Imperial College London

DrDanielaFecht

Faculty of MedicineSchool of Public Health

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 3314d.fecht

 
 
//

Location

 

529Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

118 results found

Andersen ZJ, Zhang J, Jorgensen JT, Samoli E, Liu S, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, Remfry E, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Joeckel K-H, So R, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault M-C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, van der Schouw YT, Schramm S, Stafoggia M, Katsouyanni K, Brunekreef B, Hoek G, Lim Y-Het al., 2022, Long-term exposure to air pollution and mortality from dementia, psychiatric disorders, and suicide in a large pooled European cohort: ELAPSE study, ENVIRONMENT INTERNATIONAL, Vol: 170, ISSN: 0160-4120

Journal article

Hvidtfeldt UA, Taj T, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Ljungman P, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Samoli E, So R, Stafoggia M, Tjønneland A, Vermeulen R, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen Oet al., 2022, Long term exposure to air pollution and kidney parenchyma cancer - Effects of low-level air pollution: a Study in Europe (ELAPSE), Environmental Research, Vol: 215, ISSN: 0013-9351

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 μg/m3 (12.8-39.2), 15.3 μg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 μg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 μg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 μg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 μg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.

Journal article

Roca-Barcelo A, Fecht D, Pirani M, Piel FB, Nardocci AC, Vineis Pet al., 2022, Trends in Temperature-associated Mortality in Sao Paulo (Brazil) between 2000 and 2018: an Example of Disparities in Adaptation to Cold and Heat, JOURNAL OF URBAN HEALTH-BULLETIN OF THE NEW YORK ACADEMY OF MEDICINE, ISSN: 1099-3460

Journal article

Chamberlain RC, Fecht D, Davies B, Laverty AAet al., 2022, Effects of low emission zones and congestion charging zones on physical health outcomes: a systematic review., Lancet, Vol: 400 Suppl 1

BACKGROUND: Road traffic impacts human health through air pollution and road safety issues. Low emission zones (LEZs) and congestion charging zones (CCZs) have therefore been implemented in several cities globally. We systematically reviewed the evidence on the effects of these pollution or congestion reduction schemes on specific physical health outcomes associated with air pollution or traffic exposure. METHODS: We searched MEDLINE, Embase, Web of Science, IDEAS, Greenfile, and TRID databases from database inception to Feb 22, 2022, using search terms such as "low emission/congestion charge/zone" and "cardiovascular/respiratory/injury". Searches were limited to English-language records. We included studies that evaluated the effect of a LEZ or CCZ on air pollution-related outcomes (ie, cardiovascular disease, respiratory disease, birth outcomes, dementia, lung cancer, diabetes) or road traffic injuries, using longitudinal study designs. We excluded studies without empirical health data. Two authors independently assessed papers for inclusion. Results were narratively synthesised and summarised using harvest plots. Risk of bias was assessed using the Graphic Appraisal Tool for Epidemiological studies for correlation studies. This systematic review was registered with PROSPERO, number CRD42022311453. FINDINGS: Of 2068 post-deduplication records screened, fifteen studies were included, with two further studies included from references of eligible studies. Nine (53%) of 17 studies assessed LEZs in London, Milan, Tokyo, and several German cities, seven (41%) assessed the London CCZ, and one (6%) assessed the Stockholm CCZ. Each predefined health outcome was considered by at least one study. Six (75%) of eight LEZ studies considering pollution-related outcomes identified reductions in at least one outcome, with all five on cardiovascular disease identifying reductions for at least one disease subcategory. Of seven London CCZ studies, six (86%) report

Journal article

Hvidtfeldt UA, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann BH, Katsouyanni K, Ketzel M, Brynedal B, Leander K, Ljungman PLS, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Boutron-Ruault M-C, Samoli E, So R, Stafoggia M, Tjønneland A, Vermeulen R, Verschuren WMM, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen Oet al., 2022, Breast cancer incidence in relation to long-term low-level exposure to air pollution in the ELAPSE pooled cohort., Cancer Epidemiol Biomarkers Prev

