Imperial College London

ProfessorDanielMortlock

Faculty of Natural SciencesDepartment of Physics

Professor of Astrophysics and Statistics
 
 
 
//

Contact

 

+44 (0)20 7594 7878d.mortlock Website

 
 
//

Location

 

1018ABlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

221 results found

Barnett R, Warren SJ, Banerji M, McMahon RG, Hewett PC, Mortlock DJ, Simpson C, Venemans BP, Ota K, Shibuya Tet al., 2015, The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641, Astronomy & Astrophysics, Vol: 575, ISSN: 1432-0746

Journal article

Arnaud M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit-Levy A, Bernard JT, Bersanelli M, Bielewicz P, Bonaldi A, Bond JR, Borril J, Bouchet ER, Bueini CS, Burigana C, Cardoso J-F, Casassus S, Catalano A, Cerrigone L, Chamballu A, Chiang HC, Colombi S, Colombo LPL, Couchot F, Crill BP, Curto A, Cuttaia E, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Donzelli S, Dore O, Dupac X, Ensslin TA, Eriksen HK, Finelli E, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Gonzalez-Nuevo J, Gorski KM, Gregorio A, Gruppuso A, Hansen EK, Harrison DL, Hildebrandt SR, Hivon E, Holmes WA, Hora JL, Hornstrup A, Hovest W, Huffenberger KM, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Kunz M, Kurki-Suonio H, Lahteenmaki A, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Leto P, Lilje PB, Linden-Vornle M, Lopez-Cannieo M, Macias-Perez JE, Maffei B, Maino D, Mandolesi N, Martin PG, Masi S, Massardi M, Matarrese S, Mazzotta P, Mendes L, Mennella A, Migliaccio M, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati E, Natoli P, Noviello F, Novikov D, Novikov I, Pagano L, Pajot F, Paladini R, Paoletti D, Peel M, Perdereau O, Perrotta E, Piacentini E, Piat M, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Popa L, Pratt GW, Procopio P, Prunet S, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Ricciardi S, Riller T, Ristorcelli I, Rocha G, Rossett C, Roudier G, Rubino-Martin JA, Rusholme B, Sandri M, Savini G, Scott D, Spencer LD, Stolyarov V, Sutton D, Suur-Uski A-S, Sygnet J-F, Tauber JA, Terenzi L, Toffolatti L, Tomasi M, Trigilio C, Tristram M, Trombetti T, Tucci M, Umana G, Valiviita J, Van Tent B, Vielva P, Villa E, Wade LA, Wandelt BD, Zacchei A, Zijlstra A, Zonca Aet al., 2015, <i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae, ASTRONOMY & ASTROPHYSICS, Vol: 573, ISSN: 0004-6361

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bertincourt B, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Filliard C, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Le Jeune M, Lellouch E, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Maurin L, Mazzotta P, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Moreno R, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini R, Paoletti D, Partridge B, Pasian F, Patanchon G, Pearson TJ, Peet al., 2014, Planck 2013 results. VIII. HFI photometric calibration and mapmaking, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

