Imperial College London

DrDeborahMorris-Rosendahl

Faculty of MedicineNational Heart & Lung Institute

Honorary Senior Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7351 8412d.morris-rosendahl

 
 
//

Location

 

2091Royal BromptonRoyal Brompton Campus

//

Summary

 

Publications

Publication Type
Year
to

132 results found

Borck G, Hog F, Dentici ML, Tan PL, Sowada N, Medeira A, Gueneau L, Thiele H, Kousi M, Lepri F, Wenzeck L, Blumenthal I, Radicioni A, Schwarzenberg TL, Mandriani B, Fischetto R, Morris-Rosendahl DJ, Altmuller J, Reymond A, Nurnberg P, Merla G, Dallapiccola B, Katsanis N, Cramer P, Kubisch Cet al., 2015, <i>BRF1</i> mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies, GENOME RESEARCH, Vol: 25, Pages: 155-166, ISSN: 1088-9051

Journal article

Kakar N, Ahmad J, Morris-Rosendahl DJ, Altmueller J, Friedrich K, Barbi G, Nuernberg P, Kubisch C, Dobyns WB, Borck Get al., 2015, <i>STIL</i> mutation causes autosomal recessive microcephalic lobar holoprosencephaly, HUMAN GENETICS, Vol: 134, Pages: 45-51, ISSN: 0340-6717

Journal article

Tasdemir S, Sahini I, Morris-Rosendahl DJ, Marzioglu E, Cayir A, Yuce I, Tatar Aet al., 2015, RECURRENT <i>RAB3GAP1</i> MUTATIONS IN THE TURKISH POPULATION, GENETIC COUNSELING, Vol: 26, Pages: 415-423, ISSN: 1015-8146

Journal article

Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, D' Annunzio G, Villard L, Philip N, de Coo R, Catsman-Berrevoets C, Grasshoff U, Kattentidt-Mouravieva A, Calf H, de Vreugt-Gronloh E, van Unen L, Verheijen FW, Galjart N, Morris-Rosendahl DJ, Mancini GMSet al., 2014, Severe Presentation of <i>WDR62</i> Mutation: Is There a Role for Modifying Genetic Factors?, AMERICAN JOURNAL OF MEDICAL GENETICS PART A, Vol: 164, Pages: 2161-2171, ISSN: 1552-4825

Journal article

Hafner P, Bonati U, Fischmann A, Schneider J, Frank S, Morris-Rosendahl DJ, Dumea A, Heinimann K, Fischer Det al., 2014, Skeletal muscle MRI of the lower limbs in congenital muscular dystrophy patients with novel <i>POMT1</i> and <i>POMT2</i> mutations, NEUROMUSCULAR DISORDERS, Vol: 24, Pages: 321-324, ISSN: 0960-8966

Journal article

Puzik A, Morris-Rosendahl DJ, Rückauer K-D, Otto C, Gessler P, Saueressig U, Hentschel Ret al., 2014, Lethal course of meconium ileus in preterm twins revealing a novel cystic fibrosis mutation (p.Cys524Tyr)., BMC Pediatr, Vol: 14

BACKGROUND: In term newborns meconium ileus is frequently associated with cystic fibrosis. Reports on meconium ileus in preterm infants being diagnosed with cystic fibrosis early after birth are very scarce. Associations between genotype and phenotype in cystic fibrosis and its particular comorbidities have been reported. CASE PRESENTATION: Two extremely preterm twin infants (26 weeks of gestation) born from a Malaysian mother and a Caucasian father were presented with typical signs of meconium ileus. Despite immediate surgery both displayed a unique and finally lethal course. Mutation analysis revealed a novel, probably pathogenic cystic fibrosis mutation, p.Cys524Tyr. The novel mutation might explain the severity of disease next to typical sequelae of prematurity. CONCLUSION: Preterm neonates with meconium ileus have to be evaluated for cystic fibrosis beyond ethnical boundaries, but may take devastating clinical courses despite early treatment. The novel, potentially pathogenic CF mutation p.Cys524Tyr might be associated with severe meconium ileus in neonates. Disease-modifying loci are important targets for intestinal comorbidity of cystic fibrosis.

