Publications
94 results found
Nordström H, Söder L, Flynn D, et al., 2023, Strategies for continuous balancing in future power systems with high wind and solar shares, Energies, Vol: 16, Pages: 1-43, ISSN: 1996-1073
The use of wind power has grown strongly in recent years and is expected to continue to increase in the coming decades. Solar power is also expected to increase significantly. In a power system, a continuous balance is maintained between total production and demand. This balancing is currently mainly managed with conventional power plants, but with larger amounts of wind and solar power, other sources will also be needed. Interesting possibilities include continuous control of wind and solar power, battery storage, electric vehicles, hydrogen production, and other demand resources with flexibility potential. The aim of this article is to describe and compare the different challenges and future possibilities in six systems concerning how to keep a continuous balance in the future with significantly larger amounts of variable renewable power production. A realistic understanding of how these systems plan to handle continuous balancing is central to effectively develop a carbon-dioxide-free electricity system of the future. The systems included in the overview are the Nordic synchronous area, the island of Ireland, the Iberian Peninsula, Texas (ERCOT), the central European system, and Great Britain.
Giannelos S, Borozan S, Aunedi M, et al., 2023, Modelling smart grid technologies in optimisation problems for electricity grids, Energies, Vol: 16, Pages: 1-15, ISSN: 1996-1073
The decarbonisation of the electricity grid is expected to create new electricity flows. As a result, it may require that network planners make a significant amount of investments in the electricity grids over the coming decades so as to allow the accommodation of these new flows in a way that both the thermal and voltage network constraints are respected. These investments may include a portfolio of infrastructure assets consisting of traditional technologies and smart grid technologies. One associated key challenge is the presence of uncertainty around the location, the timing, and the amount of new demand or generation connections. This uncertainty unavoidably introduces risk into the investment decision-making process as it may lead to inefficient investments and inevitably give rise to excessive investment costs. Smart grid technologies have properties that enable them to be regarded as investment options, which can allow network planners to hedge against the aforementioned uncertainty. This paper focuses on key smart technologies by providing a critical literature review and presenting the latest mathematical modelling that describes their operation.
Pudjianto D, Frost C, Coles D, et al., 2023, UK studies on the wider energy system benefits of tidal stream, Energy Advances, Vol: 2
With high predictability and a consistent energy availability profile, Tidal Stream (TS) could play an important part in the optimal future low-carbon energy mix, improving the supply reliability and system resilience through diversification of renewable energy supplementing wind and solar power. This paper summarises key findings from UK studies on the benefits of TS by assessing its impact on the overall energy system. The studies use the Integrated Whole Energy System (IWES) model to minimise the overall cost of the 2050 GB energy system with and without TS under different scenarios while respecting the net-zero emission target and reliability requirement. The results show that TS could displace some capacity of mid-merit or peaking plants, indicating some capacity value of offshore wind and lowering the levelised cost of wind power because of lower system integration costs. Diversifying energy resources and improving flexibility are crucial to coping with low-carbon energy resource variation. The studies also demonstrate that the value of TS by 2050 should be around £50 per MW per h, and this cost target could be achieved if a sufficient learning rate (10-15%) with 10 GW of installed capacity could be obtained in the transition period. Other sensitivity studies provide insight into the impact of location, heat decarbonisation pathways, lower annual wind capacity factor, system flexibility, and interconnection capacity on TS's wider energy system benefits.
Pudjianto D, 2023, Role and value of tidal stream - sensitivity studies appendix
Giannelos S, Moreira A, Papadaskalopoulos D, et al., 2023, A machine learning approach for generating and evaluating forecasts on the environmental impact of the buildings sector, Energies, Vol: 16, Pages: 1-37, ISSN: 1996-1073
The building sector has traditionally accounted for about 40% of global energy-related carbon dioxide (CO2) emissions, as compared to other end-use sectors. Due to this fact, as part of the global effort towards decarbonization, significant resources have been placed on the development of technologies, such as active buildings, in an attempt to achieve reductions in the respective CO2 emissions. Given the uncertainty around the future level of the corresponding CO2 emissions, this work presents an approach based on machine learning to generate forecasts until the year 2050. Several algorithms, such as linear regression, ARIMA, and shallow and deep neural networks, can be used with this approach. In this context, forecasts are produced for different regions across the world, including Brazil, India, China, South Africa, the United States, Great Britain, the world average, and the European Union. Finally, an extensive sensitivity analysis on hyperparameter values as well as the application of a wide variety of metrics are used for evaluating the algorithmic performance.
