Imperial College London

DrDylanRood

Faculty of EngineeringDepartment of Earth Science & Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 7461d.rood

 
 
//

Location

 

4.43Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

115 results found

Johnson JS, Venturelli RA, Balco G, Allen CS, Braddock S, Campbell S, Goehring BM, Hall BL, Neff PD, Nichols KA, Rood DH, Thomas ER, Woodward Jet al., 2022, Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica, The Cryosphere, Vol: 16, Pages: 1543-1562, ISSN: 1994-0416

Widespread existing geological records from above the modern ice sheet surface and outboard of the current ice margin show that the Antarctic Ice Sheet (AIS) was much more extensive at the Last Glacial Maximum (∼ 20 ka) than at present. However, whether it was ever smaller than present during the last few millennia, and (if so) by how much, is known only for a few locations because direct evidence lies within or beneath the ice sheet, which is challenging to access. Here, we describe how retreat and readvance (henceforth “readvance”) of AIS grounding lines during the Holocene could be detected and quantified using subglacial bedrock, subglacial sediments, marine sediment cores, relative sea-level (RSL) records, geodetic observations, radar data, and ice cores. Of these, only subglacial bedrock and subglacial sediments can provide direct evidence for readvance. Marine archives are of limited utility because readvance commonly covers evidence of earlier retreat. Nevertheless, stratigraphic transitions documenting change in environment may provide support for direct evidence from subglacial records, as can the presence of transgressions in RSL records, and isostatic subsidence. With independent age control, ice structure revealed by radar can be used to infer past changes in ice flow and geometry, and therefore potential readvance. Since ice cores capture changes in surface mass balance, elevation, and atmospheric and oceanic circulation that are known to drive grounding line migration, they also have potential for identifying readvance. A multidisciplinary approach is likely to provide the strongest evidence for or against a smaller-than-present AIS in the Holocene.

Journal article

Clark J, Carlson AE, Reyes A, Carlson ECB, Guillaume L, Milne GA, Tarasov L, Caffee M, Wilcken K, Rood DHet al., 2022, The age of the opening of the Ice-Free Corridor and implications for the peopling of the Americas, Proceedings of the National Academy of Sciences of the United States of America, Vol: 119, Pages: 1-6, ISSN: 0027-8424

The Clovis-first model for the peopling of the Americas by ∼13.4 ka has long invoked the Ice-Free Corridor (IFC) between the retreating margins of the Cordilleran and Laurentide ice sheets as the migration route from Alaska and the Yukon down to the Great Plains. Evidence from archaeology and ancient genomics, however, now suggests that pre-Clovis migrations occurred by at least ∼15.5 to 16.0 ka or earlier than most recent assessments of the age of IFC opening at ∼14 to 15 ka, lending support to the use of a Pacific coast migration route instead. Uncertainties in ages from the IFC used in these assessments, however, allow for an earlier IFC opening which would be consistent with the availability of the IFC as a migration route by ∼15.5 to 16.0 ka. Here, we use 64 cosmogenic (10Be) exposure ages to closely date the age of the full opening of the IFC at 13.8 ± 0.5 ka. Our results thus clearly establish that the IFC was not available for the first peopling of the Americas after the Last Glacial Maximum, whereas extensive geochronological data from the Pacific coast support its earlier availability as a coastal migration route.

Journal article

Hughes A, Rood D, DeVecchio DE, Whittaker AC, Bell RE, Wilcken KM, Corbett LB, Bierman PR, Swanson BJ, Rockwell TKet al., 2022, Tectonic controls on Quaternary landscape evolution in the Ventura basin, southern California, quantified using cosmogenic isotopes and topographic analyses, Geological Society of America Bulletin, ISSN: 0016-7606

The quantification of rates for the competing forces of tectonic uplift and erosion has important implications for understanding topographic evolution. Here, we quantify the complex interplay between tectonic uplift, topographic development, and erosion recorded in the hanging walls of several active reverse faults in the Ventura basin, southern California, USA. We use cosmogenic 26Al/10Be isochron burial dating and 10Be surface exposure dating to construct a basin-wide geochronology, which includes burial dating of the Saugus Formation: an important, but poorly dated, regional Quaternary strain marker. Our ages for the top of the exposed Saugus Formation range from 0.36 +0.18/-0.22 Ma to 1.06 +0.23/-0.26 Ma and our burial ages near the base of shallow marine deposits, which underlie the Saugus Formation, increase eastwards from 0.55 +0.08/-0.07 Ma to 3.30 +0.30/-0.42 Ma. Our geochronology is used the calculate a rapid long-term fault throw rate of 4.7–6.3 mm yr-1 since ~1.5 Ma for the San Cayetano fault and a slip rate of 1.3–3.0 mm yr-1 since ~1.5 Ma for the Oak Ridge fault, both of which agree with contemporary reverse slip rates derived from GPS data. We also calculate total cosmogenic nuclide (TCN)-derived catchment-averaged erosion rates that range from 0.18–2.21mm yr-1 and discuss the applicability of TCN-derived catchment-averaged erosion rates in rapidly-uplifting, landslide-prone landscapes. We compare patterns in erosion rates and tectonic rates to fluvial response times and geomorphic landscape parameters to show that in young, rapidly-uplifting mountain belts, catchments may attain a quasi-steady state on timescales <105 years, even if catchment-averaged erosion rates are still 34 adjusting to tectonic forcing.