BACKGROUND: Established risk factors for breast cancer include genetic disposition, reproductive factors, hormone therapy, and lifestyle-related factors such as alcohol consumption, physical inactivity, smoking, and obesity. More recently a role of environmental exposures, including air pollution, has also been suggested. The aim of this study, was to investigate the relationship between long-term air pollution exposure and breast cancer incidence. METHODS: We conducted a pooled analysis among six European cohorts (n=199,719) on the association between long-term residential levels of ambient nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone in the warm season (O3) and breast cancer incidence in women. The selected cohorts represented the lower range of air pollutant concentrations in Europe. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 3,592,885 person-years of follow-up, we observed a total of 9,659 incident breast cancer cases. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.03 (1.00, 1.06) per 10 μg/m³ NO2, 1.06 (1.01, 1.11) per 5 μg/m³ PM2.5, 1.03 (0.99, 1.06) per 0.5 10-5m-1 BC, and 0.98 (0.94, 1.01) per 10 μg/m³ O3. The effect estimates were most pronounced in the group of middle-aged women (50-54 years) and among never smokers. CONCLUSIONS: The results were in support of an association between especially PM2.5 and breast cancer. IMPACT: The findings of this study suggest a role of exposure to NO2, PM2.5 and BC in development of breast cancer.

Journal article

Asaria P, Bennett J, Elliott P, Rashid T, Daby H, Douglass M, Francis D, Fecht D, Ezzati Met al., 2022, Contributions of event rates, pre-hospital deaths and hospital case fatality to variations in myocardial infarction mortality in 326 districts in England: spatial analysis of linked hospitalisation and mortality data, The Lancet Public Health, Vol: 7, Pages: e813-e824, ISSN: 2468-2667

Background: Myocardial infarction (MI) mortality varies substantially within high-income countries. There is limited guidance on what interventions – primary and secondary prevention and/or improving care pathways and quality – can reduce and equalise MI mortality. Our aimwas to understand the contribution of incidence (event rate), pre-hospital deaths and hospital case-fatality, to how MI mortality varies within England.Methods: We used linked data on hospitalisation and deaths from 2015-2018 with geographical identifiers to estimate MI death and event rates, pre-hospital deaths and hospital case fatality for men and women aged 45 years and older in 326 districts in England. Data were analysed in a Bayesian spatial model that accounted for similarities and differences inspatial patterns of fatal and non-fatal MI. Results: The 99th to 1st percentile ratio of age-standardised MI death rate was 2.63 (95% credible interval 2.45-2.83) in women and 2.56 (2.37-2.76) in men across districts, with death rate highest in north of England. The main contributor to this variation was MI event rate, with a 99th to 1st percentile ratio of 2.55 (2.39-2.72) (women) and 2.17 (2.08-2.27) (men) across districts. Pre-hospital mortality was greater than hospital case fatality in every district. Prehospital mortality had a 99th to 1st percentile ratio 1.60 (1.50-1.70) in women and 1.75 (1.66-1.86) in men across districts and made a greater contribution to case-fatality variation thanhospital case fatality which had a 99th to 1st percentile ratio of 1.39 (1.29-1.49) (women) and1.49 (1.39-1.60) (men). The contribution of case fatality to variation in deaths across districtswas largest in middle ages. Pre-hospital mortality was slightly higher in men than women inmost districts and age groups, whereas hospital case fatality was higher in women in virtuallyall districts at ages up to and including 65-74 years; after this age, it became similar betweenthe sexes.3Interpretation: Mos

Journal article

Cruz-Piedrahita C, Roscoe C, Howe C, Fecht D, de Nazelle Aet al., 2022, Holistic approach to assess the association between the synergistic effect of physical activity, exposure to greenspace, and fruits and vegetable intake on health and wellbeing: Cross-sectional analysis of UK Biobank, Frontiers in Public Health, Vol: 10, Pages: 1-16, ISSN: 2296-2565

Background: Urban agriculture has been shown to contribute to healthy lifestyle behaviors, such as increased fruit and vegetable intake and greater exposure to greenspaces and there is plenty of evidence linking these lifestyle behaviors to better health and wellbeing. However, most evidence relates to assessing one behavior at a time despite available epidemiological research showing how the combined effects of multiple behaviors are associated with health and wellbeing. This research aims to examine the association of the interactions between various lifestyle behaviors and exposures related to urban agriculture and health and wellbeing.Methods: We used data from the UK Biobank baseline questionnaire (N~500, 000) to assess the association of two lifestyle behaviors (fruit and vegetable intake and physical activity) and greenspace exposure, with four health and wellbeing markers (blood pressure, BMI, self-health assessment, and self-reported loneliness) independently, and in combination. Associations between lifestyle behaviors, greenspace exposure, and the possible interactions with health and wellbeing were explored using general linear models (GLMs), adjusted for socio-demographic confounders including age, sex, educational qualifications, index of multiple deprivation, and ethnicity, and a lifestyle confounder: smoking status.Results: After removing missing data, as well as participants who did not meet the inclusion criteria, the final study sample was n = 204,478. The results indicate that meeting recommended levels of the World Health Organization (WHO) for fruits and vegetable intake, and the advice from the UK Chief Medical Officer for physical activity, is linked to better health and wellbeing markers. We found that UK Biobank participants who lived in greener areas and were physically active were more likely to feel alone and think their health was poor. Participants who were physically active and met the recommended intake of fruits and vegetables were