Journal article

Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl DJ, Carpanini S, Posmyk R, Harthill V, Sheridan E, Abdel-Salam GMH, Terhal PA, Faravelli F, Accorsi P, Giordano L, Pinelli L, Hartmann B, Ebert AD, Barr FA, Aligianis IA, Sidjanin DJet al., 2013, Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans., Am J Hum Genet, Vol: 93, Pages: 1001-1014

blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first positionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation of bs mouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endocrine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM. Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bs mEFs. Additionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These findings collectively indicate that a defect in LD formation/metabolism may be a common cellular abnormality associated with WARBM, although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology.

Journal article

Lindenthal V, Mainberger A, Morris-Rosendahl DJ, Loening L, Mayer W, Mueller HLet al., 2013, Dilatative Uropathy as a Manifestation of Neurohypophyseal Diabetes Insipidus due to a Novel Mutation in the Arginine Vasopressin-Neurophysin-II Gene, KLINISCHE PADIATRIE, Vol: 225, Pages: 407-412, ISSN: 0300-8630

Journal article

Hotz A, Hellenbroich Y, Sperner J, Linder-Lucht M, Tacke U, Walter C, Caliebe A, Nagel I, Saunders DE, Wolff G, Martin P, Morris-Rosendahl DJet al., 2013, Microdeletion 5q14.3 and anomalies of brain development., Am J Med Genet A, Vol: 161A, Pages: 2124-2133

5q14.3 deletions spanning and flanking MEF2C as well as intragenic MEF2C mutations have recently been described as a cause of severe intellectual disability, epilepsy, and muscular hypotonia, with variable brain and other anomalies. With an increasing number of patients described, the clinical presentation of the patients appears to be relatively uniform, however the structural brain phenotypes described are variable. We describe two unrelated patients with overlapping de novo interstitial deletions of 4.1 and 1.9 Mb, including MEF2C in 5q14.3, one of whom had a complex brain malformation which could be best described as microcephaly with simplified gyral pattern (MSG). Expression analysis in both patients confirmed haploinsufficiency for MEF2C, decreased MECP2 expression and increased C3ORF58 (DIA1) expression, which is a new finding. A detailed analysis of brain and white matter abnormalities reported in patients with 5q14.3 deletion syndrome to date revealed a greater number of reported abnormalities in patients with deletions not including MEF2C than those with deletions or mutations directly affecting MEF2C. Screening an additional 43 patients with malformations of cerebral cortical development (MCD) for mutations in MEF2C and/or deletions in 5q14.3q15, did not detect any additional mutations, allowing us to conclude that 5q14.3 deletion syndrome is a rare cause of microcephaly with simplified gyral pattern.

Journal article

Schlotawa L, Hotz A, Zeschnigk C, Hartmann B, Gärtner J, Morris-Rosendahl Det al., 2013, Cerebellar ataxia, mental retardation and dysequilibrium syndrome 1 (CAMRQ1) caused by an unusual constellation of VLDLR mutation., J Neurol, Vol: 260, Pages: 1678-1680

Journal article

McDonell LM, Mirzaa GM, Alcantara D, Schwartzentruber J, Carter MT, Lee LJ, Clericuzio CL, Graham JM, Morris-Rosendahl DJ, Polster T, Acsadi G, Townshend S, Williams S, Halbert A, Isidor B, David A, Smyser CD, Paciorkowski AR, Willing M, Woulfe J, Das S, Beaulieu CL, Marcadier J, FORGE Canada Consortium, Geraghty MT, Frey BJ, Majewski J, Bulman DE, Dobyns WB, O'Driscoll M, Boycott KMet al., 2013, Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome., Nat Genet, Vol: 45, Pages: 556-562

Microcephaly-capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor-mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome.

Journal article

Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, Carpanini SM, Borck G, Martorell L, Izzi C, Faravelli F, Accorsi P, Pinelli L, Basel-Vanagaite L, Peretz G, Abdel-Salam GMH, Zaki MS, Jansen A, Mowat D, Glass I, Stewart H, Mancini G, Lederer D, Roscioli T, Giuliano F, Plomp AS, Rolfs A, Graham JM, Seemanova E, Poo P, García-Cazorla A, Edery P, Jackson IJ, Maher ER, Aligianis IAet al., 2013, Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome., Hum Mutat, Vol: 34, Pages: 686-696

Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One-hundred and forty-four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype-phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.

