Imperial College London

DrDanielaFecht

Faculty of MedicineSchool of Public Health

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 3314d.fecht

 
 
//

Location

 

529Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

126 results found

Garudam Raveendiran A, Thaharullah Shah M, Al Moosawi S, Kusuma D, Harish R, Rajendra P, Venkatasubramanian P, Viswanathan M, Ranjit Mohan A, Fecht Det al., 2023, Associations of the built environment with Type 2 diabetes in Asia: A systematic review, BMJ Open, ISSN: 2044-6055

Journal article

de Preux L, Rizmie D, Fecht D, Gulliver J, Wang Wet al., 2023, Does it measure up? A comparison of pollution exposure assessment techniques applied across hospitals in England, International Journal of Environmental Research and Public Health, Vol: 20, Pages: 1-26, ISSN: 1660-4601

Weighted averages of air pollution measurements from monitoring stations are commonly assigned as air pollution exposures to specific locations. However, monitoring networks are spatially sparse and fail to adequately capture the spatial variability. This may introduce bias and exposure misclassification. Advanced methods of exposure assessment are rarely practicable in estimating daily concentrations over large geographical areas. We propose an accessible method using temporally adjusted land use regression models (daily LUR). We applied this to produce daily concentration estimates for nitrogen dioxide, ozone, and particulate matter in a healthcare setting across England and compared them against geographically extrapolated measurements (inverse distance weighting) from air pollution monitors. The daily LUR estimates outperformed IDW. The precision gains varied across air pollutants, suggesting that, for nitrogen dioxide and particulate matter, the health effects may be underestimated. The results emphasised the importance of spatial heterogeneity in investigating the societal impacts of air pollution, illustrating improvements achievable at a lower computational cost.

Journal article

Karamanos A, Lu Y, Mudway IS, Ayis S, Kelly FJ, Beevers SD, Dajnak D, Fecht D, Elia C, Tandon S, Webb AJ, Grande AJ, Molaodi OR, Maynard MJ, Cruickshank JK, Harding Set al., 2023, Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England, PLoS One, Vol: 18, Pages: 1-18, ISSN: 1932-6203

Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11–13 to 14–16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11–13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.

Journal article

Chen K, Klompmaker JO, Roscoe CJ, Nguyen LH, Drew DA, James P, Laden F, Fecht D, Wang W, Gulliver J, Wolf J, Steves CJ, Spector TD, Chan AT, Hart JEet al., 2023, Associations between greenness and predicted COVID-19-like illness incidence in the United States and the United Kingdom, Environmental Epidemiology, Vol: 7, ISSN: 2474-7882

UNLABELLED: Green spaces may be protective against COVID-19 incidence. They may provide outdoor, ventilated, settings for physical and social activities and therefore decrease transmission risk. We examined the association between neighborhood greenness and COVID-19-like illness incidence using individual-level data. METHODS: The study population includes participants enrolled in the COVID Symptom Study smartphone application in the United Kingdom and the United States (March-November 2020). All participants were encouraged to report their current health condition and suspected risk factors for COVID-19. We used a validated symptom-based classifier that predicts COVID-19-like illness. We estimated the Normalized Difference Vegetation Index (NDVI), for each participant's reported neighborhood of residence for each month, using images from Landsat 8 (30 m2). We used time-varying Cox proportional hazards models stratified by age, country, and calendar month at study entry and adjusted for the individual- and neighborhood-level risk factors. RESULTS: We observed 143,340 cases of predicted COVID-19-like illness among 2,794,029 participants. Neighborhood NDVI was associated with a decreased risk of predicted COVID-19-like illness incidence in the fully adjusted model (hazard ratio = 0.965, 95% confidence interval = 0.960, 0.970, per 0.1 NDVI increase). Stratified analyses showed protective associations among U.K. participants but not among U.S. participants. Associations were slightly stronger for White individuals, for individuals living in rural neighborhoods, and for individuals living in high-income neighborhoods compared to individuals living in low-income neighborhoods. CONCLUSIONS: Higher levels of greenness may reduce the risk of predicted COVID-19-like illness incidence, but these associations were not observed in all populations.

Journal article

Bennett J, Rashid T, Zolfaghari A, Doyle Y, Suel E, Pearson-Stuttard J, Davies B, Fecht D, Muller ES, Nathvani RS, Sportiche N, Daby H, Johnson E, Li G, Flaxman S, Toledano M, Asaria M, Ezzati Met al., 2023, Changes in life expectancy and house prices in London from 2002 to 2019: Hyper-resolution spatiotemporal analysis of death registration and real estate data, The Lancet Regional Health Europe, ISSN: 2666-7762