Journal article

Roscoe C, Mackay C, Gulliver J, Hodgson S, Cai Y, Vineis P, Fecht Det al., 2022, Associations of private residential gardens versus other greenspace types with cardiovascular and respiratory disease mortality: observational evidence from UK Biobank, Environment International, Vol: 167, ISSN: 0160-4120

BackgroundLongitudinal evidence linking urban greenspace to reduced rates of all-cause and cause-specific mortality has mostly been established using greenness measures of limited specificity such as vegetation indices. Evidence on specific green space types, including private residential gardens is less well established.MethodsWe examined associations of greenspace with all-cause, non-injury, cardiovascular disease (CVD) and respiratory disease deaths in UK Biobank – a national prospective cohort of adults with linked Office for National Statistics mortality records. We included private residential gardens and other greenspace types e.g. public parks, sport facilities, using categories from Ordnance Survey MasterMap™ Greenspace. We used Cox proportional hazards models, adjusted for individual and area-level covariates, and stratified analyses by sex, household income, and area-level deprivation. In sensitivity analyses, we further adjusted for air pollution, road-traffic noise, indirect tobacco smoke exposure, and physical activity, and restricted analyses to non-movers.ResultsIn 232,926 participants, we observed 13,586 all-cause, 13,159 non-injury, 2,796 cardiovascular (CVD), and 968 respiratory disease deaths. Private residential garden cover showed inverse associations with all-cause, non-injury, CVD, and chronic respiratory disease mortality, after adjustment for covariates and other types of greenspace, with hazard ratios and 95% confidence intervals of 0.94 (0.91, 0.97), 0.95 (0.92, 0.97), 0.92 (0.86, 0.98) and 0.87 (0.78, 0.98), respectively, per interquartile range (IQR) increase in private residential garden cover (IQR = 21.6% increase within 100 m buffer). Other greenspace types showed weaker inverse associations with CVD and chronic respiratory disease mortality than private residential gardens. Sex, household income, and area level deprivation modified associations. Findings were robust to sensitivity analyses.ConclusionOur finding that priv

Journal article

Bereziartua A, Chen J, de Hoogh K, Rodopoulou S, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Joeckel K-H, Jorgensen JT, Katsouyanni K, Ketzel M, Krog NH, Brynedal B, Leander K, Liu S, Ljungman P, Faure E, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Renzi M, Rizzuto D, Samoli E, van der Schouw YT, Schramm S, Severi G, Stafoggia M, Strak M, Sorensen M, Tjonneland A, Weinmayr G, Wolf K, Zitt E, Brunekreef B, Hoek Get al., 2022, Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort, ENVIRONMENT INTERNATIONAL, Vol: 166, ISSN: 0160-4120

Journal article

Wang W, Fecht D, Beevers S, Gulliver Jet al., 2022, Predicting daily concentrations of nitrogen dioxide, particulate matter and ozone at fine spatial scale in Great Britain, Atmospheric Pollution Research, Vol: 13, Pages: 101506-101506, ISSN: 1309-1042

Short-term exposure studies have often relied on time-series of air pollution measurements from monitoring sites. However, this approach does not capture short-term changes in spatial contrasts in air pollution. To address this, models representing both the spatial and temporal variability in air pollution have emerged in recent years. Here, we modelled daily average concentrations of nitrogen dioxide (NO2), particulate matter (PM2.5 and PM10) and ozone (O3) on a 25 m grid for Great Britain from 2011 to 2015 using a generalised additive mixed model, with penalised spline smooth functions for covariates. The models included local-scale predictors derived using a Geographic Information System (GIS), daily estimates from a chemical transport model, and daily meteorological characteristics. The models performed well in explaining the variability in daily averaged measured concentrations at 48–85 sites: 63% for NO2, 77% for PM2.5, 80% for PM10 and 85% for O3. Outputs of the study include daily air pollution maps that can be applied in epidemiological studies across Great Britain. Daily concentration values can also be predicted for specific locations, such as residential addresses or schools, and aggregated to other exposure time periods (including weeks, months, or pregnancy trimesters) to facilitate the needs of different health analyses.