This paper describes the methods used to produce photometrically calibrated maps from the Planck High Frequency Instrument (HFI) cleaned, time-ordered information. HFI observes the sky over a broad range of frequencies, from 100 to 857  GHz. To obtain the best calibration accuracy over such a large range, two different photometric calibration schemes have to be used. The 545 and 857 GHz data are calibrated by comparing flux-density measurements of Uranus and Neptune with models of their atmospheric emission. The lower frequencies (below 353  GHz) are calibrated using the solar dipole. A component of this anisotropy is time-variable, owing to the orbital motion of the satellite in the solar system. Photometric calibration is thus tightly linked to mapmaking, which also addresses low-frequency noise removal. By comparing observations taken more than one year apart in the same configuration, we have identified apparent gain variations with time. These variations are induced by non-linearities in the read-out electronics chain. We have developed an effective correction to limit their effect on calibration. We present several methods to estimate the precision of the photometric calibration. We distinguish relative uncertainties (between detectors, or between frequencies) and absolute uncertainties. Absolute uncertainties lie in the range from 0.54% to 10% from 100 to 857  GHz. We describe the pipeline used to produce the maps from the HFI timelines, based on the photometric calibration parameters, and the scheme used to set the zero level of the maps a posteriori. We also discuss the cross-calibration between HFI and the SPIRE instrument on board Herschel. Finally we summarize the basic characteristics of the set of HFI maps included in the 2013 Planck data release.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bowyer JW, Bridges M, Bucher M, Burigana C, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rose A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Girard D, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Herent O, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Le Jaune M, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Mandolesi N, Maris M, Marleau F, Marshall J, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Meinhold PR, Melchiorri A, Melot F, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Mottet S, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, North C, Noviello F, Novikov D, Novikov I, Orieux F, Osborne S, Oxborrow CA, Paci F, Paganoet al., 2014, Planck 2013 results. VI. High frequency instrument data processing, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100−353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela E, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Bowyer JW, Bridges M, Bucher M, Burigana C, Cardoso J-E, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia E, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Haissinski J, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneiss R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matsumura T, Matthai E, Mazzotta P, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati E, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczet al., 2014, Planck 2013 results. VII. HFI time response and beams, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Castex G, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Cruz M, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dobler G, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huey G, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Le Jeune M, Leach S, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marcos-Caballero A, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mikkelsen K, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello Fet al., 2014, Planck 2013 results. XII. Diffuse component separation, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to ℓ = 2000. The parameter constraints on ΛCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about β = −4 to − 2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (β< −3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colley J-M, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Mottet S, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, O'Sullivan C, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini R, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentiniet al., 2014, Planck 2013 results. XIV. Zodiacal emission, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model – a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen through the telescope’s far sidelobes, and place limits on possible contamination of the cosmic microwave background (CMB) results from both zodiacal and far-sidelobe emission. When necessary, the results are used in the Planck pipeline to make maps with zodiacal emission and far sidelobes removed. We show that the zodiacal correction to the CMB maps is small compared to the Planck CMB temperature power spectrum and give a list of flux densities for small solar system bodies.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Calabrese E, Cappellini B, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Gaier TC, Galeotta S, Galli S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Haissinski J, Hamann J, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Laureijs RJ, Lawrence CR, Leach S, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Menegoni E, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoliet al., 2014, Planck 2013 results. XVI. Cosmological parameters, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (ℓ ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spe

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela E, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Basak S, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Dechelette T, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Ho S, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lavabre A, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Partridge B Pet al., 2014, Planck 2013 results. XVII. Gravitational lensing by large-scale structure, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Basak S, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bethermin M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lacasa F, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon Det al., 2014, Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

The multi-frequency capability of the Planck satellite provides information both on the integrated history of star formation (via the cosmic infrared background, or CIB) and on the distribution of dark matter (via the lensing effect on the cosmic microwave background, or CMB). The conjunction of these two unique probes allows us to measure directly the connection between dark and luminous matter in the high redshift (1 ≤ z ≤ 3) Universe. We use a three-point statistic optimized to detect the correlation between these two tracers, using lens reconstructions at 100, 143, and 217 GHz, together with CIB measurements at 100–857 GHz. Following a thorough discussion of possible contaminants and a suite of consistency tests, we report the first detection of the correlation between the CIB and CMB lensing. The well matched redshift distribution of these two signals leads to a detection significance with a peak value of 42/19σ (statistical/statistical + systematics) at 545 GHz and a correlation as high as 80% across these two tracers. Our full set of multi-frequency measurements (both CIB auto- and CIB-lensing cross-spectra) are consistent with a simple halo-based model, with a characteristic mass scale for the halos hosting CIB sources of log10(M/M⊙) = 10.5 ± 0.6. Leveraging the frequency dependence of our signal, we isolate the high redshift contribution to the CIB, and constrain the star formation rate (SFR) density at z ≥ 1. We measure directly the SFR density with around 2σ significance for three redshift bins between z = 1 and 7, thus opening a new window into the study of the formation of stars at early times.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandelals E, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot E, Coulais A, Crill BP, Curto A, Cuttaia E, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Fomi O, Fosalba P, Frailis M, Franceschi E, Frommert M, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen EK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Ho S, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Ilic S, Jaffe AH, Jaffe TR, Jasche J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Laehteenmaeki A, Lamarre J-M, Langer M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Marshall DJ, Martins PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthais E, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci E, Pagano L, Pajet al., 2014, Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4σ, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-ℓ and high-ℓ temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5σ. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3σ, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4σ signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5σ at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within ΛCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck’s broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW tempera