Journal article

Issa L, Mueller K, Seufert K, Kraemer N, Rosenkotter H, Ninnemann O, Buob M, Kaindl AM, Morris-Rosendahl DJet al., 2013, Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation., Orphanet J Rare Dis, Vol: 8

BACKGROUND: Primary autosomal recessive microcephaly (MCPH) is a rare neurodevelopmental disorder that results in severe microcephaly at birth with pronounced reduction in brain volume, particularly of the neocortex, simplified cortical gyration and intellectual disability. Homozygous mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2 are the cause of MCPH3. Despite considerable interest in MCPH as a model disorder for brain development, the underlying pathomechanism has not been definitively established and only four pedigrees with three CDK5RAP2 mutations have been reported. Specifically for MCPH3, no detailed radiological or histological descriptions exist. METHODS/RESULTS: We sought to characterize the clinical and radiological features and pathological cellular processes that contribute to the human MCPH3 phenotype. Haplotype analysis using microsatellite markers around the MCPH1-7 and PNKP loci in an Italian family with two sons with primary microcephaly, revealed possible linkage to the MCPH3 locus. Sequencing of the coding exons and exon/intron splice junctions of the CDK5RAP2 gene identified homozygosity for the novel nonsense mutation, c.4441C > T (p.Arg1481*), in both affected sons. cMRI showed microcephaly, simplified gyral pattern and hypogenesis of the corpus callosum. The cellular phenotype was assessed in EBV-transformed lymphocyte cell lines established from the two affected sons and compared with healthy male controls. CDK5RAP2 protein levels were below detection level in immortalized lymphocytes from the patients. Moreover, mitotic spindle defects and disrupted γ-tubulin localization to the centrosome were apparent. CONCLUSION: These results suggest that spindle defects and a disruption of centrosome integrity play an important role in the development of microcephaly in MCPH3.

Journal article

Bisschoff IJ, Zeschnigk C, Horn D, Wellek B, Rieß A, Wessels M, Willems P, Jensen P, Busche A, Bekkebraten J, Chopra M, Hove HD, Evers C, Heimdal K, Kaiser A-S, Kunstmann E, Robinson KL, Linné M, Martin P, McGrath J, Pradel W, Prescott KE, Roesler B, Rudolf G, Siebers-Renelt U, Tyshchenko N, Wieczorek D, Wolff G, Dobyns WB, Morris-Rosendahl DJet al., 2013, Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: a study of the extensive clinical variability., Hum Mutat, Vol: 34, Pages: 237-247

OFD1, now recognized as a ciliopathy, is characterized by malformations of the face, oral cavity and digits, and is transmitted as an X-linked condition with lethality in males. Mutations in OFD1 also cause X-linked Joubert syndrome (JBTS10) and Simpson-Golabi-Behmel syndrome type 2 (SGBS2). We have studied 55 sporadic and six familial cases of suspected OFD1. Comprehensive mutation analysis in OFD1 revealed mutations in 37 female patients from 30 families; 22 mutations have not been previously described including two heterozygous deletions spanning OFD1 and neighbouring genes. Analysis of clinical findings in patients with mutations revealed that oral features are the most reliable diagnostic criteria. A first, detailed evaluation of brain MRIs from seven patients with cognitive defects illustrated extensive variability with the complete brain phenotype consisting of complete agenesis of the corpus callosum, large single or multiple interhemispheric cysts, striking cortical infolding of gyri, ventriculomegaly, mild molar tooth malformation and moderate to severe cerebellar vermis hypoplasia. Although the OFD1 gene apparently escapes X-inactivation, skewed inactivation was observed in seven of 14 patients. The direction of skewing did not correlate with disease severity, reinforcing the hypothesis that additional factors contribute to the extensive intrafamilial variability.