Journal article

Chen J, Hoek G, de Hoogh K, Rodopoulou S, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel K-H, Jørgensen JT, Katsouyanni K, Ketzel M, Méndez DY, Leander K, Liu S, Ljungman P, Faure E, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, Samoli E, van der Schouw YT, Schramm S, Severi G, Stafoggia M, Strak M, Sørensen M, Tjønneland A, Weinmayr G, Wolf K, Zitt E, Brunekreef B, Thurston GDet al., 2022, Long-term exposure to source-specific fine particles and mortality─a pooled analysis of 14 European cohorts within the ELAPSE Project., Environmental Science and Technology (Washington), Vol: 56, ISSN: 0013-936X

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 μg/m3 increase) across five identified sources. On a 1 μg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.

Journal article

Sheridan C, Klompmaker J, Cummins S, James P, Fecht D, Roscoe Cet al., 2022, Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: observational evidence from UK Biobank, Environmental Pollution, Vol: 308, ISSN: 0269-7491

Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory testresults were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March – December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006-2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM 2.5) and nitrogen dioxide (NO 2) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08),88respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM 10 were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM 2.5 and NO 2 was associated wit

Journal article

Liu S, Lim Y-H, Chen J, Strak M, Wolf K, Weinmayr G, Rodopolou S, de Hoogh K, Bellander T, Brandt J, Concin H, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jöckel K-H, Jørgensen JT, So R, Amini H, Cole-Hunter T, Mehta AJ, Mortensen LH, Ketzel M, Lager A, Leander K, Ljungman P, Severi G, Boutron-Ruault M-C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, van der Schouw YT, Schramm S, Sørensen M, Stafoggia M, Tjønneland A, Katsouyanni K, Huang W, Samoli E, Brunekreef B, Hoek G, Andersen ZJet al., 2022, Long-term air pollution exposure and pneumonia related mortality in a large pooled European cohort, American Journal of Respiratory and Critical Care Medicine, Vol: 205, Pages: 1429-1439, ISSN: 1073-449X

RATIONALE: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. OBJECTIVES: We examined the association between long-term exposure to air pollution and pneumonia related mortality in adults in a pool of eight European cohorts. METHODS: Within the multicenter project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3) were estimated using Europe-wide hybrid land use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. MEASUREMENTS AND MAIN RESULTS: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity [hazard ratios: 1.12 (0.99-1.26) per 10 µg/m3 for NO2; 1.10 (0.97-1.24) per 0.5 10-5m-1 for BC]. Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared to normal weight, unemployed, or non-smoking participants. CONCLUSIONS: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.

Journal article

Tayal U, 2022, Exposure to elevated nitrogen dioxide concentrations and cardiac remodelling in patients with dilated cardiomyopathy, Journal of Cardiac Failure, Vol: 28, Pages: 924-934, ISSN: 1071-9164

Rationale: Empirical evidence suggests a strong link between exposure to air pollution and heart failure incidence, hospitalisations and mortality, but the biological basis of this remains unclear. Objective: To determine the relationship between differential air pollution levels and changes in cardiac structure and function in patients with dilated cardiomyopathy. Methods and Results: We undertook a prospective longitudinal observational cohort study of patients in England with dilated cardiomyopathy (enrollment 2009-2015; n=716, 66% male, 85% Caucasian) and conducted cross sectional analysis at the time of study enrollment. Annual average air pollution exposure estimates for nitrogen dioxide (NO2) and particulate matter with diameter ≤ 2.5µm (PM2.5) at enrolment were assigned to each residential postcode (on average 12 households). The relationship between air pollution and cardiac morphology was assessed using linear regression modelling. Greater ambient exposure to NO2 was associated with higher indexed left ventricular mass (4.3 g/m2 increase per interquartile range (IQR) increase in NO2, 95% CI 1.9 to 7.0 g/m2) and lower left ventricular ejection fraction (-1.5% decrease per IQR increase in NO2, 95% CI -2.7 to -0.2%), independent of age, sex, socio-economic status and clinical covariates. The associations were robust to adjustment for smoking status and geographical clustering by postcode area. The effect of air pollution on left ventricular mass was greatest in women. These effects were specific to NO2 exposure. Conclusion: Exposure to air pollution is associated with raised left ventricular mass and lower left ventricular ejection fraction, with the strongest effect in women. Whilst epidemiological associations between air pollution and heart failure have been established and supported by pre-clinical studies, our findings provide novel empirical evidence of cardiac remodelling and exposure to air pollution with important clinical and public health

Journal article

Parkes B, Stafoggia M, Fecht D, Davies B, Bonander C, de Donato F, Michelozzi P, Piel FB, Strömberg U, Blangiardo Met al., 2022, Community factors and excess mortality in the COVID-19 pandemic in England, Italy and Sweden