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartlett JG, Battaner E, Battye R, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bikmaev I, Blanchard A, Bobin J, Bock JJ, Boehringer H, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bourdin H, Bridges M, Brown ML, Bucher M, Burenin R, Burigana C, Butler RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang L-Y, Chiang HC, Chon G, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Da Silva A, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Democles J, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Flores-Cacho I, Forni O, Frailis M, Franceschi E, Fromenteau S, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe TR, Jaffe AH, Jones WC, Juvela M, Keihanen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Liddle A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marcos-Caballero A, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Melin J-B, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P Net al., 2014, Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass M and SZ signal Y calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8 and matter density parameter Ωm in a flat ΛCDM model. We test the robustness of our estimates and find that possible biases in the Y–M relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8 = 0.75 ± 0.03, Ωm = 0.29 ± 0.02, and σ8(Ωm/ 0.27)0.3 = 0.764 ± 0.025. The value of σ8 is degenerate with the mass bias; if the latter is fixed to a value of 20% (the central value from numerical simulations) we find σ8(Ωm/0.27)0.3 = 0.78 ± 0.01 and a tighter one-dimensional range σ8 = 0.77 ± 0.02. We find that the larger values of σ8 and Ωm preferred by Planck’s measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the ΛCDM model, such as a component of massive neutrinos. We place our results in the context of other determinations of cosmologicalparameters, and discus

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro B, Bartlett JG, Battanerioo E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Da Silva A, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore A, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Flores-Cacho I, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lacasa F, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Loen-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marcos-Caballero A, Maris M, Marshall DJ, Martin G, Macinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Melchiorri A, Melin J-B, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti Det al., 2014, Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales (ℓ < 60), the major foreground contaminant is the diffuse thermal dust emission. At small angular scales (ℓ > 500) the clustered cosmic infrared background and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We thus measure the tSZ power spectrum over angular scales 0.17° ≲ θ ≲ 3.0° that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with clear evidence of additional signal from unresolved clusters and, potentially, diffuse warm baryons. Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on σ8.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Battye R, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Cruz M, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fantaye Y, Fergusson J, Finelli F, Forni O, Frailis M, Franceschi E, Frommert M, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hansen M, Hanson D, Harrison DL, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kim J, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lille PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Mangilli A, Marinucci D, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McEwen JD, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mikkelsen K, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov Iet al., 2014, Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

The two fundamental assumptions of the standard cosmological model – that the initial fluctuations are statistically isotropic and Gaussian – are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. The detailed results are based on studies of four independent estimates of the CMB that are compared to simulations using a fiducial ΛCDM model and incorporating essential aspects of the Planck measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice, and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3σ). However, we find little evidence of non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance in the CMB signal. A power asymmetry is now found to persist on scales corresponding to about ℓ = 600 and can be described in the low-ℓ regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend toarbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence of a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is stil

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bemard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bemardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Gaier TC, Galeotta S, Galli S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Homtrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Kesldtalo R, Kiiveri K, Kisner TS, krieiss R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Laureijs RJ, Lawrence CR, Le Jeune M, Leach S, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lindholm V, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Marinucci D, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Menegoni E, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschenes M-A, Molinari D, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky Pet al., 2014, Planck 2013 results. XV. CMB power spectra and likelihood, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral i

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, Battaner E, Battye R, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang L-Y, Chiang HC, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Fergusson J, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe TR, Jaffe AH, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Matthai F, Mazzotta P, McEwen JD, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Peiris HV, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Piet al., 2014, Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in the underlying strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as f10 at multipole ℓ = 10. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of Gμ/c2 < 1.5 × 10-7 and f10 < 0.015 at 95% confidence that can be improved to Gμ/c2 < 1.3 × 10-7 and f10 < 0.010 on inclusion of high-ℓ CMB data. For the Abelian-Higgs field theory model we find, GμAH/c2< 3.2 × 10-7 and f10 < 0.028. The marginalised likelihoods for f10 and in the f10–Ωbh2 plane are also presented. We have additionally obtained comparable constraints on f10 for models with semilocal strings and global textures. In terms of the effective defect energy scale these are somewhat weaker at Gμ/c2 < 1.1 × 10-6. We have made complementarity searches for the specific non-Gaussian signatures of cosmic strings, calibrating with all-sky Planck resolution CMB maps generated from networks of post-recombination strings. We have validated our non-Gaussian searches using these simulated maps in a Planck-realistic context, estimating sensitivities of up to ΔGμ/c2 ≈ 4 × 10-7. We have obtained upper limits on the string tension at 95% confidence of Gμ/c2 < 9.0 × 10-7 with modal bispectrum estimation and Gμ/c2 < 7.8 × 10-7 for real space searches with Minkowski functi