Keppo I, Mazza A, Natalini D, et al., 2022, Introduction to EMP-E 2019 special issue "Modelling the implementation of 'A Clean Planet for All' strategy", Energy Strategy Reviews, Vol: 41, Pages: 1-3, ISSN: 2211-467X
Fu P, Pudjianto D, Strbac G, 2020, Integration of power-to-gas and low-carbon road transport in Great Britain's future energy system, IET Renewable Power Generation, Vol: 14, Pages: 3393-3400, ISSN: 1752-1416
Integrating decarbonisation strategies for road transport and electricity is vital to minimise the overall cost of meeting the carbon target. This integration maximises the synergy across different energy sectors to improve the value and utilisation of investment, especially in low-carbon technologies across all sectors. This study presents an integrated multi-energy optimisation model to evaluate the economic performance and system implications of different road-transport decarbonisation strategies and analyse the synergy with the power sector decarbonisation. The large-scale optimisation model is formulated to consider the interactions across electricity, hydrogen, and transport sectors and used to determine the optimal solutions for investment and sector-coupling operation in the system. The proposed model is tested using a range of transport decarbonisation scenarios considering the deployment of electric or hydrogen vehicles or their combination and the integration with the power system. The studies analyse the economic performance and optimal energy system portfolios across different scenarios. The results demonstrate the importance of road-transport and power-to-gas integration in Great Britain's future energy system.
Strbac G, Pudjianto D, Aunedi M, et al., 2020, Role and value of flexibility in facilitating cost-effective energy system decarbonisation, Progress in Energy, Vol: 2
Decarbonisation of the electricity system requires significant and continued investment in low-carbon energy sources and electrification of the heat and transport sectors. With diminishing output and shorter operating hours of conventional large-scale fossil fuel generators, there is a growing need and opportunity for other emerging technologies to provide flexibility in the context of grid support, balancing, security services, and investment options to support a cost-effective transition to a lower-carbon energy system. This article summarises the key findings from a range of studies investigating the potential benefits and challenges associated with the future low-carbon energy system. The key challenges associated with balancing local, national and regional objectives to minimise the overall cost of decarbonising the future energy system are also discussed. Furthermore, the paper highlights the importance of cross-energy vector flexibility, and coordination across electricity, heat, and gas systems which is critical for shaping the future low-carbon energy systems. Although most of the case studies presented in this article are based on the UK, and to some extent the EU decarbonisation pathways, the overall conclusions regarding the value of flexibility are relevant for the global energy transition.
Fu P, Pudjianto D, Zhang X, et al., 2020, Integration of hydrogen into multi-energy systems optimisation, Energies, Vol: 13, Pages: 1606-1606, ISSN: 1996-1073
Hydrogen presents an attractive option to decarbonise the present energy system. Hydrogen can extend the usage of the existing gas infrastructure with low-cost energy storability and flexibility. Excess electricity generated by renewables can be converted into hydrogen. In this paper, a novel multi-energy systems optimisation model was proposed to maximise investment and operating synergy in the electricity, heating, and transport sectors, considering the integration of a hydrogen system to minimise the overall costs. The model considers two hydrogen production processes: (i) gas-to-gas (G2G) with carbon capture and storage (CCS), and (ii) power-to-gas (P2G). The proposed model was applied in a future Great Britain (GB) system. Through a comparison with the system without hydrogen, the results showed that the G2G process could reduce £3.9 bn/year, and that the P2G process could bring £2.1 bn/year in cost-savings under a 30 Mt carbon target. The results also demonstrate the system implications of the two hydrogen production processes on the investment and operation of other energy sectors. The G2G process can reduce the total power generation capacity from 71 GW to 53 GW, and the P2G process can promote the integration of wind power from 83 GW to 130 GW under a 30 Mt carbon target. The results also demonstrate the changes in the heating strategies driven by the different hydrogen production processes.
Soder L, Tomasson E, Estanqueiro A, et al., 2020, Review of wind generation within adequacy calculations and capacity markets for different power systems, Renewable and Sustainable Energy Reviews, Vol: 119, Pages: 1-15, ISSN: 1364-0321
The integration of renewable energy sources, including wind power, in the adequacy assessment of electricity generation capacity becomes increasingly important as renewable energy generation increases in volume and replaces conventional power plants. The contribution of wind power to cover the electricity demand is less certain than conventional power sources; therefore, the capacity value of wind power is smaller than that of conventional plants.This article presents an overview of the adequacy challenge, how wind power is handled in the regulation of capacity adequacy, and how wind power is treated in a selection of jurisdictions. The jurisdictions included in the overview are Sweden, Great Britain, France, Ireland, United States (PJM and ERCOT), Finland, Portugal, Spain, Norway, Denmark, Belgium, Germany, Italy and the Netherlands.