Journal article

Mokánszki A, Körhegyi I, Szabó N, Bereg E, Gergev G, Balogh E, Bessenyei B, Sümegi A, Morris-Rosendahl DJ, Sztriha L, Oláh Eet al., 2012, Lissencephaly and band heterotopia: LIS1, TUBA1A, and DCX mutations in Hungary., J Child Neurol, Vol: 27, Pages: 1534-1540

The spectrum of lissencephaly ranges from absent (agyria) or decreased (pachygyria) convolutions to less severe malformation known as subcortical band heterotopia. Mutations involving LIS1 and TUBA1A result in the classic form of lissencephaly, whereas mutations of the DCX gene cause lissencephaly in males and subcortical band heterotopia in females. This report describes the clinical manifestations and imaging and genetic findings in 2 boys with lissencephaly and a girl with subcortical band heterotopia. An ovel mutation (c.83_84delAT, p.Tyr28Phefs*31) was identified in LIS1 in 1 of the boys with lissencephaly and another novel mutation (c.200delG, p.Ile68Leufs*87) was found in DCX in the girl with subcortical band heterotopia. The mutations appeared in the first half of the genes and are predicted to result in truncated proteins. A mutation was found in the TUBA1A gene (c.1205G>A, p.Arg402His) in the other boy. This mutation affects the folding of tubulin heterodimers, changing the interactions with proteins that bind microtubules.

Journal article

Dursun F, Güven A, Morris-Rosendahl D, 2012, Warburg Micro syndrome., J Pediatr Endocrinol Metab, Vol: 25, Pages: 379-382, ISSN: 0334-018X

Micro syndrome is an autosomal recessive disorder characterized by severe intellectual disability, microcephaly, congenital cataract, microcornea, microphthalmia, agenesis, or hypoplasia of the corpus callosum and hypogenitalism. We report an 11-month-old boy who was referred for assessment of micropenis and cryptorchidism. Sequence analysis of exon 8 of the RAB3GAP1 gene confirmed the presence of a splice donor mutation (748+1G>A) in the homozygous state.

Journal article

Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, Horn D, Klopocki E, Kluger G, Martin P, Rauch A, Roumer A, Saitta S, Walsh LE, Wieczorek D, Uyanik G, Kutsche K, Dobyns WBet al., 2011, The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis., J Med Genet, Vol: 48, Pages: 396-406

BACKGROUND: Submicroscopic deletions in 14q12 spanning FOXG1 or intragenic mutations have been reported in patients with a developmental disorder described as a congenital variant of Rett syndrome. This study aimed to further characterise and delineate the phenotype of FOXG1 mutation positive patients. METHOD: The study mapped the breakpoints of a 2;14 translocation by fluorescence in situ hybridisation and analysed three chromosome rearrangements in 14q12 by cytogenetic analysis and/or array comparative genomic hybridisation. The FOXG1 gene was sequenced in 210 patients, including 129 patients with unexplained developmental disorders and 81 MECP2 mutation negative individuals. RESULTS: One known mutation, seen in two patients, and nine novel mutations of FOXG1 including two deletions, two chromosome rearrangements disrupting or displacing putative cis-regulatory elements from FOXG1, and seven sequence changes, are reported. Analysis of 11 patients in this study, and a further 15 patients reported in the literature, demonstrates a complex constellation of features including mild postnatal growth deficiency, severe postnatal microcephaly, severe mental retardation with absent language development, deficient social reciprocity resembling autism, combined stereotypies and frank dyskinesias, epilepsy, poor sleep patterns, irritability in infancy, unexplained episodes of crying, recurrent aspiration, and gastro-oesophageal reflux. Brain imaging studies reveal simplified gyral pattern and reduced white matter volume in the frontal lobes, corpus callosum hypogenesis, and variable mild frontal pachgyria. CONCLUSIONS: These findings have significantly expanded the number of FOXG1 mutations and identified two affecting possible cis-regulatory elements. While the phenotype of the patients overlaps both classic and congenital Rett syndrome, extensive clinical evaluation demonstrates a distinctive and clinically recognisable phenotype which the authors suggest designating as the

Journal article

Yis U, Uyanik G, Heck PB, Smitka M, Nobel H, Ebinger F, Dirik E, Feng L, Kurul SH, Brocke K, Unalp A, Özer E, Cakmakci H, Sewry C, Cirak S, Muntoni F, Hehr U, Morris-Rosendahl DJet al., 2011, Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype., Neuromuscul Disord, Vol: 21, Pages: 20-30