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Fabre O, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McEwen JD, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Peiris HV, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobet al., 2014, Planck 2013 results. XXVI. Background geometry and topology of the universe, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance χrec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ℛi of the largest sphere inscribed in topological domain (at log-likelihood-ratio Δln ℒ > −5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ℛi> 0.92χrec for the T3 cubic torus; ℛi> 0.71χrec for the T2 chimney; ℛi> 0.50χrec for the T1 slab; and in a positively curved Universe, ℛi> 1.03χrec for the d

Journal article

Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Bridges M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Chiang L-Y, Christensen PR, Clements DL, Colombo LPL, Couchot F, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Diego JM, Donzelli S, Dore O, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Helou G, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hovest W, Huffenberger KM, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Lewis A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Migliaccio M, Mitra S, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Nati F, Natoli P, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perrotta F, Piacentini F, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prezeau G, Puget J-L, Rachen JP, Reach WT, Reinecke M, Ricciardi S, Riller T, Ristorcelli I, Rocha G, Rosset C, Rubino-Martin JA, Rusholme B, Santos D, Savini G, Scott D, Seiffert MD, Shellard EPS, Spencer LD, Sunyaev R, Sureau F, Suur-Uski A-S, Sygnet J-F, Tauber JA, Tavagnacco D, Terenzi L, Toffolatti L, Tomasi M, Tristram Met al., 2014, Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky which has been well measured for more than 30 years, and has an accepted amplitude of v/c = 1.23 × 10-3, or v = 369. In addition to this signal generated by Doppler boosting of the CMB monopole, our motion also modulates and aberrates the CMB temperature fluctuations (as well as every other source of radiation at cosmological distances). This is an order 10-3 effect applied to fluctuations which are already one part in roughly 105, so it is quite small. Nevertheless, it becomes detectable with the all-sky coverage, high angular resolution, and low noise levels of the Planck satellite. Here we report a first measurement of this velocity signature using the aberration and modulation effects on the CMB temperature anisotropies, finding a component in the known dipole direction, (l,b) = (264°,48°), of 384 km s-1 ± 78 km s-1 (stat.) ± 115 km s-1 (syst.). This is a significant confirmation of the expected velocity.

Journal article

Ade PAR, Aghanim N, Argueeso F, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Beelen A, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clemens M, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Negrello M, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, O'Dwyer IJ, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini Ret al., 2014, Planck 2013 results. XXVIII. The Planck catalogue of compact sources, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 1432-0746

The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the “nominal” mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30–857 GHz with higher sensitivity (it is 90% complete at 180 mJy in the best channel) and better angular resolution (from 32.88′ to 4.33′) than previous all-sky surveys in this frequency band. By construction its reliability is >80% and more than 65% of the sources have been detected in at least two contiguous Planck channels. In this paper we present the construction and validation of the PCCS, its contents and its statistical characterization.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Aussel H, Baccigalupi C, Banday AJ, Barreiro RB, Barrena R, Bartelinann M, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J, Bersanelli M, Bielewicz P, Bikmaev I, Bobin J, Bock JJ, Boehringer H, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burenin R, Burigana C, Butier RC, Cardoso J-F, Carvalho P, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Chon G, Christensen PR, Churazov E, Church S, Clements DL, Colombi S, Colombo LPL, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Da Silva A, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouilie J, Delouis J-M, Democles J, Desert F-X, Dickinson C, Diego IM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Eisenhardt PRM, Ensslin TA, Eriksen HK, Feroz F, Finelli F, Flores-Cacho I, Forni O, Frailis M, Franceschi E, Fromenteau S, Galeotta S, Ganga K, Genova-Santos RT, Giard M, Giardino G, Gilfanov M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Grainge KJB, Gratton S, Gregorio A, Groeneboom NE, Gruppuso A, Hansen FK, Hanson D, Harrison D, Hempel A, Elenrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Homstrup A, Hovest W, Huffenberger KM, Hurier G, Hurley-Walker N, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Khamitov I, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Laeache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leon-Tavares J, Lesgourgues J, Li C, Liddle A, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, MacTavish CJ, Maffei B, Maino D, Mandolesi N, Maris M, Marshal DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Mei S, Meinhold PR, Meichiorri A, Melin J-B, Mendes L, Mennelia A, Miglet al., 2014, Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M⊙. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys.