Background:London has outperformed smaller towns and rural areas in terms of life expectancy increase. Our aim was to investigate life expectancy change at very-small-area level, and its relationship with house prices and their change.Methods:We performed a hyper-resolution spatiotemporal analysis from 2002 to 2019 for 4835 London Lower-layer Super Output Areas (LSOAs). We used population and death counts in a Bayesian hierarchical model to estimate age- and sex-specific death rates for each LSOA, converted to life expectancy at birth using life table methods. We used data from the Land Registry via the real estate website Rightmove (www.rightmove.co.uk), with information on property size, type and land tenure in a hierarchical model to estimate house prices at LSOA level. We used linear regressions to summarise how much life expectancy changed in relation to the combination of house prices in 2002 and their change from 2002 to 2019. We calculated the correlation between change in price and change in sociodemographic characteristics of the resident population of LSOAs and population turnover.Findings:In 134 (2.8%) of London's LSOAs for women and 32 (0.7%) for men, life expectancy may have declined from 2002 to 2019, with a posterior probability of a decline >80% in 41 (0.8%, women) and 14 (0.3%, men) LSOAs. The life expectancy increase in other LSOAs ranged from <2 years in 537 (11.1%) LSOAs for women and 214 (4.4%) for men to >10 years in 220 (4.6%) for women and 211 (4.4%) for men. The 2.5th-97.5th-percentile life expectancy difference across LSOAs increased from 11.1 (10.7–11.5) years in 2002 to 19.1 (18.4–19.7) years for women in 2019, and from 11.6 (11.3–12.0) years to 17.2 (16.7–17.8) years for men. In the 20% (men) and 30% (women) of LSOAs where house prices had been lowest in 2002, mainly in east and outer west London, life expectancy increased only in proportion to the rise in house prices. In contrast, in the 30% (men) and

Journal article

Cole-Hunter T, Zhang J, So R, Samoli E, Liu S, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, Remfry E, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hoffmann B, Hvidtfeldt UA, Jöckel K-H, Mortensen LH, Ketzel M, Yacamán Méndez D, Leander K, Ljungman P, Faure E, Lee P-C, Elbaz A, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, Vermeulen RCH, Schramm S, Stafoggia M, Katsouyanni K, Brunekreef B, Hoek G, Lim Y-H, Andersen ZJet al., 2023, Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort: An ELAPSE study, Environment International, Vol: 171, ISSN: 0160-4120

BACKGROUND: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS: Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01-1.55), NO2 (1.13; 0.95-1.34 per 10 µg/m3), and BC (1.12; 0.94-1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58-0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium c

Journal article

Hvidtfeldt UA, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann BH, Katsouyanni K, Ketzel M, Brynedal B, Leander K, Ljungman PLS, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Boutron-Ruault M-C, Samoli E, So R, Stafoggia M, Tjonneland A, Vermeulen R, Verschuren WMM, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen Oet al., 2023, Breast cancer incidence in relation to long-term low-level exposure to air pollution in the ELAPSE pooled cohort, Cancer Epidemiology, Biomarkers and Prevention, Vol: 32, Pages: 105-113, ISSN: 1055-9965

Background:Established risk factors for breast cancer include genetic disposition, reproductive factors, hormone therapy, and lifestyle-related factors such as alcohol consumption, physical inactivity, smoking, and obesity. More recently a role of environmental exposures, including air pollution, has also been suggested. The aim of this study, was to investigate the relationship between long-term air pollution exposure and breast cancer incidence.Methods:We conducted a pooled analysis among six European cohorts (n = 199,719) on the association between long-term residential levels of ambient nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone in the warm season (O3) and breast cancer incidence in women. The selected cohorts represented the lower range of air pollutant concentrations in Europe. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level.Results:During 3,592,885 person-years of follow-up, we observed a total of 9,659 incident breast cancer cases. The results of the fully adjusted linear analyses showed a HR (95% confidence interval) of 1.03 (1.00–1.06) per 10 μg/m³ NO2, 1.06 (1.01–1.11) per 5 μg/m³ PM2.5, 1.03 (0.99–1.06) per 0.5 10−5 m−1 BC, and 0.98 (0.94–1.01) per 10 μg/m³ O3. The effect estimates were most pronounced in the group of middle-aged women (50–54 years) and among never smokers.Conclusions:The results were in support of an association between especially PM2.5 and breast cancer.Impact:The findings of this study suggest a role of exposure to NO2, PM2.5, and BC in development of breast cancer.

Journal article

Hvidtfeldt UA, Taj T, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Ljungman P, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Samoli E, So R, Stafoggia M, Tjønneland A, Vermeulen R, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen Oet al., 2022, Long term exposure to air pollution and kidney parenchyma cancer - Effects of low-level air pollution: a Study in Europe (ELAPSE), Environmental Research, Vol: 215, ISSN: 0013-9351

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 μg/m3 (12.8-39.2), 15.3 μg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 μg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 μg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 μg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 μg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.