Six genes including POMT1, POMT2, POMGNT1, FKRP, Fukutin (FKTN) and LARGE encode proteins involved in the glycosylation of α-dystroglycan (α-DG). Abnormal glycosylation of α-DG is a common finding in Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), Fukuyama congenital muscular dystrophy (FCMD), congenital muscular dystrophy types 1C and 1D and some forms of autosomal recessive limb-girdle muscular dystrophy (LGMD2I, LGMD2K, LGMD2M), and is associated with mutations in the above genes. FCMD, caused by mutations in Fukutin (FKTN), is most frequent in Japan, but an increasing number of FKTN mutations are being reported outside of Japan. We describe four new patients with FKTN mutations and phenotypes ranging from: severe WWS in a Greek-Croatian patient, to congenital muscular dystrophy and cobblestone lissencephaly resembling MEB-FCMD in two Turkish patients, and limb-girdle muscular dystrophy and no mental retardation in a German patient. Four of the five different FKTN mutations have not been previously described.

Journal article

Borck G, Wunram H, Steiert A, Volk AE, Körber F, Roters S, Herkenrath P, Wollnik B, Morris-Rosendahl DJ, Kubisch Cet al., 2011, A homozygous RAB3GAP2 mutation causes Warburg Micro syndrome., Hum Genet, Vol: 129, Pages: 45-50

Warburg Micro syndrome and Martsolf syndrome are clinically overlapping autosomal recessive conditions characterized by congenital cataracts, microphthalmia, postnatal microcephaly, and developmental delay. The neurodevelopmental and ophthalmological phenotype is more severe in Warburg Micro syndrome in which cerebral malformations and severe motor and mental retardation are common. While biallelic loss-of-function mutations in RAB3GAP1 are present in the majority of patients with Warburg Micro syndrome; a hypomorphic homozygous splicing mutation of RAB3GAP2 has been reported in a single family with Martsolf syndrome. Here, we report a novel homozygous RAB3GAP2 small in-frame deletion, c.499_507delTTCTACACT (p.Phe167_Thr169del) that causes Warburg Micro syndrome in a girl from a consanguineous Turkish family presenting with congenital cataracts, microphthalmia, absent visually evoked potentials, microcephaly, polymicrogyria, hypoplasia of the corpus callosum, and severe developmental delay. No RAB3GAP2 mutations were detected in ten additional unrelated patients with RAB3GAP1-negative Warburg Micro syndrome, consistent with further genetic heterogeneity. In conclusion, we provide evidence that RAB3GAP2 mutations are not specific to Martsolf syndrome. Rather, our findings suggest that loss-of-function mutations of RAB3GAP1 as well as functionally severe RAB3GAP2 mutations cause Warburg Micro syndrome while hypomorphic RAB3GAP2 mutations can result in the milder Martsolf phenotype. Thus, a phenotypic severity gradient may exist in the RAB3GAP-associated disease continuum (the "Warburg-Martsolf syndrome") which is presumably determined by the mutant gene and the nature of the mutation.

Journal article

Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, Müller L, Zeschnigk C, Botti C, Rabinowitz R, Uyanik G, Crocq M-A, Kraus U, Degen I, Faes Fet al., 2010, New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish., Eur J Hum Genet, Vol: 18, Pages: 1100-1106

Warburg Micro Syndrome is a rare, autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornia, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe mental retardation, spastic diplegia, and hypogonadism. We have found five new mutations in the RAB3GAP1 gene in seven patients with suspected Micro Syndrome from families with Turkish, Palestinian, Danish, and Guatemalan backgrounds. A thorough clinical investigation of the patients has allowed the delineation of symptoms that are consistently present in the patients and may aid the differential diagnosis of Micro Syndrome for patients in the future. All patients had postnatal microcephaly, micropthalmia, microcornia, bilateral congenital cataracts, short palpebral fissures, optic atrophy, severe mental retardation, and congenital hypotonia with subsequent spasticity. Only one patient had microcephaly at birth, highlighting the fact that congenital microcephaly is not a consistent feature of Micro syndrome. Analysis of the brain magnetic resonance imagings (MRIs) revealed a consistent pattern of polymicrogyria in the frontal and parietal lobes, wide sylvian fissures, a thin hypoplastic corpus callosum, and increased subdural spaces. All patients were homozygous for the mutations detected and all mutations were predicted to result in a truncated RAB3GAP1 protein. The analysis of nine polymorphic markers flanking the RAB3GAP1 gene showed that the mutation c.1410C>A (p.Tyr470X), for which a Danish patient was homozygous, occurred on a haplotype that is shared by the unrelated heterozygous parents of the patient. This suggests a possible founder effect for this mutation in the Danish population.