Giannelos S, Djapic P, Pudjianto D, et al., 2020, Quantification of the energy storage contribution to security of supply through the F-factor methodology, Energies, Vol: 13, Pages: 826-826, ISSN: 1996-1073
The ongoing electrification of the heat and transport sectors is expected to lead to a substantial increase in peak electricity demand over the coming decades, which may drive significant investment in network reinforcement in order to maintain a secure supply of electricity to consumers. The traditional way of security provision has been based on conventional investments such as the upgrade of the capacity of electricity transmission or distribution lines. However, energy storage can also provide security of supply. In this context, the current paper presents a methodology for the quantification of the security contribution of energy storage, based on the use of mathematical optimization for the calculation of the F-factor metric, which reflects the optimal amount of peak demand reduction that can be achieved as compared to the power capability of the corresponding energy storage asset. In this context, case studies underline that the F-factors decrease with greater storage power capability and increase with greater storage efficiency and energy capacity as well as peakiness of the load profile. Furthermore, it is shown that increased investment in energy storage per system bus does not increase the overall contribution to security of supply.
Pudjianto D, Djapic P, Strbac G, et al., 2020, DER reactive services and distribution network losses, CIRED 2020 Berlin Workshop (CIRED 2020), Publisher: Institution of Engineering and Technology (IET), Pages: 541-544, ISSN: 2515-0855
Managing synergies and conflicts between voltage support services and network losses is essential for the cost-effective integration of distributed energy resources (DERs). This study presents the results of studies investigating the impact of using DER reactive power services on distribution network losses. By using year-round optimal power flow analysis, a spectrum of studies on a number of distribution network areas in the southeast of Great Britain was performed to calculate distribution losses under different control scenarios. The studies demonstrate that the use of DERs to provide reactive services to the transmission system may increase distribution network losses. On the other hand, DER reactive services can also be optimised to minimise distribution losses. The studies also analysed the impact of optimising tap changing transformer settings on the distribution network losses reduction.
Orths A, Anderson CL, Brown T, et al., 2019, Flexibility from energy systems integration: supporting synergies mmong sectors, IEEE Power and Energy Magazine, Vol: 17, Pages: 67-78, ISSN: 1540-7977
Energy systems integration, or sector coupling, has several drivers that span climate impact mitigation and economics to social and regulatory considerations. A key question is what is sector coupling, and how does it impact the flexibility of the energy system? Here, the energy system includes several sectors - electricity, gas, heat, and transportation - that have been independent for decades in most countries except for their coupling via combined heat and power (CHP) units. In energy systems integration, some sectors may provide flexibility to other sectors, while other sectors will require flexibility when interlinking. To support these synergies among sectors, it is important to explore and quantify mutual interactions as well as seek examples of how these integrations can provide flexibility and other benefits. From the perspective of the electricity sector, it is important to ensure that there is enough flexibility in the interconnected systems to support decarbonization goals, such as those set in the Paris Agreement, while ensuring operational reliability.
Sun M, Djapic P, Aunedi M, et al., 2019, Benefits of smart control of hybrid heat pumps: an analysis of field trial data, Applied Energy, Vol: 247, Pages: 525-536, ISSN: 0306-2619
Smart hybrid heat pumps have the capability to perform smart switching between electricity and gas by employing a fully-optimized control technology with predictive demand-side management to automatically use the most cost-effective heating mode across time. This enables a mechanism for delivering flexible demand-side response in a domestic setting. This paper conducts a comprehensive analysis of the fine-grained data collected during the world’s first sizable field trial of smart hybrid heat pumps to present the benefits of the smart control technology. More specifically, a novel flexibility quantification framework is proposed to estimate the capability of heat pump demand shifting based on preheating. Within the proposed framework, accurate estimation of baseline heat demand during the days with interventions is fundamentally critical for understanding the effectiveness of smart control. Furthermore, diversity of heat pump demand is quantified across different numbers of households as an important input into electricity distribution network planning. Finally, the observed values of the Coefficient of Performance (COP) have been analyzed to demonstrate that the smart control can optimize the heat pump operation while taking into account a variety of parameters including the heat pump output water temperature, therefore delivering higher average COP values by maximizing the operating efficiency of the heat pump. Finally, the results of the whole-system assessment of smart hybrid heat pumps demonstrate that the system value of smart control is between 2.1 and 5.3 £ bn/year.