Journal article

Andersen ZJ, Zhang J, Jorgensen JT, Samoli E, Liu S, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, Remfry E, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Joeckel K-H, So R, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault M-C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, van der Schouw YT, Schramm S, Stafoggia M, Katsouyanni K, Brunekreef B, Hoek G, Lim Y-Het al., 2022, Long-term exposure to air pollution and mortality from dementia, psychiatric disorders, and suicide in a large pooled European cohort: ELAPSE study, Environment International, Vol: 170, ISSN: 0160-4120

Ambient air pollution is an established risk factor for premature mortality from chronic cardiovascular, respiratory and metabolic diseases, while evidence on neurodegenerative diseases and psychiatric disorders remains limited. We examined the association between long-term exposure to air pollution and mortality from dementia, psychiatric disorders, and suicide in seven European cohorts. Within the multicenter project ‘Effects of Low-Level Air Pollution: A Study in Europe’ (ELAPSE), we pooled data from seven European cohorts from six countries. Based on the residential addresses, annual mean levels of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), ozone (O3), and 8 PM2.5 components were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and mortality from dementia, psychiatric disorders, and suicide. Of 271,720 participants, 900 died from dementia, 241 from psychiatric disorders, and 164 from suicide, during a mean follow-up of 19.7 years. In fully adjusted models, we observed positive associations of NO2 (hazard ratio [HR] = 1.38; 95 % confidence interval [CI]: 1.13, 1.70 per 10 µg/m3), PM2.5 (HR = 1.29; 95 % CI: 0.98, 1.71 per 5 µg/m3), and BC (HR = 1.37; 95 % CI: 1.11, 1.69 per 0.5 × 10−5/m) with psychiatric disorders mortality, as well as with suicide (NO2: HR = 1.13 [95 % CI: 0.92, 1.38]; PM2.5: HR = 1.19 [95 % CI: 0.76, 1.87]; BC: HR = 1.08 [95 % CI: 0.87, 1.35]), and no association with dementia mortality. We did not detect any positive associations of O3 and 8 PM2.5 components with any of the three mortality outcomes. Long-term exposure to NO2, PM2.5, and BC may lead to premature mortality from psychiatric disorders and suicide.

Journal article

Roca-Barcelo A, Fecht D, Pirani M, Piel FB, Nardocci AC, Vineis Pet al., 2022, Trends in temperature-associated mortality in Sao Paulo (Brazil) between 2000 and 2018: an example of disparities in adaptation to cold and heat, Journal of Urban Health: Bulletin of the New York Academy of Medicine, Vol: 99, Pages: 1012-1026, ISSN: 1099-3460

Exposure to non-optimal temperatures remains the single most deathful direct climate change impact to health. The risk varies based on the adaptation capacity of the exposed population which can be driven by climatic and/or non-climatic factors subject to fluctuations over time. We investigated temporal changes in the exposure–response relationship between daily mean temperature and mortality by cause of death, sex, age, and ethnicity in the megacity of São Paulo, Brazil (2000–2018). We fitted a quasi-Poisson regression model with time-varying distributed-lag non-linear model (tv-DLNM) to obtain annual estimates. We used two indicators of adaptation: trends in the annual minimum mortality temperature (MMT), i.e., temperature at which the mortality rate is the lowest, and in the cumulative relative risk (cRR) associated with extreme cold and heat. Finally, we evaluated their association with annual mean temperature and annual extreme cold and heat, respectively to assess the role of climatic and non-climatic drivers. In total, we investigated 4,471,000 deaths from non-external causes. We found significant temporal trends for both the MMT and cRR indicators. The former was decoupled from changes in AMT, whereas the latter showed some degree of alignment with extreme heat and cold, suggesting the role of both climatic and non-climatic adaptation drivers. Finally, changes in MMT and cRR varied substantially by sex, age, and ethnicity, exposing disparities in the adaptation capacity of these population groups. Our findings support the need for group-specific interventions and regular monitoring of the health risk to non-optimal temperatures to inform urban public health policies.

Journal article

Chamberlain RC, Fecht D, Davies B, Laverty AAet al., 2022, Effects of low emission zones and congestion charging zones on physical health outcomes: a systematic review.

BACKGROUND: Road traffic impacts human health through air pollution and road safety issues. Low emission zones (LEZs) and congestion charging zones (CCZs) have therefore been implemented in several cities globally. We systematically reviewed the evidence on the effects of these pollution or congestion reduction schemes on specific physical health outcomes associated with air pollution or traffic exposure. METHODS: We searched MEDLINE, Embase, Web of Science, IDEAS, Greenfile, and TRID databases from database inception to Feb 22, 2022, using search terms such as "low emission/congestion charge/zone" and "cardiovascular/respiratory/injury". Searches were limited to English-language records. We included studies that evaluated the effect of a LEZ or CCZ on air pollution-related outcomes (ie, cardiovascular disease, respiratory disease, birth outcomes, dementia, lung cancer, diabetes) or road traffic injuries, using longitudinal study designs. We excluded studies without empirical health data. Two authors independently assessed papers for inclusion. Results were narratively synthesised and summarised using harvest plots. Risk of bias was assessed using the Graphic Appraisal Tool for Epidemiological studies for correlation studies. This systematic review was registered with PROSPERO, number CRD42022311453. FINDINGS: Of 2068 post-deduplication records screened, fifteen studies were included, with two further studies included from references of eligible studies. Nine (53%) of 17 studies assessed LEZs in London, Milan, Tokyo, and several German cities, seven (41%) assessed the London CCZ, and one (6%) assessed the Stockholm CCZ. Each predefined health outcome was considered by at least one study. Six (75%) of eight LEZ studies considering pollution-related outcomes identified reductions in at least one outcome, with all five on cardiovascular disease identifying reductions for at least one disease subcategory. Of seven London CCZ studies, six (86%) report

