axial force and the revised tibia index, the lower limb of ATDs were found to be insensitive to posture variations while the injuries sustained by the PMHS lower limbs differed in type and severity between postures. This suggests that the mechanism of injury depends on the posture and that this cannot be captured by the current injury criteria. Therefore, great care should be taken when interpreting and extrapolating results, especially in vehicle qualification tests, when postures other than the 90°-90° are of interest.

Journal article

Grigoriadis G, Carpanen D, Webster C, Newell N, Masouros SDet al., 2018, The posture of the lower limb alters the mechanism of injury in under-body blast, International Research Council on the Biomechanics of Injury, IRCOBI, Pages: 758-759, ISSN: 2235-3151

Conference paper

Nguyen TT, Carpanen D, Tear G, Stinner D, Clasper J, Proud W, Masouros Set al., 2018, Fragment Penetrating Injury to the tibia, Personal Armour Systems Symposia 2018

Conference paper

Newell N, Carpanen D, Christou A, Grigoriadis G, Little JP, Masouros SDet al., 2017, Strain rate dependence of internal pressure and external bulge in human intervertebral discs during axial compression, 2017 IRCOBI Conference, Pages: 670-671, ISSN: 2235-3151

Conference paper

Grigoriadis G, Carpanen D, Webster C, Newell N, Masouros SDet al., 2017, The effect of the posture of the lower limb in anti-vehicular explosions, 2017 IRCOBI Conference, Pages: 709-710, ISSN: 2235-3151

Conference paper

Christou A, Grigoriadis G, Carpanen D, Newell N, Masouros SDet al., 2017, Biomechanics of a lumbar functional unit using the finite element method, 2017 IRCOBI Conference, Pages: 668-669, ISSN: 2235-3151

Conference paper

Newell N, Grigoriadis G, Christou A, Carpanen D, Masouros Set al., 2017, Material properties of bovine intervertebral discs across strain rates, Journal of The Mechanical Behavior of Biomedical Materials, Vol: 65, Pages: 824-830, ISSN: 1751-6161

The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3–1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (View the MathML source), the following relationship was derived:View the MathML source. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.

Journal article

Carpanen D, Kedgley AE, Plant D, Masouros SDet al., 2016, The risk of injury of the metacarpophalangeal and interphalangeal joints of the hand, International Research Council on the Biomechanics of Injury, Pages: 902-903

Conference paper

Grigoriadis G, Carpanen D, Bull AMJ, Masouros SDet al., 2016, A finite element model of the foot and ankle for prediction of injury in under-body blast, International Research Council on the Biomechanics of Injury, Publisher: IRCOBI, Pages: 457-458, ISSN: 2235-3151

Conference paper

Grigoriadis G, Newell N, Carpanen D, Christou A, Bull AMJ, Masouros Set al., 2016, Material properties of the heel fat pad across strain rates, Journal of the Mechanical Behavior of Biomedical Materials, Vol: 65, Pages: 398-407, ISSN: 1751-6161

The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150 s−1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast.

Journal article

Carpanen D, Masouros SD, Newell N, 2016, Surrogates of human injury, Blast injury science and engineering, Editors: Bull, Clasper, Mahoney, Publisher: Springer, Pages: 189-199

In this chapter we will explore surrogates that are being used to help in our understanding of the pathophysiology of human injury and of predicting injury risk when exposed to a set loading environment. We will mainly focus on anthropomorphic test devices (ATDs), usually known as dummies. Dummies are physical human surrogates that have been designed to evaluate occupant protection in response to collision. Even though ATDs are classified according to size, age, sex and impact direction, injury assessment in automotive and blast applications is mostly conducted using the adult midsize dummy.

Book chapter

Newell N, Grigoriadis G, Christou A, Carpanen D, Masouros SDet al., 2016, Mechanical characterisation of bovine intervertebral discs at a range of strain rates, Ircobi, Pages: 158-159

Conference paper

Mootanah R, Imhauser CW, Reisse F, Carpanen D, Walker RW, Koff MF, Lenhoff MW, Rozbruch SR, Fragomen AT, Dewan Z, Kirane YM, Cheah K, Dowell JK, Hillstrom HJet al., 2014, Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis, COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, Vol: 17, Pages: 1502-1517, ISSN: 1025-5842

Journal article

Hassani M, Carpanen D, Tilakaratna P, 2013, How effective is the fluid warming cabinet in providing warm intravenous fluids?, Annual Congress of the Association-of-Anaesthetists-of-Great-Britain-and-Ireland (AAGBI), Publisher: WILEY-BLACKWELL, Pages: 39-39, ISSN: 0003-2409

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00827560&limit=30&person=true