Journal article

Johnson JS, Roberts SJ, Rood DH, Pollard D, Schaefer JM, Whitehouse PL, Ireland LC, Lamp JL, Goehring BM, Rand C, Smith JAet al., 2021, Corrigendum to “Deglaciation of Pope Glacier implies widespread early Holocene ice sheet thinning in the Amundsen Sea sector of Antarctica” [Earth & Planetary Science Letters 548 (2020) 116501], Earth and Planetary Science Letters, Vol: 576, ISSN: 0012-821X

Journal article

Shadrick JR, Hurst MD, Piggott MD, Hebditch BG, Seal AJ, Wilcken KM, Rood DHet al., 2021, Multi-objective optimisation of a rock coast evolution model with cosmogenic Be-10 analysis for the quantification of long-term cliff retreat rates, Earth Surface Dynamics, Vol: 9, Pages: 1505-1529, ISSN: 2196-6311

This paper presents a methodology that uses site-specific topographic and cosmogenic 10Be data to perform multi-objective model optimisation of a coupled coastal evolution and cosmogenic radionuclide production model. Optimal parameter estimation of the coupled model minimises discrepancies between model simulations and measured data to reveal the most likely history of rock coast development. This new capability allows a time series of cliff retreat rates to be quantified for rock coast sites over millennial timescales. Without such methods, long-term cliff retreat cannot be understood well, as historical records only cover the past ∼150 years. This is the first study that has (1) applied a process-based coastal evolution model to quantify long-term cliff retreat rates for real rock coast sites and (2) coupled cosmogenic radionuclide analysis with a process-based model. The Dakota optimisation software toolkit is used as an interface between the coupled coastal evolution and cosmogenic radionuclide production model and optimisation libraries. This framework enables future applications of datasets associated with a range of rock coast settings to be explored. Process-based coastal evolution models simplify erosional processes and, as a result, often have equifinality properties, for example that similar topography develops via different evolutionary trajectories. Our results show that coupling modelled topography with modelled 10Be concentrations can reduce equifinality in model outputs. Furthermore, our results reveal that multi-objective optimisation is essential in limiting model equifinality caused by parameter correlation to constrain best-fit model results for real-world sites. Results from two UK sites indicate that the rates of cliff retreat over millennial timescales are primarily driven by the rates of relative sea level rise. These findings provide strong motivation for further studies that investigate the effect of past and future relative sea level

Journal article

Mariotti A, Croke J, Bartley R, Kelley SE, Ward J, Fulop R-H, Rood AH, Rood DH, Codilean AT, Wilcken K, Fifield Ket al., 2021, Pre-development denudation rates for the Great Barrier Reef catchments derived using Be-10, Marine Pollution Bulletin, Vol: 172, Pages: 1-20, ISSN: 0025-326X

Understanding of the pre-development, baseline denudation rates that deliver sediment to the Great Barrier Reef (GBR) has been elusive. Cosmogenic 10Be in sediment is a useful integrator of denudation rates and sediment yields averaged over large spatial and temporal scales. This study presents 10Be data from 71 sites across 11 catchments draining to the GBR: representing 80% of the GBR catchment area and provide background sediment yields for the region. Modern, short-term, sediment yields derived from suspended load concentrations are compared to the 10Be data to calculate an Accelerated Erosion Factor (AEF) that highlights denudation “hot-spots” where sediment yields have increased over the long-term background values.The AEF results show that 58% basins have higher modern sediment yields than long-term yields. The AEF is considered a useful approach to help prioritise on-ground investments in remediation and the additional measured empirical data in this paper will help support future predictive models.

Journal article

Carlson AE, Reyes A, Sillett K, Wilcken KM, Rood DHet al., 2021, Southwest Greenland ice-sheet retreat during the 8.2 ka cold event, Quaternary Science Reviews: the international multidisciplinary research and review journal, Vol: 268, Pages: 1-10, ISSN: 0277-3791

The century-long 8.2 ka cold event interrupted early Holocene boreal warmth and may have halted retreat of Greenland ice-sheet margins during the last deglaciation. Here, we synthesize new and existing glacial geological data to assess the behavior of the southwest Greenland ice sheet during the 8.2 ka cold event. In southwest Greenland near the town of Kangerlussuaq, existing and new 10Be surface exposure ages demonstrate that deposition of the Keglen moraines ended at 8.0 ± 0.1 ka (n = 10, 1 outlier), with prior studies arguing that these moraines represented an ice-margin stillstand in response to the 8.2 ka cold event. However, new 10Be ages show that the southwest Greenland ice-sheet margin retreated from the Umîvît moraines, which lie 5–10 km outboard of the Keglen moraines, at 8.2 ± 0.2 ka (n = 11). Accordingly, we suggest that the southwest Greenland ice-sheet margin in the Kangerlussuaq region retreated 5–10 km during the 8.2 ka cold event. Farther south and inland from Nuuk, new 10Be boulder-on-bedrock ages adjacent to the modern ice-sheet margin demonstrate that the ice-margin was retreating with no moraine deposition at 8.2 ± 0.1 ka (n = 4, 1 outlier), with this retreat continuing up to at least ∼7.5 ka according to an existing threshold lake record. Therefore, we propose that the southwest Greenland ice-sheet margin underwent continued retreat during the 8.2 ka cold event in response to elevated early Holocene boreal summer insolation that overwhelmed the impacts from century-scale cooling. Caution should be used in assuming climatic causation for moraine deposition based on temporal correlation.