Journal article

Ekici AB, Hilfinger D, Jatzwauk M, Thiel CT, Wenzel D, Lorenz I, Boltshauser E, Goecke TW, Staatz G, Morris-Rosendahl DJ, Sticht H, Hehr U, Reis A, Rauch Aet al., 2010, Disturbed Wnt Signalling due to a Mutation in CCDC88C Causes an Autosomal Recessive Non-Syndromic Hydrocephalus with Medial Diverticulum., Mol Syndromol, Vol: 1, Pages: 99-112, ISSN: 1661-8769

The etiology of non-syndromic hydrocephalus is poorly understood. Via positional cloning in a consanguineous family with autosomal recessive hydrocephalus we have now identified a homozygous splice site mutation in the CCDC88C gene as a novel cause of a complex hydrocephalic brain malformation. The only living patient showed normal psychomotor development at the age of 3 years and 3 months and her deceased aunt, who was assumed to suffer from the same condition, had mild mental retardation. The mutation in the affected patients, a homozygous substitution in the donor splice site of intron 29, resulted in a shorter transcript due to exclusion of exon 29 and loss of functional protein, as shown by Western blotting (p.S1591HfsX7). In normal human tissue panels, we found CCDC88C ubiquitously expressed, but most prominently in the fetal brain, especially in pons and cerebellum, while expression in the adult brain appeared to be restricted to cortex and medulla oblongata. CCDC88C encodes DAPLE (HkRP2), a Hook-related protein with a binding domain for the central Wnt signalling pathway protein Dishevelled. Targeted quantitative RT-PCR and expression profiling of 84 genes from the Wnt signalling pathway in peripheral blood from the index patient and her healthy mother revealed increased mRNA levels of CCDC88C indicating transcriptional upregulation. Due to loss of CCDC88C function β-catenin (CTNNB1) and the downstream target LEF1 showed increased mRNA levels in the patient, but many genes from the Wnt pathway and transcriptional target genes showed reduced expression, which might be explained by a complex negative feedback loop. We have thus identified a further essential component of the Wnt signalling pathway in human brain development.

Journal article

Reimann J, Moskau-Hartmann S, Morris-Rosendahl DJ, von Wrede R, Kornblum Cet al., 2009, Two siblings with alpha-dystroglycan dysglycosylation myopathy, epilepsy and personality disorder, 14th International Congress of the World-Muscle-Society, Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: 553-553, ISSN: 0960-8966

Conference paper

Yis U, Uyanik G, Kurul SH, Cakmakci H, Ozer E, Dirik E, Hehr U, Morris-Rosendahl DJet al., 2009, Evaluation of cases with congenital muscular dystrophy, TURK PEDIATRI ARSIVI-TURKISH ARCHIVES OF PEDIATRICS, Vol: 44, Pages: 23-28, ISSN: 1306-0015

Journal article

Morris-Rosendahl DJ, Najm J, Lachmeijer AMA, Sztriha L, Martins M, Kuechler A, Haug V, Zeschnigk C, Martin P, Santos M, Vasconcelos C, Omran H, Kraus U, Van der Knaap MS, Schuierer G, Kutsche K, Uyanik Get al., 2008, Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly., Clin Genet, Vol: 74, Pages: 425-433

Mutations in the alpha-1a Tubulin (TUBA1A) gene have recently been found to cause cortical malformations resemblant of classical lissencephaly but with a specific combination of features. To date, TUBA1A mutations have been described in five patients and three foetuses. Our aims were to establish how common TUBA1A mutations are in patients with lissencephaly and to contribute to defining the phenotype associated with TUBA1A mutation. We performed mutation analysis in the TUBA1A gene in 46 patients with classical lissencephaly. In 44 of the patients, mutations in the LIS1 and/or DCX genes had previously been excluded; in 2 patients, mutation analysis was only performed in TUBA1A based on magnetic resonance imaging (MRI) findings. We identified three new mutations and one recurrent mutation in five patients with variable patterns of lissencephaly on brain MRI. Four of the five patients had congenital microcephaly, and all had dysgenesis of the corpus callosum and cerebellar hypoplasia, and variable cortical malformations, including subtle subcortical band heterotopia and absence or hypoplasia of the anterior limb of the internal capsule. We estimate the frequency of mutation in TUBA1A gene in patients with classical lissencephaly to be approximately 4%, and although not as common as mutations in the LIS1 or DCX genes, mutation analysis in TUBA1A should be included in the molecular genetic diagnosis of classical lissencephaly, particularly in patients with the combination of features highlighted in this paper.