Journal article

Ade PAR, Aghanim N, Alves MIR, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardos J-F, Catalano A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Dempsey JT, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Franceschi E, Fukui Y, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Handa T, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hily-Blant P, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffein B, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Moore TJT, Morgante G, Morino J, Mortlock D, Munshi D, Murphy JA, Nakajima T, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviellon F, Novikov D, Novikov I, Okuda T, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini R, Paoet al., 2014, Planck 2013 results. XIII. Galactic CO emission, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Combet C, Comis B, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Ciard M, Giraud-Heraud Y, Gonzadlez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Hurier G, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Keihanen E, Keskitalo R, Kisner TS, Kneiss R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Leroy C, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, North C, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paoletti D, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynet al., 2014, Planck 2013 results. IX. HFI spectral response, Astronomy and Astrophysics, Vol: 571, ISSN: 0004-6361

The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction c

Journal article

Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cappellini B, Cardoso J-F, Catalano A, Chamballu A, Chen X, Chiang L-Y, Christensen PR, Church S, Colombi S, Colombo LPL, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Gaier TC, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Kangaslahti P, Keihanen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leach S, Leahy JP, Leonard R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Novikov D, Novikov I, O'Dwyer IJ, Osborne S, Paci F, Pagano L, Paladini R, Paoletti D, Partridge B, Pasian F, Patanchon G, Pearson D, Peel M, Perdereau O, Perotto L, Perrotta F, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Poutanen T, Pratt GW, Prezeet al., 2014, <i>Planck</i> 2013 results. V. LFI calibration, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 0004-6361

Journal article

Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Chamballu A, Chiang L-Y, Christensen PR, Church S, Colombi S, Colombo LPL, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Gaier TC, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Kangaslahti P, Keihanen E, Keskitalo R, Kiiveri K, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lindholm V, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Novikov D, Novikov I, O'Dwyer IJ, Osborne S, Paci F, Pagano L, Paoletti D, Partridge B, Pasian F, Patanchon G, Perdereau O, Perotto L, Perrotta F, Pierpaoli E, Pietrobon D, Plaszczynski S, Platania P, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Poutanen T, Pratt GW, Prezeau G, Prunet S, Puget J-L, Rachen JP, Rebolo R, Reinecke M Ret al., 2014, <i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 0004-6361

Journal article

Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Chamballu A, Chiang L-Y, Cristensen PR, Church S, Olombi SC, Colombo LPL, Crill BP, Cruz M, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rose A, de Zotti G, Delabrouillei J, Dick J, Dickinson C, Diego JM, Dole H, Donzeli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Gaier TC, Galeotta S, Ganga K, Giard M, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Jones WC, Juvela M, Kaneaslahti P, Keihanen E, Keskitalo R, Kuveri K, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lindholm V, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Mieliaccio M, Mitra S, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Naselsky P, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Novikov D, Novikov I, O'Dwyer IJ, Osborne S, Paci F, Pagano L, Paladini R, Paoletti D, Partridge B, Pasian F, Patanchon G, Pearson D, Peel M, Perdereau O, Perotto L, Perrotta F, Pierpaoli E, Pietrobon D, Plaszczynski S, Platania P, Pointecouteau E, Polenta G, Ponthieu N, Popa I, Poutanen T, Pratt GWet al., 2014, <i>Planck</i> 2013 results. III. LFI systematic uncertainties, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 0004-6361

Journal article

Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Bridges M, Bucher M, Burigana C, Butler RC, Cappellini B, Cardoso J-F, Catalano A, Chamballu A, Chen X, Chiang L-Y, Christensen PR, Church S, Colombi S, Colombo LPL, Crill BP, Cruz M, Curto A, Cattaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falvella MC, Finelli F, Forni O, Frailis M, Franceschi E, Gaier TC, Galeotta S, Ganga K, Giard M, Giardino G, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewel J, Jones WC, Juvela M, Kangaslahti P, Keihanen E, Keskitalo R, Kiiveri K, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lattanzi M, Laureijs RJ, Lawrence CR, Leach S, Leahy JP, Leonardi R, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lindholm V, Lopez-Caniego M, Lubin PM, Macias-Perez JE, Maggio G, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Moneti A, Montier L, Morgantes G, Morisset N, Mortlock D, Moss A, Munshi D, Naseisky P, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Novikov D, Novikov I, O'Dwyer IJ, Osborne S, Paci F, Pagano L, Paladini R, Paoletti D, Partridge B, Pasian F, Patanchon G, Peel M, Perdereau O, Perotto L, Perrotta F, Pierpaoli E, Pietrobon D, Plaszczynski S, Plataniet al., 2014, <i>Planck</i> 2013 results. II. Low Frequency Instrument data processing, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 0004-6361