Poster

Chamberlain RC, Fecht D, Davies B, Laverty AAet al., 2022, Effects of low emission zones and congestion charging zones on physical health outcomes: a systematic review., Lancet, Vol: 400 Suppl 1

BACKGROUND: Road traffic impacts human health through air pollution and road safety issues. Low emission zones (LEZs) and congestion charging zones (CCZs) have therefore been implemented in several cities globally. We systematically reviewed the evidence on the effects of these pollution or congestion reduction schemes on specific physical health outcomes associated with air pollution or traffic exposure. METHODS: We searched MEDLINE, Embase, Web of Science, IDEAS, Greenfile, and TRID databases from database inception to Feb 22, 2022, using search terms such as "low emission/congestion charge/zone" and "cardiovascular/respiratory/injury". Searches were limited to English-language records. We included studies that evaluated the effect of a LEZ or CCZ on air pollution-related outcomes (ie, cardiovascular disease, respiratory disease, birth outcomes, dementia, lung cancer, diabetes) or road traffic injuries, using longitudinal study designs. We excluded studies without empirical health data. Two authors independently assessed papers for inclusion. Results were narratively synthesised and summarised using harvest plots. Risk of bias was assessed using the Graphic Appraisal Tool for Epidemiological studies for correlation studies. This systematic review was registered with PROSPERO, number CRD42022311453. FINDINGS: Of 2068 post-deduplication records screened, fifteen studies were included, with two further studies included from references of eligible studies. Nine (53%) of 17 studies assessed LEZs in London, Milan, Tokyo, and several German cities, seven (41%) assessed the London CCZ, and one (6%) assessed the Stockholm CCZ. Each predefined health outcome was considered by at least one study. Six (75%) of eight LEZ studies considering pollution-related outcomes identified reductions in at least one outcome, with all five on cardiovascular disease identifying reductions for at least one disease subcategory. Of seven London CCZ studies, six (86%) report

Journal article

Asaria P, Bennett J, Elliott P, Rashid T, Daby H, Douglass M, Francis D, Fecht D, Ezzati Met al., 2022, Contributions of event rates, pre-hospital deaths and hospital case fatality to variations in myocardial infarction mortality in 326 districts in England: spatial analysis of linked hospitalisation and mortality data, The Lancet Public Health, Vol: 7, Pages: e813-e824, ISSN: 2468-2667

Background: Myocardial infarction (MI) mortality varies substantially within high-income countries. There is limited guidance on what interventions – primary and secondary prevention and/or improving care pathways and quality – can reduce and equalise MI mortality. Our aimwas to understand the contribution of incidence (event rate), pre-hospital deaths and hospital case-fatality, to how MI mortality varies within England.Methods: We used linked data on hospitalisation and deaths from 2015-2018 with geographical identifiers to estimate MI death and event rates, pre-hospital deaths and hospital case fatality for men and women aged 45 years and older in 326 districts in England. Data were analysed in a Bayesian spatial model that accounted for similarities and differences inspatial patterns of fatal and non-fatal MI. Results: The 99th to 1st percentile ratio of age-standardised MI death rate was 2.63 (95% credible interval 2.45-2.83) in women and 2.56 (2.37-2.76) in men across districts, with death rate highest in north of England. The main contributor to this variation was MI event rate, with a 99th to 1st percentile ratio of 2.55 (2.39-2.72) (women) and 2.17 (2.08-2.27) (men) across districts. Pre-hospital mortality was greater than hospital case fatality in every district. Prehospital mortality had a 99th to 1st percentile ratio 1.60 (1.50-1.70) in women and 1.75 (1.66-1.86) in men across districts and made a greater contribution to case-fatality variation thanhospital case fatality which had a 99th to 1st percentile ratio of 1.39 (1.29-1.49) (women) and1.49 (1.39-1.60) (men). The contribution of case fatality to variation in deaths across districtswas largest in middle ages. Pre-hospital mortality was slightly higher in men than women inmost districts and age groups, whereas hospital case fatality was higher in women in virtuallyall districts at ages up to and including 65-74 years; after this age, it became similar betweenthe sexes.3Interpretation: Mos

Journal article

Cruz-Piedrahita C, Roscoe C, Howe C, Fecht D, de Nazelle Aet al., 2022, Holistic approach to assess the association between the synergistic effect of physical activity, exposure to greenspace, and fruits and vegetable intake on health and wellbeing: Cross-sectional analysis of UK Biobank, Frontiers in Public Health, Vol: 10, Pages: 1-16, ISSN: 2296-2565