Journal article

Carlson AE, Reyes A, Gusterson E, Axford Y, Wilcken KM, Rood DHet al., 2021, Direct evidence for thinning and retreat of the southernmost Greenland ice sheet during the Younger Dryas, Quaternary Science Reviews: the international multidisciplinary research and review journal, Vol: 267, Pages: 1-7, ISSN: 0277-3791

During the last deglaciation, North Atlantic climate abruptly warmed at the Bølling (∼14.7 ka), cooled into the Younger Dryas (∼12.9 ka) and abruptly warmed again into the Holocene (∼11.7 ka). While these events are defined by Greenland ice cores, there is still considerable uncertainty on Greenland ice-sheet margin responses to abrupt climate change. To refine the ice sheet's deglacial history, we present new cosmogenic nuclide surface exposure ages from boulders on bedrock at five sites in southernmost Greenland fjords located midway between the coast and inland ice margin. We find ice-sheet thinning below three local topographic highs at 12.7 ± 0.3 ka (n = 3), 13.1 ± 0.4 ka (n = 1, 2 outliers), and 12.3 ± 0.2 ka (n = 3), with up-fjord retreat at 12.5 ± 0.3 ka (n = 3) and 12.7 ± 0.2 ka (n = 4) based on two sites just above the mid-fjord marine limit. These mid-fjord 10Be ages therefore show southernmost Greenland ice-sheet thinning and retreat during the Younger Dryas. We hypothesize that this thinning and retreat was a response to ocean warming prior to the Holocene and/or summer shortwave radiative forcing during the Younger Dryas due to peak boreal summer insolation. Our results also support a previously hypothesized winter bias in proxy records of Younger Dryas atmospheric cooling, since a large summer cooling during the Younger Dryas could have counteracted the effects of ocean warming and direct radiative forcing, inhibiting ice-sheet retreat.

Journal article

Stirling MW, Abbott ER, Rood DH, McVerry GH, Abrahamson NA, Barrell DJA, Huso R, Litchfield NJ, Luna L, Rhoades DA, Silvester P, Van Dissen RJ, Van Houtte C, Zondervan Aet al., 2021, First use of fragile geologic features to set the design motions for a major existing engineered structure, Bulletin of the Seismological Society of America, Vol: 111, Pages: 2673-2695, ISSN: 0037-1106

We document the first use of fragile geologic features (FGFs) to set formal design earthquake motions for a major existing engineered structure. The safety evaluation earthquake (SEE) spectrum for the Clyde Dam, New Zealand (the mean 10,000 yr, ka, return period response spectrum) is developed in accordance with official guidelines and utilizes constraints provided by seven precariously balanced rocks (PBRs) located 2 km from the dam site and the local active Dunstan fault. The PBRs are located in the hanging wall of the fault. Deterministic PBR fragilities are estimated from field measurements of rock geometries and are the dynamic peak ground accelerations (PGAs) required for toppling. PBR fragility ages are modeled from B10e cosmogenic isotope exposure dating techniques and are in the range of 24–66 ka. The fragility ages are consistent with the PBRs having survived at least two large Dunstan fault earthquakes. We develop a PGA‐based fragility distribution from all of the PBRs, which represents the cumulative toppling probability of a theoretical random PBR as a function of PGA. The fragility distribution is then used to eliminate logic‐tree branches that produce PGA hazard curves that would topple the random PBR with a greater than 95% probability (i.e., less than 5% survival probability) over a time period of 24 ka (youngest PBR fragility age). The mean 10 ka spectrum of the remaining hazard estimates is then recommended as the SEE spectrum for the dam site. This SEE spectrum has a PGA of 0.55g⁠, which is significantly reduced from the 0.96g obtained for a preliminary version of the SEE spectrum. The reduction is due to the combined effects of the PBR constraints and a substantial update of the probabilistic seismic hazard model. The study serves as an important proof‐of‐concept for future applications of FGFs in engineering design.

Journal article

Johnson JS, Pollard D, Whitehouse PL, Roberts SJ, Rood DH, Schaefer JMet al., 2021, Comparing Glacial-Geological Evidence and Model Simulations of Ice Sheet Change since the Last Glacial Period in the Amundsen Sea Sector of Antarctica, JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, Vol: 126, ISSN: 2169-9003

Journal article

QuyeSawyer J, Whittaker AC, Roberts GG, Rood DHet al., 2021, Fault throw and regional uplift histories from drainage analysis: evolution of southern Italy, Tectonics, Vol: 40, Pages: 1-26, ISSN: 0278-7407

Landscapes can record elevation changes caused by multiple tectonic processes. Here, we show how coeval histories of spatially coincident normal faulting and regional uplift can be deconvolved from river networks. We focus on Calabria, a tectonically active region incised by rivers containing knickpoints and knickzones. Marine fauna indicate that Calabria has been uplifted by >1 km since ∼0.8–1.2 Ma, which we used to calibrate parameters in a stream power erosional model. To deconvolve the local and regional uplift contributions to topography, we performed a spatiotemporal inversion of 994 fluvial longitudinal profiles. Uplift rates from fluvial inversion replicate the spatial trend of rates derived from dated Mid-Late Pleistocene marine terraces, and the magnitude of predicted uplift rates matches the majority of marine terrace uplift rates. We used the predicted uplift history to analyze long-term fault throw, and combined throw estimates with ratios of footwall uplift to hanging wall subsidence to isolate the nonfault related contribution to uplift. Increases in fault throw rate—which may suggest fault linkage and growth—have been identified on two major faults from fluvial inverse modeling, and total fault throw is consistent with independent estimates. The temporal evolution of nonfault related regional uplift is similar at three locations. Our results may be consistent with toroidal mantle flow generating uplift, perhaps if faulting reduces the strength of the overriding plate. In conclusion, fluvial inverse modeling can be an effective technique to quantify fault array evolution and can deconvolve different sources of uplift that are superimposed in space and time.