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Analyses of COVID-19 suggest specific risk factors make communities more or less vulnerable to pandemic related deaths within countries. What is unclear is whether the characteristics affecting vulnerability of small communities within countries produce similar patterns of excess mortality across countries with different demographics and public health responses to the pandemic. Our aim is to quantify community-level variations in excess mortality within England, Italy and Sweden and identify how such spatial variability was driven by community-level characteristics.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We applied a two-stage Bayesian model to quantify inequalities in excess mortality in people aged 40 years and older at the community level in England, Italy and Sweden during the first year of the pandemic (March 2020–February 2021). We used community characteristics measuring deprivation, air pollution, living conditions, population density and movement of people as covariates to quantify their associations with excess mortality.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We found just under half of communities in England (48.1%) and Italy (45.8%) had an excess mortality of over 300 per 100,000 males over the age of 40, while for Sweden that covered 23.1% of communities. We showed that deprivation is a strong predictor of excess mortality across the three countries, and communities with high levels of overcrowding were associated with higher excess mortality in England and Sweden.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>These results highlight some international similarities in factors affecting mortality that will help policy makers target publi

Journal article

Fawi H, Maughan H, Fecht D, Sterrantino A, Lamagni T, Wloch C, de Preux L, Norrish A, Khanduja Vet al., 2022, Seasonality of superficial surgical site infections following joint replacements, Orthopaedic Proceedings, Vol: 104-B, ISSN: 1358-992X

Journal article

Roscoe C, Sheridan C, Geneshka M, Hodgson S, Vineis P, Gulliver J, Fecht Det al., 2022, Green walkability and physical activity in UK biobank: a cross-sectional analysis of adults in Greater London, International Journal of Environmental Research and Public Health, Vol: 19, Pages: 1-15, ISSN: 1660-4601

Urban greenspace provides opportunities for outdoor exercise and may increase physical activity, with accompanying health benefits. Areas suitable for walking (walkability) are also associated with increased physical activity, but interactions with greenspace are poorly understood. We investigated associations of walkability and green walkability with physical activity in an urban adult cohort. We used cross-sectional data from Greater London UK Biobank participants (n = 57,726) and assessed walkability along roads and footpaths within 1000 m of their residential addresses. Additionally, we assessed green walkability by integrating trees and low-lying vegetation into the walkability index. Physical activity outcomes included self-reported and accelerometer-measured physical activity and active transport. We assessed associations using log-linear, logistic and linear regression models, adjusted for individual- and area-level confounders. Higher green walkability was associated with favourable International Physical Activity Questionnaire responses and achievement of weekly UK government physical activity guideline recommendations. Participants living in the highest versus lowest quintile of green walkability participated in 2.41 min (95% confidence intervals: 0.22, 4.60) additional minutes of moderate-and-vigorous physical activity per day. Higher walkability and green walkability scores were also associated with choosing active transport modes such as walking and cycling. Our green walkability approach demonstrates the utility in accounting for walkability and greenspace simultaneously to understand the role of the built environment on physical activity.

Journal article

Chamberlain R, Fecht D, Davies B, Laverty Aet al., 2022, PROSPERO registration: Impacts of Low Emission and Congestion Charging Zones on physical health outcomes: a systematic review.

Other

Chen J, Rodopoulou S, Strak M, de Hoogh K, Taj T, Poulsen AH, Andersen ZJ, Bellander T, Brandt J, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Liu S, Ljungman P, Severi G, Boutron-Ruault M-C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, van der Schouw YT, Samoli E, Sørensen M, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Brunekreef B, Raaschou-Nielsen O, Hoek Get al., 2022, Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project, British Journal of Cancer, Vol: 126, ISSN: 0007-0920

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.

Journal article

Stafoggia M, Oftedal B, Chen J, Rodopoulou S, Renzi M, Atkinson RW, Bauwelinck M, Klompmaker JO, Mehta A, Vienneau D, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, de Hoogh K, Fecht D, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Jöckel K-H, Jørgensen JT, Katsouyanni K, Ketzel M, Kristoffersen DT, Lager A, Leander K, Liu S, Ljungman PLS, Nagel G, Pershagen G, Peters A, Raaschou-Nielsen O, Rizzuto D, Schramm S, Schwarze PE, Severi G, Sigsgaard T, Strak M, van der Schouw YT, Verschuren M, Weinmayr G, Wolf K, Zitt E, Samoli E, Forastiere F, Brunekreef B, Hoek G, Janssen NAHet al., 2022, Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project, The Lancet Planetary Health, Vol: 6, Pages: e9-e18, ISSN: 2542-5196