Background: Urban agriculture has been shown to contribute to healthy lifestyle behaviors, such as increased fruit and vegetable intake and greater exposure to greenspaces and there is plenty of evidence linking these lifestyle behaviors to better health and wellbeing. However, most evidence relates to assessing one behavior at a time despite available epidemiological research showing how the combined effects of multiple behaviors are associated with health and wellbeing. This research aims to examine the association of the interactions between various lifestyle behaviors and exposures related to urban agriculture and health and wellbeing.Methods: We used data from the UK Biobank baseline questionnaire (N~500, 000) to assess the association of two lifestyle behaviors (fruit and vegetable intake and physical activity) and greenspace exposure, with four health and wellbeing markers (blood pressure, BMI, self-health assessment, and self-reported loneliness) independently, and in combination. Associations between lifestyle behaviors, greenspace exposure, and the possible interactions with health and wellbeing were explored using general linear models (GLMs), adjusted for socio-demographic confounders including age, sex, educational qualifications, index of multiple deprivation, and ethnicity, and a lifestyle confounder: smoking status.Results: After removing missing data, as well as participants who did not meet the inclusion criteria, the final study sample was n = 204,478. The results indicate that meeting recommended levels of the World Health Organization (WHO) for fruits and vegetable intake, and the advice from the UK Chief Medical Officer for physical activity, is linked to better health and wellbeing markers. We found that UK Biobank participants who lived in greener areas and were physically active were more likely to feel alone and think their health was poor. Participants who were physically active and met the recommended intake of fruits and vegetables were

Journal article

Roscoe C, Mackay C, Gulliver J, Hodgson S, Cai Y, Vineis P, Fecht Det al., 2022, Associations of private residential gardens versus other greenspace types with cardiovascular and respiratory disease mortality: observational evidence from UK Biobank, Environment International, Vol: 167, ISSN: 0160-4120

BackgroundLongitudinal evidence linking urban greenspace to reduced rates of all-cause and cause-specific mortality has mostly been established using greenness measures of limited specificity such as vegetation indices. Evidence on specific green space types, including private residential gardens is less well established.MethodsWe examined associations of greenspace with all-cause, non-injury, cardiovascular disease (CVD) and respiratory disease deaths in UK Biobank – a national prospective cohort of adults with linked Office for National Statistics mortality records. We included private residential gardens and other greenspace types e.g. public parks, sport facilities, using categories from Ordnance Survey MasterMap™ Greenspace. We used Cox proportional hazards models, adjusted for individual and area-level covariates, and stratified analyses by sex, household income, and area-level deprivation. In sensitivity analyses, we further adjusted for air pollution, road-traffic noise, indirect tobacco smoke exposure, and physical activity, and restricted analyses to non-movers.ResultsIn 232,926 participants, we observed 13,586 all-cause, 13,159 non-injury, 2,796 cardiovascular (CVD), and 968 respiratory disease deaths. Private residential garden cover showed inverse associations with all-cause, non-injury, CVD, and chronic respiratory disease mortality, after adjustment for covariates and other types of greenspace, with hazard ratios and 95% confidence intervals of 0.94 (0.91, 0.97), 0.95 (0.92, 0.97), 0.92 (0.86, 0.98) and 0.87 (0.78, 0.98), respectively, per interquartile range (IQR) increase in private residential garden cover (IQR = 21.6% increase within 100 m buffer). Other greenspace types showed weaker inverse associations with CVD and chronic respiratory disease mortality than private residential gardens. Sex, household income, and area level deprivation modified associations. Findings were robust to sensitivity analyses.ConclusionOur finding that priv

Journal article

Bereziartua A, Chen J, de Hoogh K, Rodopoulou S, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Joeckel K-H, Jorgensen JT, Katsouyanni K, Ketzel M, Krog NH, Brynedal B, Leander K, Liu S, Ljungman P, Faure E, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Renzi M, Rizzuto D, Samoli E, van der Schouw YT, Schramm S, Severi G, Stafoggia M, Strak M, Sorensen M, Tjonneland A, Weinmayr G, Wolf K, Zitt E, Brunekreef B, Hoek Get al., 2022, Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort, Environment International, Vol: 166, Pages: 1-13, ISSN: 0160-4120

BackgroundThe majority of studies have shown higher greenness exposure associated with reduced mortality risks, but few controlled for spatially correlated air pollution and traffic noise exposures. We aim to address this research gap in the ELAPSE pooled cohort.MethodsMean Normalized Difference Vegetation Index (NDVI) in a 300-m grid cell and 1-km radius were assigned to participants’ baseline home addresses as a measure of surrounding greenness exposure. We used Cox proportional hazards models to estimate the association of NDVI exposure with natural-cause and cause-specific mortality, adjusting for a number of potential confounders including socioeconomic status and lifestyle factors at individual and area-levels. We further assessed the associations between greenness exposure and mortality after adjusting for fine particulate matter (PM2.5), nitrogen dioxide (NO2) and road traffic noise.ResultsThe pooled study population comprised 327,388 individuals who experienced 47,179 natural-cause deaths during 6,374,370 person-years of follow-up. The mean NDVI in the pooled cohort was 0.33 (SD 0.1) and 0.34 (SD 0.1) in the 300-m grid and 1-km buffer. In the main fully adjusted model, 0.1 unit increment of NDVI inside 300-m grid was associated with 5% lower risk of natural-cause mortality (Hazard Ratio (HR) 0.95 (95% CI: 0.94, 0.96)). The associations attenuated after adjustment for air pollution [HR (95% CI): 0.97 (0.96, 0.98) adjusted for PM2.5; 0.98 (0.96, 0.99) adjusted for NO2]. Additional adjustment for traffic noise hardly affected the associations. Consistent results were observed for NDVI within 1-km buffer. After adjustment for air pollution, NDVI was inversely associated with diabetes, respiratory and lung cancer mortality, yet with wider 95% confidence intervals. No association with cardiovascular mortality was found.ConclusionsWe found a significant inverse association between surrounding greenness and natural-cause mortality, which remained after adjust