Journal article

Abergel A, Ade PAR, Aghanim N, Alves MIR, Aniano G, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Chamballu A, Chary R-R, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clemens M, Clements DL, Colombi S, Colombo LPL, Combet C, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Draine BT, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Falgarone E, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Ghosh T, Giard M, Giardino G, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Grenier IA, Gruppuso A, Guillet V, Hansen FK, Hanson D, Harrison DL, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jewell J, Joncas G, Jones WC, Juvela M, Keihaenen E, Keskitalo R, Kisner TS, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lagache G, Laehteenmaeki A, Lamarre J-M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leon-Tavares J, Lesgourgues J, Levrier F, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, McGehee P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrowet al., 2014, <i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 0004-6361

Journal article

Ade PAR, Aghanim N, Armitage-Caplan C, Arnaud M, Ashdown M, Atrio-Barandela F, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Battaner E, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bethermin M, Bielewicz P, Blagrave K, Bobin J, Bock JJ, Bonaldi A, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bridges M, Bucher M, Burigana C, Butler RC, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chen X, Chiang HC, Chiang L-Y, Christensen PR, Church S, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Delouis J-M, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Efstathiou G, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Franceschi E, Galeotta S, Ganga K, Ghosh T, Giard M, Giraud-Heraud Y, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Hansen FK, Hanson D, Harrison D, Helou G, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Juvela M, Kalberla P, Keihanen E, Kerp J, Keskitalo R, Kisner TS, Kneissl R, Knoche J, Knox L, Kunz M, Kurki-Suonio H, Lacasa F, Lagache G, Lahteenmaki A, Lamarre J-M, Langer M, Lasenby A, Laureijs RJ, Lawrence CR, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maffei B, Maino D, Mandolesi N, Maris M, Marshall DJ, Martin PG, Martinez-Gonzalez E, Masi S, Massardi M, Matarrese S, Matthai F, Mazzotta P, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Netterfield CB, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Osborne S, Oxborrow CA, Paci F, Pagano L, Pajot F, Paladini R, Paoletti D, Partridge B, Pasian F, Patanet al., 2014, <i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation, ASTRONOMY & ASTROPHYSICS, Vol: 571, ISSN: 0004-6361

Journal article

Ade PAR, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Battaner E, Benabed K, Benoit-Levy A, Bernard J-P, Bersanelli M, Bielewicz P, Bond JR, Borrill J, Bouchet FR, Burigana C, Cardoso J-F, Catalano A, Challinor A, Chamballu A, Chiang HC, Christensen PR, Clements DL, Colombi S, Colombo LPL, Couchot F, Coulais A, Crill BP, Curto A, Cuttaia F, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Delabrouille J, Desert F-X, Dickinson C, Diego JM, Dole H, Donzelli S, Dore O, Douspis M, Dupac X, Ensslin TA, Eriksen HK, Finelli F, Forni O, Frailis M, Fraisse AA, Franceschi E, Galeotta S, Ganga K, Giard M, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Hansen FK, Hanson D, Harrison DL, Henrot-Versille S, Herranz D, Hildebrandt SR, Hivon E, Hobson M, Holmes WA, Hornstrup A, Hovest W, Huffenberger KM, Jaffe AH, Jaffe TR, Jones WC, Keihaenen E, Keskitalo R, Knoche J, Kunz M, Kurki-Suonio H, Lagache G, Lahteenmaki A, Lamarre J-M, Lasenby A, Lawrence CR, Leonardi R, Leon-Tavares J, Lesgourgues J, Liguori M, Lilje PB, Linden-Vornle M, Lopez-Caniego M, Lubin PM, Macias-Perez JF, Maino D, Mandolesi N, Maris M, Martin PG, Martinez-Gonzalez E, Masi S, Matarrese S, Mazzotta P, Meinhold PR, Melchiorri A, Mendes L, Mennella A, Migliaccio M, Mitra S, Miville-Deschenes M-A, Moneti A, Montier L, Morgante G, Mortlock D, Moss A, Munshi D, Murphy JA, Naselsky P, Nati F, Natoli P, Norgaard-Nielsen HU, Noviello F, Novikov D, Novikov I, Oxborrow CA, Pagano L, Pajot F, Paoletti D, Partridge B, Pasian F, Patanchon G, Pearson D, Pearson TJ, Perdereau O, Perrotta F, Piacentini F, Piat M, Pierpaoli E, Pietrobon D, Plaszczynski S, Pointecouteau E, Polenta G, Ponthieu N, Popa L, Pratt GW, Prunet S, Puget J-L, Rachen JP, Reinecke M, Remazeilles M, Renault C, Ricciardi S, Ristorcelli I, Rocha G, Roudier G, Rubino-Martin JA, Rusholme B, Sandri M, Scott D, Stolyarov V, Sudiwala R, Sutton D, Suur-Uski A-S, Sygnet J-F, Tauber JA, Tereet al., 2014, Planck 2013 results. XXXI. Consistency of the Planck data, Astronomy & Astrophysics, Vol: 571, ISSN: 1432-0746