Journal article

Codilean AT, Fülöp R-H, Munack H, Wilcken KM, Cohen TJ, Rood DH, Fink D, Bartley R, Croke J, Fifield LKet al., 2021, Controls on denudation along the East Australian continental margin, Earth-Science Reviews, Vol: 214, Pages: 1-24, ISSN: 0012-8252

We report a comprehensive inventory of 10Be-based basin-wide denudation rates (n = 160) and 26Al/10Be ratios (n = 67) from 48 drainage basins along a 3000 km stretch of the East Australian passive continental margin. We provide data from both basins draining east of the continental divide (n = 37) and discharging into the Tasman and Coral Seas, and from basins draining to the west as part of the larger Murray-Darling and Lake Eyre river systems (n = 11). 10Be-derived denudation rates in mainstem samples from east-draining basins range between 7.7 ± 1.9 (± 1σ; Mary) and 54.6 ± 13.7 mm kyr−1 (North Johnstone). Denudation rates in tributary samples range between 3.0 ± 0.7 (Burdekin) and 70.2 ± 18.9 mm kyr−1 (Liverpool). For west-draining basins, denudation rates are overall lower and with a more restricted range of 4.8 ± 1.2 (Barcoo) to 15.4 ± 3.6 mm kyr−1 (Maranoa) in mainstem samples, and between 4.4 ± 1.0 (Murrumbidgee) and 38.5 ± 7.8 mm kyr−1 (Murray) in tributary samples. East Australian denudation rates (median = 14.5 mm kyr−1) are similar to those found in other postorogenic landscapes (global median = 12.4 mm kyr−1) and the medians of the top 10% denudation rates recorded here (46.5 mm kyr−1) and in other passive margin settings are also similar, despite differences in topography and precipitation. These median denudation rate values are close to the 95th percentile denudation rate for all tectonically passive basins (≈53 mm kyr−1) and are very similar to the global silicate weathering speed limit (≈58 mm kyr−1) calculated as the 95th percentile of global soil weathering rates. The above suggests that in post-orogenic terrain, the overall rates of topographic decay have a ‘speed limit’ that is imposed by the rate at which rock is converted to soil by chemical weathering. Denudation rates along the East Australian mar

Journal article

Levy Y, Rockwell T, Minas S, Hughes A, Rood Det al., 2021, Geological structure of the Sylmar basin: implications for slip distribution along the Santa Susana/hospital and mission hills fault system in the San Fernando Valley, CA, USA, Frontiers in Earth Science, Vol: 8, Pages: 1-18, ISSN: 2296-6463

We developed a forward model using the Trishear module in MOVE to better understand the structure of the northwestern San Fernando Valley and the relationship among the Santa Susana, Hospital, Mission Hills and Northridge Hills faults. This study was motivated by the 1971 San Fernando earthquake and previous work that inferred a high slip rate on the Santa Susana fault, which is in apparent contrast to the lack of significant geomorphic expression of the fault in the Sylmar Basin region. We trenched the Mission Hills anticline from the crest to the base of slope and demonstrate that the Mission Hills anticline is an actively growing fault propagation fold. The associated thrust tip is either deeper than 15 m or sufficiently far to the south that the fault was not encountered in large diameter borings, but the minimum structural relief across the Mission Hills fault since the late Pleistocene is on the order of 37 m, suggesting a minimum uplift rate of 0.5 mm/yr. Our work presents a structural analysis that demonstrates how the Santa Susana fault system evolved in time, with the frontal thrust progressively migrating southward to the Mission Hills fault, and farther south to the Northridge Hills blind thrust. The progression of faulting towards the direction of vergence is compatible with the observed thrust front migration in the western Transverse Ranges of California, and other trust belts around the world.

Journal article

Balco G, DeJong BD, Ridge JC, Bierman PR, Rood DHet al., 2021, Atmospherically produced beryllium-10 in annually laminated late-glacial sediments of the North American Varve Chronology, Geochronology, Vol: 3, Pages: 1-33, ISSN: 2628-3719