Journal article

Wang W, Fecht D, Beevers S, Gulliver Jet al., 2022, Predicting daily concentrations of nitrogen dioxide, particulate matter and ozone at fine spatial scale in Great Britain, Atmospheric Pollution Research, Vol: 13, Pages: 101506-101506, ISSN: 1309-1042

Short-term exposure studies have often relied on time-series of air pollution measurements from monitoring sites. However, this approach does not capture short-term changes in spatial contrasts in air pollution. To address this, models representing both the spatial and temporal variability in air pollution have emerged in recent years. Here, we modelled daily average concentrations of nitrogen dioxide (NO2), particulate matter (PM2.5 and PM10) and ozone (O3) on a 25 m grid for Great Britain from 2011 to 2015 using a generalised additive mixed model, with penalised spline smooth functions for covariates. The models included local-scale predictors derived using a Geographic Information System (GIS), daily estimates from a chemical transport model, and daily meteorological characteristics. The models performed well in explaining the variability in daily averaged measured concentrations at 48–85 sites: 63% for NO2, 77% for PM2.5, 80% for PM10 and 85% for O3. Outputs of the study include daily air pollution maps that can be applied in epidemiological studies across Great Britain. Daily concentration values can also be predicted for specific locations, such as residential addresses or schools, and aggregated to other exposure time periods (including weeks, months, or pregnancy trimesters) to facilitate the needs of different health analyses.

Journal article

Sheridan C, Klompmaker J, Cummins S, James P, Fecht D, Roscoe Cet al., 2022, Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: observational evidence from UK Biobank, Environmental Pollution, Vol: 308, ISSN: 0269-7491

Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory testresults were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March – December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006-2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM 2.5) and nitrogen dioxide (NO 2) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08),88respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM 10 were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM 2.5 and NO 2 was associated wit

Journal article

Chen J, Hoek G, de Hoogh K, Rodopoulou S, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel K-H, Jørgensen JT, Katsouyanni K, Ketzel M, Méndez DY, Leander K, Liu S, Ljungman P, Faure E, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, Samoli E, van der Schouw YT, Schramm S, Severi G, Stafoggia M, Strak M, Sørensen M, Tjønneland A, Weinmayr G, Wolf K, Zitt E, Brunekreef B, Thurston GDet al., 2022, Long-term exposure to source-specific fine particles and mortality─a pooled analysis of 14 European cohorts within the ELAPSE Project., Environmental Science and Technology (Washington), Vol: 56, ISSN: 0013-936X

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 μg/m3 increase) across five identified sources. On a 1 μg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.

Journal article

Liu S, Lim Y-H, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel K-H, Jørgensen JT, So R, Amini H, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault M-C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, van der Schouw YT, Schramm S, Sørensen M, Stafoggia M, Tjønneland A, Katsouyanni K, Huang W, Samoli E, Brunekreef B, Hoek G, Andersen ZJet al., 2022, Long-term air pollution exposure and pneumonia related mortality in a large pooled European cohort, American Journal of Respiratory and Critical Care Medicine, Vol: 205, Pages: 1429-1439, ISSN: 1073-449X

RATIONALE: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. OBJECTIVES: We examined the association between long-term exposure to air pollution and pneumonia related mortality in adults in a pool of eight European cohorts. METHODS: Within the multicenter project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3) were estimated using Europe-wide hybrid land use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. MEASUREMENTS AND MAIN RESULTS: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity [hazard ratios: 1.12 (0.99-1.26) per 10 µg/m3 for NO2; 1.10 (0.97-1.24) per 0.5 10-5m-1 for BC]. Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared to normal weight, unemployed, or non-smoking participants. CONCLUSIONS: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.

Journal article

Tayal U, 2022, Exposure to elevated nitrogen dioxide concentrations and cardiac remodelling in patients with dilated cardiomyopathy, Journal of Cardiac Failure, Vol: 28, Pages: 924-934, ISSN: 1071-9164