Journal article

Ade PAR, Aghanim N, Alves MIR, Armitage-Caplan C, Amaud M, Ashdown M, Atrio-Barandela F, Aumont J, Ausse H, Baccigalupi C, Banday AJ, Barreiro RB, Barrenass R, Bartelmann M, Bartlett JG, Bartolo N, Basak S, Battaner E, Battye R, Benabed K, Benoit A, Benoit-Levy A, Bernard J-P, Bersanelli M, Bertincourt B, Bethermin M, Bielewicz P, Bikmaev I, Blanchard A, Bobin J, Bock JJ, Boehringer H, Bonaldi A, Bonavera L, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bourdin H, Bowyer JW, Bridges M, Brown ML, Bucher M, Burenin R, Burigana C, Butler RC, Calabrese E, Cappellini B, Cardoso J-F, Carr R, Carvalho P, Casale M, Castexl G, Catalano A, Challinor A, Chamballu A, Chary R-R, Chen X, Chiang HC, Chiang L-Y, Chon G, Christensen PR, Churazov E, Church S, Clemens M, Clements DL, Colombi S, Colombo LPL, Combet C, Comis B, Couchot E, Coulais A, Crill BP, Cruz M, Curto A, Cuttaia F, Da Silva A, Dahle H, Danese L, Davies RD, Davis RJ, de Bernardis P, de Rosa A, de Zotti G, Dechelette T, Delabrouille J, Delouis J-M, Democles J, Desert F-X, Dick J, Dickinson C, Diego JM, Dolag K, Dole H, Donzelli S, Dore O, Douspis M, Ducout A, Dunkley J, Dupac X, Efstathiou G, Elsner F, Ensslin TA, Eriksen HK, Fabre O, Falgarone E, Falvella MC, Fantaye Y, Fergusson J, Filliard C, Finelli F, Flores-Cacho I, Foley S, Forni O, Fosalba P, Frailis M, Fraisse AA, Franceschi E, Freschi M, Fromenteau S, Frommert M, Gaier TC, Galeotta S, Gallegos J, Galli S, Gandolfo B, Ganga K, Gauthier C, Genova-Santos RT, Ghosh T, Giard M, Giardino G, Gilfanov M, Girard D, Giraud-Heraud Y, Gjerlow E, Gonzalez-Nuevo J, Gorski KM, Gratton S, Gregorio A, Gruppuso A, Gudmundsson JE, Haissinski J, Hamann J, Hansen FK, Hansen M, Hanson D, Harrison DL, Heavens A, Helou G, Hempel A, Henrot-Versille S, Hernandez-Monteagudo C, Herranz D, Hildebrandt SR, Hivon E, Ho S, Hobson M, Holmes WA, Hornstrup A, Hou Z, Hovest W, Huey G, Huffenberger KM, Hurier G, Ilic S, Jaffe AH, Jaffe TR, Jasches J, Jewell J, Jones WC, Juvela M, Kalberla P, Kaet al., 2014, Planck 2013 results. I. Overview of products and scientific results, Astronomy & Astrophysics, Vol: 571, ISSN: 1432-0746

The European Space Agency’s Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck’s results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluc

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00452415&limit=30&person=true&page=4&respub-action=search.html