We attempt to synchronize the North American Varve Chronology (NAVC) with ice core and calendar year timescales by comparing records of atmospherically produced 10Be fallout in the NAVC and in ice cores. The North American Varve Chronology (NAVC) is a sequence of 5659 varves deposited in a series of proglacial lakes adjacent to the southeast margin of the retreating Laurentide Ice Sheet between approximately 18 200 and 12 500 years before present. Because properties of NAVC varves are related to climate, the NAVC is also a climate proxy record with annual resolution, and our overall goal is to place the NAVC and ice core records on the same timescale to facilitate high-resolution correlation of climate proxy variations in both. Total 10Be concentrations in NAVC sediments are within the range of those observed in other lacustrine records of 10Be fallout, but 9Be and 10Be concentrations considered together show that the majority of 10Be is present in glacial sediment when it enters the lake, and only a minority of total 10Be derives from atmospheric fallout at the time of sediment deposition. Because of this, an initial experiment to determine whether or not 10Be fallout variations were recorded in NAVC sediments by attempting to observe the characteristic 11-year solar cycle in short varve sections sampled at high resolution was inconclusive: short-period variations at the expected magnitude of this cycle were not distinguishable from measurement scatter. On the other hand, longer varve sequences sampled at decadal resolution display centennial-period variations in reconstructed 10Be fallout that have similar properties as coeval 10Be fallout variations recorded in ice core records. These are most prominent in glacial sections of the NAVC that were deposited in proglacial lakes and are suppressed in paraglacial sections of the NAVC that were deposited in lakes lacking direct glacial sediment input. We attribute this difference to the fact that buffering

Journal article

Stirling MW, Oskin ME, Arrowsmith JR, Rood AH, Goulet CA, Ludwig LG, King TR, Kottke A, Lozos JC, Madugo CM, McPhillips D, Rood DH, Sleep NH, Wittich CEet al., 2021, Evaluation of seismic hazard models with fragile geologic features, Seismological Research Letters, Vol: 92, Pages: 314-324, ISSN: 0895-0695

We provide an overview of a 2019 workshop on the use of fragile geologic features (FGFs) to evaluate seismic hazard models. FGFs have been scarcely utilized in the evaluation of seismic hazard models, despite nearly 30 yr having passed since the first recognition of their potential value. Recently, several studies have begun to focus on the implementation of FGFs in seismic hazard modeling. The workshop was held to capture a “snapshot” of the state‐of‐the‐art in FGF work and to define key research areas that would increase confidence in FGF‐based evaluation of seismic hazard models. It was held at the annual meeting of the Southern California Earthquake Center on 8 September 2019, and the conveners were Mark Stirling (University of Otago, New Zealand) and Michael Oskin (University of California, Davis). The workshop attracted 44 participants from a wide range of disciplines. The main topics of discussion were FGF fragility age estimation (age at which an FGF achieved its current fragile geometry), fragility estimation, FGF‐based evaluation of seismic hazard models, and ethical considerations relating to documentation and preservation of FGFs. There are now many scientists working on, or motivated to work on, FGFs, and more types of FGFs are being worked on than just the precariously balanced rock (PBR) variety. One of the ideas presented at the workshop is that fragility ages for FGFs should be treated stochastically rather than assuming that all share a common age. In a similar vein, new studies propose more comprehensive methods of fragility assessment beyond peak ground acceleration and peak ground velocity‐based approaches. Two recent studies that apply PBRs to evaluate probabilistic seismic hazard models use significantly different methods of evaluation. Key research needs identified from the workshop will guide future, focused efforts that will ultimately facilitate the uptake of FGFs in seismic hazard analysis.

Journal article

Rood AH, Rood DH, Stirling MW, Madugo CM, Abrahamson NA, Wilcken KM, Gonzalez T, Kottke A, Whittaker AC, Page WD, Stafford PJet al., 2020, Earthquake hazard uncertainties improved using precariously balanced rocks, AGU Advances, Vol: 1, Pages: 1-24, ISSN: 2576-604X

Probabilistic seismic hazard analysis (PSHA) is the state‐of‐the‐art method to estimate ground motions exceeded by large, infrequent, and potentially damaging earthquakes; however, a fundamental problem is the lack of an accepted method for both quantitatively validating and refining the hazard estimates using empirical geological data. In this study, to reduce uncertainties in such hazard estimates, we present a new method that uses empirical data from precariously balanced rocks (PBRs) in coastal Central California. We calculate the probability of toppling of each PBR at defined ground‐motion levels and determine the age at which the PBRs obtained their current fragile geometries using a novel implementation of cosmogenic 10Be exposure dating. By eliminating the PSHA estimates inconsistent with at least a 5% probability of PBR survival, the mean ground‐motion estimate corresponding to the hazard level of 10−4 yr−1 (10,000 yr mean return period) is significantly reduced by 27%, and the range of estimated 5th–95th fractile ground motions is reduced by 49%. Such significant reductions in uncertainties make it possible to more reliably assess the safety and security of critical infrastructure in earthquake‐prone regions worldwide.

Journal article

Simms AR, Rood DH, Rockwell TK, 2020, Correcting MIS5e and 5a sea-level estimates for tectonic uplift, an example from southern California, Quaternary Science Reviews, Vol: 248, Pages: 1-9, ISSN: 0277-3791