Sun M, Strbac G, Djapic P, et al., 2019, Preheating quantification for smart hybrid heat pumps considering uncertainty, IEEE Transactions on Industrial Informatics, Vol: 15, Pages: 4753-4763, ISSN: 1551-3203
The deployment of smart hybrid heat pumps can introduce considerable benefits to electricity systems via smart switching between electricity and gas while minimizing the total heating cost for each individual customer. In particular, the fully-optimized control technology can provide flexible heat that redistributes the heat demand across time for improving the utilization of low-carbon generation and enhancing the overall energy efficiency of the heating system. To this end, accurate quantification of preheating is of great importance to characterize the flexible heat. This paper proposes a novel data-driven preheating quantification method to estimate the capability of heat pump demand shifting and isolate the effect of interventions. Varieties of fine-grained data from a real-world trial are exploited to estimate the baseline heat demand using Bayesian deep learning while jointly considering epistemic and aleatoric uncertainties. A comprehensive range of case studies are carried out to demonstrate the superior performance of the proposed quantification method and then, the estimated demand shift is used as an input into the whole-system model to investigate the system implications and quantify the range of benefits of rolling-out the smart hybrid heat pumps developed by PassivSystems to the future GB electricity systems.
Strbac G, Pudjianto D, Aunedi M, et al., 2019, Cost-effective decarbonization in a decentralized market the benefits of using flexible technologies and resources, IEEE Power and Energy Magazine, Vol: 17, Pages: 25-36, ISSN: 1540-7977
Sun M, Teng F, Zhang X, et al., 2019, Data-driven representative day selection for investment decisions: a cost-oriented approach, IEEE Transactions on Power Systems, Vol: 34, Pages: 2925-2936, ISSN: 0885-8950
Power system investment planning problems become intractable due to the vast variability that characterizes system operation and the increasing complexity of the optimization model to capture the characteristics of renewable energy sources (RES). In this context, making optimal investment decisions by considering every operating period is unrealistic and inefficient. The conventional solution to address this computational issue is to select a limited number of representative operating periods by clustering the input demand-generation patterns while preserving the key statistical features of the original population. However, for an investment model that contains highly complex nonlinear relationship between input data and optimal investment decisions, selecting representative periods by relying on only input data becomes inefficient. This paper proposes a novel investment costoriented representative day selection framework for large scale multi-spacial investment problems, which performs clustering directly based on the investment decisions for each generation technology at each location associated with each individual day. Additionally, dimensionality reduction is performed to ensure that the proposed method is feasible for large-scale power systems and high-resolution input data. The superior performance of the proposed method is demonstrated through a series of case studies with different levels of modeling complexity.
Fu P, Pudjianto D, Zhang X, et al., 2019, Evaluating Strategies for Decarbonising the Transport Sector in Great Britain, IEEE Milan PowerTech Conference, Publisher: IEEE
- Author Web Link
- Cite
- Citations: 2
Zhang X, Strbac G, Shah N, et al., 2019, Whole-system assessment of the benefits of integrated electricity and heat system, IEEE Transactions on Smart Grid, Vol: 10, Pages: 1132-1145, ISSN: 1949-3061
The interaction between electricity and heat systems will play an important role in facilitating the cost effective transition to a low carbon energy system with high penetration of renewable generation. This paper presents a novel integrated electricity and heat system model in which, for the first time, operation and investment timescales are considered while covering both the local district and national level infrastructures. This model is applied to optimize decarbonization strategies of the UK integrated electricity and heat system, while quantifying the benefits of the interactions across the whole multi-energy system, and revealing the trade-offs between portfolios of (a) low carbon generation technologies (renewable energy, nuclear, CCS) and (b) district heating systems based on heat networks (HN) and distributed heating based on end-use heating technologies. Overall, the proposed modeling demonstrates that the integration of the heat and electricity system (when compared with the decoupled approach) can bring significant benefits by increasing the investment in the heating infrastructure in order to enhance the system flexibility that in turn can deliver larger cost savings in the electricity system, thus meeting the carbon target at a lower whole-system cost.