Journal article

Morris-Rosendahl D, Hoehe M, 2008, In this issue..., Dialogues in Clinical Neuroscience, Vol: 10, Pages: 5-6, ISSN: 1294-8322

Journal article

Unger S, Mainberger A, Spitz C, Bähr A, Zeschnigk C, Zabel B, Superti-Furga A, Morris-Rosendahl DJet al., 2007, Filamin A mutation is one cause of FG syndrome., Am J Med Genet A, Vol: 143A, Pages: 1876-1879, ISSN: 1552-4825

FG syndrome was originally described as a rare syndromic cause of X-linked mental retardation associated with congenital heart disease, anal atresia, inguinal hernia, cryptorchidism, and other anomalies. However, recent reports have highlighted the more common milder presentation which has for cardinal features developmental delay, particularly in speech, neonatal hypotonia, relative macrocephaly, dysmorphic facial features, severe constipation, and few if any congenital malformations. Thus far, five separate loci have been identified on the X chromosome but attempts at finding the responsible gene have not yet been successful. Given that one putative FG locus (FGS2) is situated at Xq28, which is the location of the Filamin A gene (FLNA), and that a Filamin A mutation was reported in a boy with facial dysmorphism and constipation, it was hypothesized that Filamin A mutations could be one cause of FG syndrome. Indeed, a previously unreported FLNA missense mutation (P1291L) was detected in our patient with FG syndrome, thus supporting this hypothesis and indicating that FG syndrome could now be added to the list of Filamin A-related disorders. Filamin A studies in other children with FG syndrome would help to confirm this association.

Journal article

Uyanik G, Morris-Rosendahl DJ, Stiegler J, Klapecki J, Gross C, Berman Y, Martin P, Dey L, Spranger S, Korenke GC, Schreyer I, Hertzberg C, Neumann TE, Burkart P, Spaich C, Meng M, Holthausen H, Adès L, Seidel J, Mangold E, Buyse G, Meinecke P, Schara U, Zeschnigk C, Muller D, Helland G, Schulze B, Wright ML, Kortge-Jung S, Hehr A, Bogdahn U, Schuierer G, Kohlhase J, Aigner L, Wolff G, Hehr U, Winkler Jet al., 2007, Location and type of mutation in the LIS1 gene do not predict phenotypic severity., Neurology, Vol: 69, Pages: 442-447

BACKGROUND: Lissencephaly is a neuronal migration disorder leading to absent or reduced gyration and a broadened but poorly organized cortex. The most common form of lissencephaly is isolated, referred as classic or type 1 lissencephaly. Type 1 lissencephaly is mostly associated with a heterozygous deletion of the entire LIS1 gene, whereas intragenic heterozygous LIS1 mutations or hemizygous DCX mutations in males are less common. METHODS: Eighteen unrelated patients with type 1 lissencephaly were clinically and genetically assessed. In addition, patients with subcortical band heterotopia (n = 1) or lissencephaly with cerebellar hypoplasia (n = 2) were included. RESULTS: Fourteen new and seven previously described LIS1 mutations were identified. We observed nine truncating mutations (nonsense, n = 2; frameshift, n = 7), six splice site mutations, five missense mutations, and one in-frame deletion. Somatic mosaicism was assumed in three patients with partial subcortical band heterotopia in the occipital-parietal lobes or mild pachygyria. We report three mutations in exon 11, including a frameshift which extends the LIS1 protein, leading to type 1 lissencephaly and illustrating the functional importance of the WD domains at the C terminus. Furthermore, we present two patients with novel LIS1 mutations in exon 10 associated with lissencephaly with cerebellar hypoplasia type a. CONCLUSION: In contrast to previous reports, our data suggest that neither type nor position of intragenic mutations in the LIS1 gene allows an unambiguous prediction of the phenotypic severity. Furthermore, patients presenting with mild cerebral malformations such as subcortical band heterotopia or cerebellar hypoplasia should be considered for genetic analysis of the LIS1 gene.