Along tectonically active margins, the difference in elevations between global sea levels during highstands and uplifted marine terraces is a function of both tectonics and glacial-isostatic adjustment (GIA). However, disentangling the relative influence of these two processes remains a challenge for those trying to gain insights into either process. In this study, we outline a strategy for isolating the tectonic contribution to marine isotope stage (MIS) 5e and 5a marine terrace elevations for the southern California coast by determining the cosmogenic radionuclide burial age and elevation of the early Pleistocene (1.48 ± 0.17 Ma) Clairemont Terrace in San Diego. Using this older terrace as a datum for calculating tectonic uplift rate provides a much longer time period to average out uncertainties in past local or relative sea levels (RSL) that arise from ambiguities in GIA parameters and global meltwater volumes. The assumption of constant uplift rates is warranted for this portion of the California coast given its relatively simple tectonic setting on the rift flank of the Salton Trough. From this approach, we determine an average uplift rate of 0.066 ± 0.020 mm/yr or 0.055 ± 0.013 mm/yr, depending on the RSL model used for the time of the Clairemont Terrace formation, for much of the San Diego coastline. Correcting for this tectonic uplift rate leaves an estimate of 15.1 + 2.6/-3.1 m (16.4 + 1.9/-2.6 m) and 4.8 ± 1.9 m (5.6 ± 1.5 m) for RSL during MIS5e and MIS5a, respectively. These new estimates of MIS5e and MIS5a sea levels along the southern California coast provide important constraints on GIA parameters and former ocean and ice volumes.

Journal article

Johnson JS, Roberts SJ, Rood DH, Pollard D, Schaefer JM, Whitehouse PL, Ireland LC, Lamp JL, Goehring BM, Rand C, Smith JAet al., 2020, Deglaciation of pope glacier implies widespread early holocene ice sheet thinning in the Amundsen sea sector of Antarctica, Earth and Planetary Science Letters, Vol: 548, Pages: 1-13, ISSN: 0012-821X

The Amundsen Sea sector of the Antarctic ice sheet presently dominates the contribution from Antarctica to sea level rise. Several large ice streams that currently drain the sector have experienced rapid flow acceleration, grounding line retreat and thinning during the past few decades. However, little is known of their longer-term – millennial-scale – retreat history, despite the reliance of several ice sheet and glacial-isostatic adjustment models on such data for improving sea level prediction from this critical region. This study investigates the timing and extent of surface lowering of one of those ice streams, Pope Glacier, since the Last Glacial Maximum (LGM), using glacial-geological evidence for former ice cover. We present a new deglacial chronology for the glacier, derived from surface exposure dating of glacially-deposited cobbles and ice-scoured bedrock from Mount Murphy and its surrounding peaks. Cosmogenic 10Be exposure ages from 44 erratic cobbles and 5 bedrock samples, and in situ 14C exposure ages from one erratic and 8 bedrock samples are predominantly in the range 5.5-16 ka. Although 10Be inheritance from prior exposure is prevalent in some erratics and probably all bedrock samples, none of the ages pre-date the LGM. From these results we infer that the surface of Pope Glacier lowered by 560 m during the early- to mid-Holocene (9-6 ka), at an average rate of 0.13 ± 0.09/0.04 m yr−1. The lowering coincided with a period of enhanced upwelling of warm Circumpolar Deep Water onto the continental shelf in the region. A reduction in buttressing − facilitated by such upwelling − by an ice shelf that is thought to have spanned the embayment until 10.6 cal kyr BP could have triggered simultaneous early Holocene thinning of Pope Glacier and glaciers elsewhere in the Amundsen Sea Embayment.

Journal article

Pacheco M, Plattner AM, Stock GM, Rood DH, Pluhar CJet al., 2020, Surface exposure dating and geophysical tomography of the royal arches meadow rock avalanche, Yosemite Valley, California, Frontiers in Earth Science, Vol: 8, Pages: 1-12, ISSN: 2296-6463

Since the retreat of glaciers after the Last Glacial Maximum, rock avalanches haveoccurred intermittently in Yosemite Valley, California. We investigated the distal portionof the oldest of these, the Royal Arches Meadow rock avalanche, which has beenpartially buried by sediment aggradation. Cosmogenic 10Be exposure ages of boulderswithin the deposit indicate that the rock avalanche occurred at 16.1 ± 0.3 ka, immediatelyafter deglaciation and thus prior to most aggradation. The interface between the rockavalanche deposit and the underlying glaciofluvial sediments therefore provides anelevation marker of the valley floor at the time of deposition. To identify the elevationof this interface, we collected eight Ground Penetrating Radar (GPR) and five ElectricalResistivity Tomography (ERT) profiles across the rock avalanche. Both methods aresensitive to contrasts between the granitic avalanche deposit and the underlyingsediments. By constraining ERT inversions with GPR interfaces that are continuousacross the profiles, we identified a single interface, interpreted as the basal contact of therock avalanche, that separates resistive material from conductive material underneath.The elevation of this approximately horizontal interface is between 1,206 and 1,209m, roughly 10 m below the modern ground surface, indicating ≈ 10 m of sedimentaggradation since deglaciation. Based on topographic expression and depth to thiscontact, we determined a minimum volume estimate of between 8.1 × 105 m3 and9.7 × 105 m3, nearly three times larger than what would be estimated from surfaceexpression alone. Our findings allow reconstruction of the sedimentation history ofYosemite Valley, inform hazard and risk assessment, and confirm that geophysicalmethods are valuable tools for three-dimensional investigations of rock avalanches,particularly those buried by younger sediments.