Papadaskalopoulos D, Moreira R, Strbac G, et al., 2018, Quantifying the potential economic benefits of flexible industrial demand in the European power system, IEEE Transactions on Industrial Informatics, Vol: 14, Pages: 5123-5132, ISSN: 1551-3203
The envisaged decarbonization of the European power system introduces complex techno-economic challenges to its operation and development. Demand flexibility can significantly contribute in addressing these challenges and enable a cost-effective transition to the low-carbon future. Although extensive previous work has analyzed the impacts of residential and commercial demand flexibility, the respective potential of the industrial sector has not yet been thoroughly investigated despite its large size. This paper presents a novel, whole-system modeling framework to comprehensively quantify the potential economic benefits of flexible industrial demand (FID) for the European power system. This framework considers generation, transmission and distribution sectors of the system, and determines the least-cost long-term investment and short-term operation decisions. FID is represented through a generic, process-agnostic model, which however accounts for fixed energy requirements and load recovery effects associated with industrial processes. The numerical studies demonstrate multiple significant value streams of FID in Europe, including capital cost savings by avoiding investments in additional generation and transmission capacity and distribution reinforcements, as well as operating cost savings by enabling higher utilization of renewable generation sources and providing balancing services.
Pudjianto D, Papadaskalopoulos D, Moreira R, et al., 2018, Flexibility Potential of Industrial Electricity Demand: Insights from the H2020 IndustRE project, the 11th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion
Pudjianto D, Papadaskalopoulos D, Moreira R, et al., 2018, Flexibility Potential of Industrial Electricity Demand: Insights from the H2020 IndustRE project, The 11th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion
Teng F, Pudjianto D, Aunedi M, et al., 2018, Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe, Energies, Vol: 11, ISSN: 1996-1073
This paper analyses the impacts and benefits of the pumped storage plant (PSP) and its upgrade to variable speed on generation and transmission capacity requirements, capital costs, system operating costs and carbon emissions in the future European electricity system. The combination of a deterministic system planning tool, Whole-electricity System Investment Model (WeSIM), and a stochastic system operation optimisation tool, Advanced Stochastic Unit Commitment (ASUC), is used to analyse the whole-system value of PSP technology and to quantify the impact of European balancing market integration and other competing flexible technologies on the value of the PSP. Case studies on the Pan-European system demonstrate that PSPs can reduce the total system cost by up to €13 billion per annum by 2050 in a scenario with a high share of renewables. Upgrading the PSP to variable-speed drive enhances its long-term benefits by 10–20%. On the other hand, balancing market integration across Europe may potentially reduce the overall value of the variable-speed PSP, although the effect can vary across different European regions. The results also suggest that large-scale deployment of demand-side response (DSR) leads to a significant reduction in the value of PSPs, while the value of PSPs increases by circa 18% when the total European interconnection capacity is halved. The benefit of PSPs in reducing emissions is relatively negligible by 2030 but constitutes around 6–10% of total annual carbon emissions from the European power sector by 2050.
Pudjianto D, Strbac G, Boyer D, 2017, Virtual power plant: managing synergies and conflicts between transmission system operator and distribution system operator control objectives, CIRED 24th International Conference on Electricity Distribution, Publisher: IET, Pages: 2049-2052, ISSN: 2515-0855
In this study, the implementation of virtual power plant (VPP) as a means to coordinate the use of distributed resources for different control objectives by transmission system operator and distribution system operator is described. In order to illustrate the concept, a range of illustrative studies demonstrating the application of VPP concept on a real 11 kV system in Brixton will be presented, using data from the Low Carbon London project. The studies demonstrate the changes in the operating characteristics of the VPP area over a range of system operating conditions.
Strbac G, Aunedi M, Konstantelos I, et al., 2017, Opportunities for Energy Storage: Assessing Whole-System Economic Benefits of Energy Storage in Future Electricity Systems, IEEE Power and Energy Magazine, ISSN: 1540-7977
Pudjianto D, Gan CK, Cheiw YL, et al., 2017, Impact of the photovoltaic system variability on transformer tap changer operations in distribution networks, CIRED 2017, ISSN: 2515-0855
Pudjianto D, Strbac G, 2017, Assessing the value and impact of demand side response using whole-system approach, PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, Vol: 231, Pages: 498-507, ISSN: 0957-6509
This paper describes the whole-system based model called Whole-electricity System Investment Model to quantify the benefits of demand flexibility. Whole-electricity System Investment Model is a holistic and comprehensive electricity system analysis model, which simultaneously optimises the long-term investment decisions against real-time operation decisions taking into account the flexibility provided by demand. The optimisation considers the impact of demand side response across all power subsystems, i.e. generation, transmission and distribution systems, in a coordinated fashion. This allows the model to capture the potential conflicts and synergies between different applications of demand side response in supporting particularly intermittency management at the national level, improving capacity margin, and minimising the cost of electrification. The impact and value of demand side response driven by whole-system approach are compared against the impact and value of distribution system operator or transmission system operator centric (silo approaches) demand side response applications and the importance of control coordination between distribution system operator and transmission system operator for optimal demand side response is discussed and highlighted.