Rationale: Empirical evidence suggests a strong link between exposure to air pollution and heart failure incidence, hospitalisations and mortality, but the biological basis of this remains unclear. Objective: To determine the relationship between differential air pollution levels and changes in cardiac structure and function in patients with dilated cardiomyopathy. Methods and Results: We undertook a prospective longitudinal observational cohort study of patients in England with dilated cardiomyopathy (enrollment 2009-2015; n=716, 66% male, 85% Caucasian) and conducted cross sectional analysis at the time of study enrollment. Annual average air pollution exposure estimates for nitrogen dioxide (NO2) and particulate matter with diameter ≤ 2.5µm (PM2.5) at enrolment were assigned to each residential postcode (on average 12 households). The relationship between air pollution and cardiac morphology was assessed using linear regression modelling. Greater ambient exposure to NO2 was associated with higher indexed left ventricular mass (4.3 g/m2 increase per interquartile range (IQR) increase in NO2, 95% CI 1.9 to 7.0 g/m2) and lower left ventricular ejection fraction (-1.5% decrease per IQR increase in NO2, 95% CI -2.7 to -0.2%), independent of age, sex, socio-economic status and clinical covariates. The associations were robust to adjustment for smoking status and geographical clustering by postcode area. The effect of air pollution on left ventricular mass was greatest in women. These effects were specific to NO2 exposure. Conclusion: Exposure to air pollution is associated with raised left ventricular mass and lower left ventricular ejection fraction, with the strongest effect in women. Whilst epidemiological associations between air pollution and heart failure have been established and supported by pre-clinical studies, our findings provide novel empirical evidence of cardiac remodelling and exposure to air pollution with important clinical and public health

Journal article

Parkes B, Stafoggia M, Fecht D, Davies B, Bonander C, de Donato F, Michelozzi P, Piel FB, Strömberg U, Blangiardo Met al., 2022, Community factors and excess mortality in the COVID-19 pandemic in England, Italy and Sweden, Publisher: Cold Spring Harbor Laboratory

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Analyses of COVID-19 suggest specific risk factors make communities more or less vulnerable to pandemic related deaths within countries. What is unclear is whether the characteristics affecting vulnerability of small communities within countries produce similar patterns of excess mortality across countries with different demographics and public health responses to the pandemic. Our aim is to quantify community-level variations in excess mortality within England, Italy and Sweden and identify how such spatial variability was driven by community-level characteristics.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We applied a two-stage Bayesian model to quantify inequalities in excess mortality in people aged 40 years and older at the community level in England, Italy and Sweden during the first year of the pandemic (March 2020–February 2021). We used community characteristics measuring deprivation, air pollution, living conditions, population density and movement of people as covariates to quantify their associations with excess mortality.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We found just under half of communities in England (48.1%) and Italy (45.8%) had an excess mortality of over 300 per 100,000 males over the age of 40, while for Sweden that covered 23.1% of communities. We showed that deprivation is a strong predictor of excess mortality across the three countries, and communities with high levels of overcrowding were associated with higher excess mortality in England and Sweden.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>These results highlight some international similarities in factors affecting mortality that will help policy makers target publi

Working paper

Fawi H, Maughan H, Fecht D, Sterrantino A, Lamagni T, Wloch C, de Preux L, Norrish A, Khanduja Vet al., 2022, Seasonality of superficial surgical site infections following joint replacements, Orthopaedic Proceedings, Vol: 104-B, ISSN: 1358-992X

Journal article

Roscoe C, Sheridan C, Geneshka M, Hodgson S, Vineis P, Gulliver J, Fecht Det al., 2022, Green walkability and physical activity in UK biobank: a cross-sectional analysis of adults in Greater London, International Journal of Environmental Research and Public Health, Vol: 19, Pages: 1-15, ISSN: 1660-4601

Urban greenspace provides opportunities for outdoor exercise and may increase physical activity, with accompanying health benefits. Areas suitable for walking (walkability) are also associated with increased physical activity, but interactions with greenspace are poorly understood. We investigated associations of walkability and green walkability with physical activity in an urban adult cohort. We used cross-sectional data from Greater London UK Biobank participants (n = 57,726) and assessed walkability along roads and footpaths within 1000 m of their residential addresses. Additionally, we assessed green walkability by integrating trees and low-lying vegetation into the walkability index. Physical activity outcomes included self-reported and accelerometer-measured physical activity and active transport. We assessed associations using log-linear, logistic and linear regression models, adjusted for individual- and area-level confounders. Higher green walkability was associated with favourable International Physical Activity Questionnaire responses and achievement of weekly UK government physical activity guideline recommendations. Participants living in the highest versus lowest quintile of green walkability participated in 2.41 min (95% confidence intervals: 0.22, 4.60) additional minutes of moderate-and-vigorous physical activity per day. Higher walkability and green walkability scores were also associated with choosing active transport modes such as walking and cycling. Our green walkability approach demonstrates the utility in accounting for walkability and greenspace simultaneously to understand the role of the built environment on physical activity.

Journal article

Chamberlain R, Fecht D, Davies B, Laverty Aet al., 2022, PROSPERO registration: Impacts of Low Emission and Congestion Charging Zones on physical health outcomes: a systematic review.

Other

Chen J, Rodopoulou S, Strak M, de Hoogh K, Taj T, Poulsen AH, Andersen ZJ, Bellander T, Brandt J, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Liu S, Ljungman P, Severi G, Boutron-Ruault M-C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, van der Schouw YT, Samoli E, Sørensen M, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Brunekreef B, Raaschou-Nielsen O, Hoek Get al., 2022, Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project, British Journal of Cancer, Vol: 126, ISSN: 0007-0920

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.