BACKGROUND: Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE). METHODS: In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000-11; follow-up until 2011-17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis. FINDINGS: We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021-1·085) per 5 μg/m3 increment in PM2·5, 1·044 (1·019-1·069) per 10 μg/m3 NO2, and

Journal article

Malacarne D, Chandakas E, Robinson O, Pineda E, Saez M, Chatzi L, Fecht Det al., 2022, The built environment as determinant of childhood obesity: a systematic literature review, Obesity Reviews, Vol: 23, Pages: 1-11, ISSN: 1467-7881

We evaluated the epidemiological evidence on the built environment and its link to childhood obesity, focusing on environmental factors such as traffic noise and air pollution, as well as physical factors potentially driving obesity-related behaviours, such as neighbourhood walkability and availability and accessibility of parks and playgrounds. Eligible studies were i) conducted on human children below the age of 18 years, ii) focused on body size measurements in childhood, iii) examined at least one built environment characteristic, iv) reported effect sizes and associated confidence intervals, and v) were published in English language. A z-Test, as alternative to the meta-analysis, was used to quantify associations due to heterogeneity in exposure and outcome definition. We found strong evidence for an association of traffic-related air pollution (nitrogen dioxide and nitrogen oxides exposure; p<0.001) and built environment characteristics supportive of walking (street intersection density; p<0.01 and access to parks; p<0.001) with childhood obesity. We identified a lack of studies which account for interactions between different built environment exposures or verify the role and mechanism of important effect modifiers such as age.

Journal article

So R, Chen J, Mehta AJ, Liu S, Strak M, Wolf K, Hvidtfeldt UA, Rodopoulou S, Stafoggia M, Klompmaker JO, Samoli E, Raaschou-Nielsen O, Atkinson R, Bauwelinck M, Bellander T, Boutron-Ruault M-C, Brandt J, Brunekreef B, Cesaroni G, Concin H, Forastiere F, van Gils CH, Gulliver J, Hertel O, Hoffmann B, de Hoogh K, Janssen N, Lim Y-H, Westendorp R, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Lang A, Ljungman PL, Magnusson PKE, Nagel G, Simonsen MK, Pershagen G, Peter RS, Peters A, Renzi M, Rizzuto D, Sigsgaard T, Vienneau D, Weinmayr G, Severi G, Fecht D, Tjønneland A, Leander K, Hoek G, Andersen ZJet al., 2021, Long-term exposure to air pollution and liver cancer incidence in six European cohorts, International Journal of Cancer, Vol: 149, Pages: 1887-1897, ISSN: 0020-7136

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the 'Effects of low-level air pollution: A study in Europe' (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter < 2.5 μm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330,064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 μg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 μg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards. This article is protected by copyright. All rights reserved.

Journal article

Stratakis N, Rock S, La Merrill MA, Saez M, Robinson O, Fecht D, Vrijheid M, Valvi D, Conti DV, McConnell R, Chatzi VLet al., 2021, Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies, Obesity Reviews, Vol: 23, Pages: 1-16, ISSN: 1467-7881

We conducted a systematic review and meta-analysis of the associations between prenatal exposure to persistent organic pollutants (POPs) and childhood obesity. We focused on organochlorines (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB], and polychlorinated biphenyls [PCBs]), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and polybrominated diphenyl ethers (PBDEs) that are the POPs more widely studied in environmental birth cohorts so far. We search two databases (PubMed and Embase) through July/09/2021 and identified 33 studies reporting associations with prenatal organochlorine exposure, 21 studies reporting associations with prenatal PFAS, and five studies reporting associations with prenatal PBDEs. We conducted a qualitative review. Additionally, we performed random-effects meta-analyses of POP exposures, with data estimates from at least three prospective studies, and BMI-z. Prenatal DDE and HCB levels were associated with higher BMI z-score in childhood (beta: 0.12, 95% CI: 0.03, 0.21; I2 : 28.1% per study-specific log increase of DDE and beta: 0.31, 95% CI: 0.09, 0.53; I2 : 31.9% per study-specific log increase of HCB). No significant associations between PCB-153, PFOA, PFOS, or pentaPBDEs with childhood BMI were found in meta-analyses. In individual studies, there was inconclusive evidence that POP levels were positively associated with other obesity indicators (e.g., waist circumference).