Journal article

Balci B, Morris-Rosendahl DJ, Celebi A, Talim B, Topaloglu H, Dinçer Pet al., 2007, Prenatal diagnosis of muscle-eye-brain disease., Prenat Diagn, Vol: 27, Pages: 51-54, ISSN: 0197-3851

OBJECTIVES: To present a family in which it was possible to perform prenatal diagnosis for the recessively inherited muscle-eye-brain disease (MEB) using linkage analysis. METHODS: Linkage analysis and direct sequencing of the POMGNT1 gene were carried out in a Turkish MEB family with one affected individual. Fetal DNA was obtained from an ongoing pregnancy by chorionic villus sampling (CVS). RESULTS: Both linkage analysis of the POMGNT1/1p32-p34 region and direct sequencing for the novel familial mutation (R605H) demonstrated that the fetus did not have MEB. CONCLUSION: We report the first case of prenatal diagnosis in MEB by molecular genetic analysis.

Journal article

Wittekindt OH, Visan V, Tomita H, Imtiaz F, Gargus JJ, Lehmann-Horn F, Grissmer S, Morris-Rosendahl DJet al., 2004, An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel., Mol Pharmacol, Vol: 65, Pages: 788-801, ISSN: 0026-895X

We have isolated an hSK3 isoform from a human embryonic cDNA library that we have named hSK3_ex4. This isoform contains a 15 amino acid insertion within the S5 to P-loop segment. Transcripts encoding hSK3_ex4 are coexpressed at lower levels with hSK3 in neuronal as well as in non-neuronal tissues. To investigate the pharmacokinetic properties of hSK3_ex4, we expressed the isoforms hSK3 and hSK3_ex4 in tsA cells. Both isoforms were similarly activated by cytosolic Ca2+ (hSK3, EC50=0.91 +/- 0.4 microM; hSK3_ex4, EC50=0.78 +/- 0.2 microM) and by 1-ethyl-2-benzimidazolinone (hSK3, EC50=0.17 mM; hSK3_ex4, 0.19 mM). They were both blocked by tetraethylammonium (hSK3, Kd=2.2 mM; hSK3_ex4, 2.6 mM) and showed similar permeabilities relative to K+ for Cs+ (hSK3, 0.17 +/- 0.04, n=3; hSK3_ex4, 0.17 +/- 0.05, n=3) and Rb+ (hSK3, 0.79 +/- 0.04, n=3; hSK3_ex4, 0.8 +/- 0.07, n=3). Ba2+ blocked both isoforms, and in both cases, the block was strongest at hyperpolarizing membrane potentials. However, the voltage-dependence of hSK3 was stronger than that of hSK3_ex4. The most obvious distinguishing feature of this new isoform was that whereas hSK3 was blocked by apamin (Kd=0.8 nM), scyllatoxin (Kd=2.1 nM), and d-tubocurarine (Kd=33.4 microM), hSK3_ex4 was not affected by apamin up to 100 nM, scyllatoxin up to 500 nM, and d-tubocurarine up to 500 microM. So far, isoform hSK3_ex4 forms the only small-conductance calcium-activated potassium (SK) channels, which are insensitive to the classic SK blockers.

Journal article

Morris-Rosendahl DJ, Fiebich BL, 2004, The future of genetic testing for drug response., Dialogues Clin Neurosci, Vol: 6, Pages: 27-37, ISSN: 1294-8322

The effect of variation in genes coding for drug targets and for the enzymes involved in drug metabolism has highlighted the genetic component of drug response. Drug response can be likened to a complex, multifactorial genetic trait, and the study of its genetic variation, termed pharmacogenetics, is analogous to the study of complex genetic disease in terms of the questions posed and the analytical possibilities. Just as DNA variants are associated with specific disease predispositions, so will they be associated with individual response to certain drugs. The testing for drug response is following the same route as the genetic testing for inherited disorders, and has reached the stage where genome-wide analysis, as opposed to the analysis of single genes, is a reality. In this article, we will discuss some of the technical advances that facilitate such analyses, leading to faster and more extensive diagnostic capabilities.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00768502&person=true&page=3&respub-action=search.html