Imperial College London


Faculty of EngineeringDepartment of Chemical Engineering

Research Associate



d.danaci Website




307Roderic Hill BuildingSouth Kensington Campus





David Danaci is a research associate at The Department of Chemical Engineering in the Faculty of Engineering at Imperial College London. His experience includes adsorption, physical chemistry, materials synthesis and characterisation, process modelling and optimisation, techno-economic analysis, and life-cycle analysis. David's research interests include CO2 capture, gas separations, hydrogen production and sustainable fuels.

Work history
David currently works on an EPSRC project, Multiphysics and multiscale modelling for safe and feasible CO2 capture and storage. His work involves the synthesis and characterisation of mid-temperature sorbents and catalysts for sorption-enhanced water-gas shift (SEWGS) reactions.

Previously, David worked on a UKCCSRC project looking at metal-organic frameworks for post-combustion and CO2 capture. This work involved both adsorbent synthesis and characterisation, and adsorption process modelling.

David completed his PhD at The University of Melbourne (2012 - 2018). He worked with the CO2CRC to evaluate adsorbents for high-pressure CO2/CH4 separations from natural gas. His work involved adsorbent synthesis, characterisation, evaluation, and adsorption process modelling.

Further information about David's publication history can be found on his Google Scholar profile.

David is involved with the International Adsorption Society, contributing both to the Education Committee and the Carbon Neutral FOA working group. The Education Committee aims to increase the accessibility of adsorption, and adsorption processes. The Carbon Neutral FOA working group is looking at solutions to reduce the CO2 emissions of the Society's conference (FOA).

David was awarded the Moulton Medal (Junior award) in 2021 for the most meritorious paper published by the IChemE, by an author who has graduated within the last 10 years. For “Exploring the limits of adsorption-based CO2 capture using MOFs with PVSA – from molecular design to process economics” published in Molecular Systems Design and Engineering.

He was also awarded the President’s Award for Excellence in 2021 in the most outstanding assistant supervisor category. This award recognises the contribution made by postdocs towards the supervision of the College’s PhD students.

Below are some resources which may be useful to others. These resources have not been peer-reviewed.

> A perspective piece on supply chains for CCS. Link.
> A series of maps showing the size and distribution of CO2 emission sources in the UK. Link.
> Book chapter on CO2 capture by adsorption (not open access). Link.



L'Hermitte A, Azzan H, Yio MHN, et al., 2023, Effect of surface functionalization on the moisture stability and sorption properties of porous boron nitride, Microporous and Mesoporous Materials, Vol:352, ISSN:1387-1811

Xiong Y, Tian T, L'Hermitte A, et al., 2022, Using silver exchange to achieve high uptake and selectivity for propylene/ propane separation in zeolite Y, Chemical Engineering Journal, Vol:446, ISSN:1385-8947

Osterrieth JWM, Rampersad J, Madden D, et al., 2022, How Reproducible are Surface Areas Calculated from the BET Equation?, Advanced Materials, Vol:34, ISSN:0935-9648

Sunny N, Bernardi A, Danaci D, et al., 2022, A pathway towards net-zero emissions in oil refineries, Frontiers in Chemical Engineering, Vol:4, ISSN:2673-2718

Xiong Y, Woodward RT, Danaci D, et al., 2021, Understanding trade-offs in adsorption capacity, selectivity and kinetics for propylene/propane separation using composites of activated carbon and hypercrosslinked polymer, Chemical Engineering Journal, Vol:426, ISSN:1385-8947

More Publications