Journal article

Rashid T, Bennett J, Paciorek C, Doyle Y, Pearson-Stuttard J, Flaxman S, Fecht D, Toledano M, Li G, Daby H, Johnson E, Davies B, Ezzati Met al., 2021, Life expectancy and risk of death in 6,791 English communities from 2002 to 2019: high-resolution spatiotemporal analysis of civil registration data, The Lancet Public Health, Vol: 6, Pages: e805-e816, ISSN: 2468-2667

Background: There is limited data with high spatial granularity on how mortality and longevity have changed in English communities. We estimated trends from 2002 to 2019 in life expectancy and probabilities of death at different ages for all 6,791 English middle-layer super output areas (MSOAs).Methods: We used de-identified data for all deaths in England from 2002 to 2019 with information on age, sex and MSOA of residence, and population counts by age, sex and MSOA. We used a Bayesian hierarchical model to obtain estimates of age-specific death rates by sharing information across age groups, MSOAs and years. We used life table methods to calculate life expectancy at birth and probabilities of death in different ages by sex and MSOA.Results: In 2002-2006 and 2006-2010, the vast majority of MSOAs experienced a life expectancy increase for both sexes. In 2010-2014, female life expectancy decreased in 351 (5%) of MSOAs. By 2014-2019, the number of MSOAs with declining life expectancy was 1,270 (19%) for women and 784 (12%) for men. The life expectancy increase from 2002 to 2019 was smaller where life expectancy had been lower in 2002, mostly northern urban MSOAs, and larger where life expectancy had been higher in 2002, mostly MSOAs in and around London. As a result of these trends, the gap between the 1st and 99th percentiles of MSOA life expectancy for women increased from 10.7 (95% credible interval 10.4-10.9) in 2002 to reach 14.2 (13.9-14.5) years in 2019, and from 11.5 (11.3-11.7) years to 13.6 (13.4-13.9) years for men. Interpretation: In many English communities, life expectancy declined in the years prior to the Covid-19 pandemic. To ensure that this trend does not continue there is a need for pro-equity economic and social policies, and greater investment on public health and healthcare.

Journal article

Hamilton SA, Jarhyan P, Fecht D, Venkateshmurthy NS, Pearce N, Venkat Narayan KM, Ali MK, Mohan V, Tandon N, Prabhakaran D, Mohan Set al., 2021, Environmental risk factors for reduced kidney function due to undetermined cause in India: an environmental epidemiologic analysis., Environmental Epidemiology, Vol: 5, Pages: 1-10, ISSN: 2474-7882

Background: An epidemic of chronic kidney disease is occurring in rural communities in low-income and middle-income countries that do not share common kidney disease risk factors such as diabetes and hypertension. This chronic kidney disease of unknown etiology occurs primarily in agricultural communities in Central America and South Asia. Consequently, environmental risk factors including heat stress, heavy metals exposure, and low altitude have been hypothesized as risk factors. We conducted an environmental epidemiological analysis investigating these exposures in India which reports the disease. Methods: We used a random sample population in rural and urban sites in Northern and Southern India in 2010, 2011, and 2014 (n = 11,119). We investigated associations of the heat index, altitude, and vicinity to cropland with estimated glomerular filtration rate (eGFR) using satellite-derived data assigned to residential coordinates. We modeled these exposures with eGFR using logistic regression to estimate the risk of low eGFR, and linear mixed models (LMMs) to analyze site-specific eGFR-environment associations. Results: Being over 55 years of age, male, and living in proximity to cropland was associated with increased risk of low eGFR [odds ratio (OR) (95% confidence interval (CI) = 2.24 (1.43, 3.56), 2.32 (1.39, 3.88), and 1.47 (1.16, 2.36)], respectively. In LMMs, vicinity to cropland was associated with low eGFR [-0.80 (-0.44, -0.14)]. No associations were observed with temperature or altitude. Conclusions: Older age, being male, and living in proximity to cropland were negatively associated with eGFR. These analyses are important in identifying subcommunities at higher risk and can help direct future environmental investigations.

Journal article

Strak M, Weinmayr G, Rodopoulou S, Chen J, de Hoogh K, Andersen ZJ, Atkinson R, Bauwelinck M, Bekkevold T, Bellander T, Boutron-Ruault M-C, Brandt J, Cesaroni G, Concin H, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Janssen NAH, Jockel K-H, Jorgensen J, Ketzel M, Klompmaker J, Lager A, Leander K, Liu S, Ljungman P, Magnusson PKE, Mehta AJ, Nagel G, Oftedal B, Pershagen G, Peters A, Raaschou-Nielsen O, Renzi M, Rizzuto D, Schouw YTVD, Schramm S, Severi G, Sigsgaard T, Sorensen M, Stafoggia M, Tjonneland A, Verschuren WMM, Vienneau D, Wolf K, Katsouyanni K, Brunekreef B, Hoek G, Samoli Eet al., 2021, Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis, BMJ: British Medical Journal, Vol: 374, Pages: 1-11, ISSN: 0959-535X