Journal article

Stafoggia M, Oftedal B, Chen J, Rodopoulou S, Renzi M, Atkinson RW, Bauwelinck M, Klompmaker JO, Mehta A, Vienneau D, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, de Hoogh K, Fecht D, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Jöckel K-H, Jørgensen JT, Katsouyanni K, Ketzel M, Kristoffersen DT, Lager A, Leander K, Liu S, Ljungman PLS, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, Schramm S, Schwarze PE, Severi G, Sigsgaard T, Strak M, van der Schouw YT, Verschuren M, Weinmayr G, Wolf K, Zitt E, Samoli E, Forastiere F, Brunekreef B, Hoek G, Janssen NAHet al., 2022, Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project, The Lancet Planetary Health, Vol: 6, Pages: e9-e18, ISSN: 2542-5196

BACKGROUND: Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE). METHODS: In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000-11; follow-up until 2011-17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis. FINDINGS: We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021-1·085) per 5 μg/m3 increment in PM2·5, 1·044 (1·019-1·069) per 10 μg/m3 NO2, and

Journal article

Malacarne D, Chandakas E, Robinson O, Pineda E, Saez M, Chatzi L, Fecht Det al., 2022, The built environment as determinant of childhood obesity: a systematic literature review, Obesity Reviews, Vol: 23, Pages: 1-11, ISSN: 1467-7881

We evaluated the epidemiological evidence on the built environment and its link to childhood obesity, focusing on environmental factors such as traffic noise and air pollution, as well as physical factors potentially driving obesity-related behaviours, such as neighbourhood walkability and availability and accessibility of parks and playgrounds. Eligible studies were i) conducted on human children below the age of 18 years, ii) focused on body size measurements in childhood, iii) examined at least one built environment characteristic, iv) reported effect sizes and associated confidence intervals, and v) were published in English language. A z-Test, as alternative to the meta-analysis, was used to quantify associations due to heterogeneity in exposure and outcome definition. We found strong evidence for an association of traffic-related air pollution (nitrogen dioxide and nitrogen oxides exposure; p<0.001) and built environment characteristics supportive of walking (street intersection density; p<0.01 and access to parks; p<0.001) with childhood obesity. We identified a lack of studies which account for interactions between different built environment exposures or verify the role and mechanism of important effect modifiers such as age.

Journal article

So R, Chen J, Mehta AJ, Liu S, Strak M, Wolf K, Hvidtfeldt UA, Rodopoulou S, Stafoggia M, Klompmaker JO, Samoli E, Raaschou-Nielsen O, Atkinson R, Bauwelinck M, Bellander T, Boutron-Ruault M-C, Brandt J, Brunekreef B, Cesaroni G, Concin H, Forastiere F, van Gils CH, Gulliver J, Hertel O, Hoffmann B, de Hoogh K, Janssen N, Lim Y-H, Westendorp R, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Lang A, Ljungman PL, Magnusson PKE, Nagel G, Simonsen MK, Pershagen G, Peter RS, Peters A, Renzi M, Rizzuto D, Sigsgaard T, Vienneau D, Weinmayr G, Severi G, Fecht D, Tjønneland A, Leander K, Hoek G, Andersen ZJet al., 2021, Long-term exposure to air pollution and liver cancer incidence in six European cohorts, International Journal of Cancer, Vol: 149, Pages: 1887-1897, ISSN: 0020-7136

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the 'Effects of low-level air pollution: A study in Europe' (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter < 2.5 μm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330,064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 μg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 μg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards. This article is protected by copyright. All rights reserved.

Journal article

Stratakis N, Rock S, La Merrill MA, Saez M, Robinson O, Fecht D, Vrijheid M, Valvi D, Conti DV, McConnell R, Chatzi VLet al., 2021, Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies, Obesity Reviews, Vol: 23, Pages: 1-16, ISSN: 1467-7881

We conducted a systematic review and meta-analysis of the associations between prenatal exposure to persistent organic pollutants (POPs) and childhood obesity. We focused on organochlorines (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB], and polychlorinated biphenyls [PCBs]), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and polybrominated diphenyl ethers (PBDEs) that are the POPs more widely studied in environmental birth cohorts so far. We search two databases (PubMed and Embase) through July/09/2021 and identified 33 studies reporting associations with prenatal organochlorine exposure, 21 studies reporting associations with prenatal PFAS, and five studies reporting associations with prenatal PBDEs. We conducted a qualitative review. Additionally, we performed random-effects meta-analyses of POP exposures, with data estimates from at least three prospective studies, and BMI-z. Prenatal DDE and HCB levels were associated with higher BMI z-score in childhood (beta: 0.12, 95% CI: 0.03, 0.21; I2 : 28.1% per study-specific log increase of DDE and beta: 0.31, 95% CI: 0.09, 0.53; I2 : 31.9% per study-specific log increase of HCB). No significant associations between PCB-153, PFOA, PFOS, or pentaPBDEs with childhood BMI were found in meta-analyses. In individual studies, there was inconclusive evidence that POP levels were positively associated with other obesity indicators (e.g., waist circumference).

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00397773&limit=30&person=true