Journal article

Swirad ZM, Rosser NJ, Brain MJ, Rood DH, Hurst MD, Wilcken KM, Barlow Jet al., 2020, Publisher Correction: Cosmogenic exposure dating reveals limited long-term variability in erosion of a rocky coastline., Nat Commun, Vol: 11

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Journal article

Swirad ZM, Rosser NJ, Brain MJ, Rood DH, Hurst MD, Wilcken KM, Barlow Jet al., 2020, Cosmogenic exposure dating reveals limited long-term variability in erosion of a rocky coastline., Nature Communications, Vol: 11, Pages: 3804-3804, ISSN: 2041-1723

Predicted sea-level rise and increased storminess are anticipated to lead to increases in coastal erosion. However, assessing if and how rocky coasts will respond to changes in marine conditions is difficult due to current limitations of monitoring and modelling. Here, we measured cosmogenic 10Be concentrations across a sandstone shore platform in North Yorkshire, UK, to model the changes in coastal erosion within the last 7 kyr and for the first time quantify the relative long-term eros0ive contribution of landward cliff retreat, and down-wearing and stripping of rock from the shore platform. The results suggest that the cliff has been retreating at a steady rate of 4.5 ± 0.63 cm yr-1, whilst maintaining a similar profile form. Our results imply a lack of a direct relationship between relative sea level over centennial to millennial timescales and the erosion response of the coast, highlighting a need to more fully characterise the spatial variability in, and controls on, rocky coast erosion under changing conditions.

Journal article

Hughes A, Bell RE, Mildon ZK, Rood DH, Whittaker AC, Rockwell TK, Levy Y, DeVecchio DE, Marshall ST, Nicholson Cet al., 2020, Three‐dimensional structure, ground rupture hazards, and static stress models for complex non‐planar thrust faults in the Ventura basin, southern California, Journal of Geophysical Research: Solid Earth, Vol: 125, ISSN: 2169-9313

To investigate the subsurface geometry of a recently discovered, seismically‐active fault in the Ventura basin, southern California, USA, we present a series of cross sections and a new three‐dimensional fault model across the Southern San Cayetano fault (SSCF) based on integration of surface data with petroleum industry well‐log data. Additionally, the fault model for the SSCF, along with models of other regional faults extracted from the Southern California Earthquake Center three‐dimensional Community Fault Model, are incorporated in static Coulomb stress modeling to investigate static Coulomb stress transfer between thrust faults with complex geometry and to further our understanding of stress transfer in the Ventura basin. The results of the subsurface well investigation provide evidence for a low‐angle SSCF that dips ~15° north and connects with the western section of the San Cayetano fault around 1.5–3.5 km depth. We interpret the results of static Coulomb stress models to partly explain contrasting geomorphic expression between different sections of the San Cayetano fault and a potential mismatch in timings between large‐magnitude uplift events suggested by paleoseismic studies on the Pitas Point, Ventura, and San Cayetano faults. In addition to new insights into the structure and potential rupture hazard of a recently discovered active reverse fault in a highly populated area of southern California, this study provides a simple method to model static Coulomb stress transfer on complex geometry faults in fold and thrust belts.

Journal article

Regalla C, Bierman P, Rood DH, 2019, Meteoric Be-10 reveals a young, active accretionary prism and structurally complex decollement in the vicinity of the 2011 Tohoku Earthquake rupture, G3: Geochemistry, Geophysics, Geosystems: an electronic journal of the earth sciences, Vol: 20, Pages: 4956-4971, ISSN: 1525-2027

We present new meteoric 10Be concentration data from marine sediment cores recovered during Integrated Ocean Drilling Program Expedition 343 (JFAST) that help constrain the age, origin, and internal structure of the frontal prism at the Japan trench in the vicinity of the 2011 Tohoku‐oki M9 earthquake rupture. 10Be sediment ages from the lower portion of the frontal prism range from ~0–10 Ma, with >60% of analyzed samples above the décollement yielding young ages <2 Ma. Repetition and inversion of high‐over‐low 10Be‐concentration sediments indicate the presence of stratigraphic inversions that correspond to faulting and imbrication of late Miocene and Quaternary sediments. The density of faults inferred indicates that the frontal prism has a fault spacing on the order of 10 s of meters, and the identification of faults in the underthrust section suggests that the plate boundary décollement may be a zone with multiple slip surfaces. Comparison of 10Be concentrations in the frontal prism with those of the incoming and forearc slope sediments indicates that the majority of the prism is sourced from accretion of Pacific Plate sediments, rather than from reworked frontal prism or slope sediments. These data suggest that over at least the past ~1–2 Ma, the décollement preferentially has localized at or near the base of the incoming sediment section, with relatively efficient sediment accretion occurring even in the presence of subducted horst‐and‐graben topography.

Journal article

McCarthy JA, Schoenbohm LM, Bierman PR, Rood D, Hidy AJet al., 2019, Late quaternary tectonics, incision, and landscape evolution of the calchaqui river catchment, Eastern Cordillera, NW Argentina, Journal of Geophysical Research: Earth Surface, Vol: 124, Pages: 2265-2287, ISSN: 2169-9011