Aunedi M, Pudjianto D, Strbac G, 2017, Calculating system integration costs of low-carbon generation technologies in future GB electricity system, 5th IET International Conference on Renewable Power Generation (RPG) 2016, Publisher: Institution of Engineering and Technology
System integration costs (SIC) of generation technologies, also referred to as system externalities, include various categories of additional costs that are incurred in the system in addition to the cost of building and operating the generation capacity that is added to the system. SIC may include increased balancing cost, cost of additional backup capacity, cost of reinforcing network infrastructure and the cost of maintaining system carbon emissions. In this paper we present a whole-system approach to quantifying the SIC and explore different approaches to calculating the relative SIC of a generation technology when compared to another technology. The results show that the SIC of low-carbon generation technologies will significantly depend on the composition of the generation mix, with higher penetrations of variable renewables giving rise to a higher SIC. Also, SIC will significantly depend on the deployment level of flexible options such as more flexible generation technologies, energy storage, demand side response or interconnection. The additional system cost driven by low-carbon technologies can provide a very useful input to inform the energy policy and support the selection of the low-carbon portfolio with the lowest total system cost.
Green RJ, Pudjianto D, Staffell I, et al., 2016, Market Design for Long-Distance Trade in Renewable Electricity, Energy Journal, Vol: 37, Pages: 5-22, ISSN: 0195-6574
While the 2009 EU Renewables Directive allows countries to purchase some of their obligation fromanother member state, no country has yet done so, preferring to invest locally even where load factors arevery low. If countries specialised in renewables most suited to their own endowments and expandedinternational trade, we estimate that system costs in 2030 could be reduced by 5%, or €15 billion a year,after allowing for the costs of extra transmission capacity, peaking generation and balancing operationsneeded to maintain electrical feasibility.Significant barriers must be overcome to unlock these savings. Countries that produce more renewablepower should be compensated for the extra cost through tradable certificates, while those that buy fromabroad will want to know that the power can be imported when needed. Financial Transmission Rightscould offer companies investing abroad confidence that the power can be delivered to their consumers.They would hedge short-term fluctuations in prices and operate much more flexibly than the existingsystem of physical point-to-point rights on interconnectors. Using FTRs to generate revenue fortransmission expansion could produce perverse incentives to under-invest and raise their prices, sorevenues from FTRs should instead be offset against payments under the existing ENTSO-Ecompensation scheme for transit flows. FTRs could also facilitate cross-border participation in capacitymarkets, which are likely to be needed to reduce risks for the extra peaking plants required.
Konstantelos I, Pudjianto D, Strbac G, et al., 2016, Integrated North Sea grids: The costs, the benefits and their distribution between countries, Energy Policy, Vol: 101, Pages: 28-41, ISSN: 0301-4215
A large number of offshore wind farms and interconnectors are expected to be constructed in the North Searegion over the coming decades, creating substantial opportunities for the deployment of integrated networksolutions. Creating interconnected offshore grids that combine cross-border links and connections of offshoreplants to shore offers multiple economic and environmental advantages for Europe's energy system. However,despite evidence that integrated solutions can be more beneficial than traditional radial connection practices, nosuch projects have been deployed yet. In this paper we quantify costs and benefits of integrated projects andinvestigate to which extent the cost-benefit sharing mechanism between participating countries can impede orencourage the development of integrated projects. Three concrete interconnection case studies in the North Seaarea are analysed in detail using a national-level power system model. Model outputs are used to compute thenet benefit of all involved stakeholders under different allocation schemes. Given the asymmetric distribution ofcosts and benefits, we recommend to consistently apply the Positive Net Benefit Differential mechanism as astarting point for negotiations on the financial closure of investments in integrated offshore infrastructure.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.