Objective To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines.Design Pooled analysis of eight cohorts.Setting Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries.Participants 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon.Main outcome measures Deaths due to natural causes and cause specific mortality.Results Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths.Conclusions Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, an

Journal article

Wolf K, Hoffmann B, Andersen ZJ, Atkinson RW, Bauwelinck M, Bellander T, Brandt J, Brunekreef B, Cesaroni G, Chen J, de Faire U, de Hoogh K, Fecht D, Forastiere F, Gulliver J, Hertel O, Hvidtfeldt UA, Janssen NAH, Jørgensen JT, Katsouyanni K, Ketzel M, Klompmaker JO, Lager A, Liu S, MacDonald CJ, Magnusson PKE, Mehta AJ, Nagel G, Oftedal B, Pedersen NL, Pershagen G, Raaschou-Nielsen O, Renzi M, Rizzuto D, Rodopoulou S, Samoli E, van der Schouw YT, Schramm S, Schwarze P, Sigsgaard T, Sørensen M, Stafoggia M, Strak M, Tjønneland A, Verschuren WMM, Vienneau D, Weinmayr G, Hoek G, Peters A, Ljungman PLSet al., 2021, Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project, The Lancet Planetary Health, Vol: 5, Pages: e620-e632, ISSN: 2542-5196

BACKGROUND: Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS: We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS: From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 μg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 μ

Journal article

Roscoe CJ, Mackay C, Gulliver J, Hodgson S, Cai SY, Vineis P, Fecht Det al., 2021, Associations of greenspace and cardiorespiratory mortality are driven by private residential gardens: observational evidence from UK Biobank, ISEE Conference Abstracts, Vol: 2021, ISSN: 1078-0475

Journal article

Davies B, Parkes B, Bennett J, Fecht D, Blangiardo M, Ezzati M, Elliott Pet al., 2021, Community factors and excess mortality in first wave of the COVID-19 pandemic in England, Nature Communications, ISSN: 2041-1723

Risk factors for increased risk of death from Coronavirus Disease 19 (COVID-19) have been identified but less is known on characteristics that make communities resilient or vulnerable to the mortality impacts of the pandemic. We applied a two-stage Bayesian spatial model to quantify inequalities in excess mortality at the community level during the first wave of the pandemic in England. We used geocoded data on all deaths in people aged 40 years and older during March-May 2020 compared with 2015-2019 in 6,791 local communities. Here we show that communities with an increased risk of excess mortality had a high density of care homes, and/or high proportion of residents on income support, living in overcrowded homes and/or high percent of people with a non-White ethnicity (including Black, Asian and other minority ethnic groups). Conversely, after accounting for other community characteristics, we found no association between population density or air pollution and excess mortality. Overall, the social and environmental variables accounted for around 15% of the variation in mortality at community level. Effective and timely public health and healthcare measures that target the communities at greatest risk are urgently needed if England and other industrialised countries are to avoid further widening of inequalities in mortality patterns as the pandemic progresses.

Journal article

Liu S, Jørgensen JT, Ljungman P, Pershagen G, Bellander T, Leander K, Magnusson PKE, Rizzuto D, Hvidtfeldt UA, Raaschou-Nielsen O, Wolf K, Hoffmann B, Brunekreef B, Strak M, Chen J, Mehta A, Atkinson RW, Bauwelinck M, Varraso R, Boutron-Ruault M-C, Brandt J, Cesaroni G, Forastiere F, Fecht D, Gulliver J, Hertel O, de Hoogh K, Janssen NAH, Katsouyanni K, Ketzel M, Klompmaker JO, Nagel G, Oftedal B, Peters A, Tjønneland A, Rodopoulou SP, Samoli E, Kristoffersen DT, Sigsgaard T, Stafoggia M, Vienneau D, Weinmayr G, Hoek G, Andersen ZJet al., 2021, Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project, European Respiratory Journal, Vol: 57, ISSN: 0903-1936

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, while evidence is still insufficient. Within the multicentre project "Effects of Low-Level Air Pollution: A Study in Europe" (ELAPSE), we examined the associations of long-term exposures to particulate matter with diameter<2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a 16.6 years mean follow-up. We observed associations in fully adjusted models with hazard ratios and 95% confidence intervals of 1.22 (1.04-1.43) per 5 μg·m-3 for PM2.5, 1.17 (1.10-1.25) per 10 µg·m-3 for NO2, and 1.15 (1.08-1.23) per 0.5 10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the EU and US limit values and possibly WHO guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00397773&limit=30&person=true