Unraveling the relative impacts of climate, tectonics, and lithology on landscape evolution is complicated by the temporal and spatial scale over which observations are made. We use soil and desert pavement classification, longitudinal river profiles, 10Be‐derived catchment mean modern and paleo‐erosion rates, and vertical incision rates to test whether, if we restrict our analyses to a spatial scale over which climate is relatively invariant, tectonic and lithologic factors will dominate the late Quaternary landscape evolution of the Calchaquí River Catchment, NW Argentina. We find that the spatial distribution of erosion rates, normalized channel steepness indices, and concavity indices reflect active tectonics and lithologic resistance. Knickpoints are spatially coincident with tectonic and/or lithologic discontinuities, indicating local base‐level control by faulting. Catchment mean erosion rates, ranging from 22.5 ± 2.6 to 121.9 ± 13.7 mm/kyr, and paleo‐erosion rates, ranging from 56 +43/‐19 to 105 +60/‐33 mm/kyr, are similar, possibly suggesting that Quaternary climate changes have not had a strong enough influence on erosion rates to be detected using cosmogenic 10Be. However, punctuated abandonment of pediment and strath terraces at 43.6 +15.0/‐11.6, 91.2 +54.2/‐22.2, and 151 +92.7/‐34.1 ka and disparities between vertical incision rates and catchment mean erosion rates could suggest periods of landscape transience, possibly reflecting climate cyclicity. Our results emphasize the role of tectonic uplift and lithologic contrasts in shaping long‐term erosion rates and channel morphology at the relatively local scale of the Calchaqui River Catchment, in contrast to regional‐scale studies which find precipitation to exert the dominant control.

Journal article

Portenga EW, Bierman PR, Trodick CD, Greene SE, DeJong BD, Rood DH, Pavich MJet al., 2019, Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes, Geological Society of America Bulletin, Vol: 131, Pages: 1295-1311, ISSN: 0016-7606

Beryllium isotopes measured in detrital river sediment are often used to estimate rates of landscape change at a basin scale, but results from different beryllium isotope systems have rarely been compared. Here, we report measurements of in situ and meteoric 10Be (10Bei and 10Bem, respectively) along with measurements of reactive and mineral phases of 9Be (9Bereac and 9Bemin, respectively) to infer long-term rates of landscape change in the Potomac River basin, North America. Using these data, we directly compare results from the two different 10Be isotope systems and contextualize modern sediment flux from the Potomac River basin to Chesapeake Bay.Sixty-two measurements of 10Bei in river sand show that the Potomac River basin is eroding on average at 29.6 ± 14.1 Mg km–2 yr–1 (11 ± 5.2 m m.y.–1 assuming a rock density of 2700 kg m–3)—a rate consistent with other estimates in the mid-Atlantic region. 10Bei erosion rates correlate with basin latitude, suggesting that periglacial weathering increased with proximity to the former Laurentide Ice Sheet margin. Considering the 10Bei-derived erosion rate as a sediment flux over millennia, rates of sediment delivery from the Potomac River to Chesapeake Bay are up to ∼5× lower than contemporary sediment yields implying modern land-use practices have accelerated erosion and sediment transport over background rates. However, 10Bei erosion rate data suggest that regulatory benchmark levels used to manage sediment export from the Potomac River basin to Chesapeake Bay are set appropriately to reduce sedimentation and restore the Bay’s ecological health.The mean of 56 10Bem/9Bereac-derived denudation rates (40.0 ± 21.7 Mg km–2 yr–1) is higher than, but statistically indistinguishable from, the mean 10Bei erosion rate (29.6 ± 14.1 Mg km–2 yr–1; p = 0.003). However, when considered basin by basin, 10Bem/9Bereac-determined denudation rate

Journal article

Stucky de Quay G, Roberts GG, Rood DH, Fernandes VMet al., 2019, Holocene uplift and rapid fluvial erosion of Iceland: a record of post-glacial landscape evolution, Earth and Planetary Science Letters, Vol: 505, Pages: 118-130, ISSN: 0012-821X

In actively deforming regions fluvial systems are strongly regulated by uplift. River geometries record histories of vertical motions that can be used to examine the driving forces generating topographic relief. Iceland's rapidly evolving landscapes provide an opportunity to disentangle histories of uplift generated by postglacial rebound, volcanism, dynamic support, and plate spreading. Broad knickzones observed along Iceland's large rivers, and its powerful waterfalls and deep canyons, hint that regional processes have generated significant relief. We combine high-resolution drone photogrammetry and cosmogenic 3He dating of fluvial terraces to measure the erosional history of one of Iceland's largest knickzones, Jökulsárglúfur, in the northeast part of the island. Progressive younging of terraces indicates knickpoint propagation rates of up to ∼70 cm a−1 during the last 8 ka. Knickpoint velocities appear to be controlled partly by toppling of basalt columns. These rates were used to calibrate a model that inverts Iceland's drainage networks for uplift rate histories. Calculated uplift and isostatic calculations indicate that rifting, sub-plate support, and isostatic adjustment resulted in tens to hundreds of meters of regional Holocene uplift. Our results suggest regional uplift and fluvial erosion can rapidly generate hundreds of meters of relief in post-glacial landscapes.

Journal article

Hughes A, Rood DH, Whittaker AC, Bell RE, Rockwell TK, Levy Y, Wilcken KM, Corbett LB, Bierman PR, DeVecchio DE, Marshall ST, Gurrola LD, Nicholson Cet al., 2018, Geomorphic evidence for the geometry and slip rate of a young, low-angle thrust fault: Implications for hazard assessment and fault interaction in complex tectonic environments, Earth and Planetary Science Letters, Vol: 504, Pages: 198-210, ISSN: 0012-821X

We present surface evidence and displacement rates for a young, active, low-angle (∼20°) reverse thrust fault in close proximity to major population centers in southern California (USA), the Southern San Cayetano fault (SSCF). Active faulting along the northern flank of the Santa Clara River Valley displaces young landforms, such as late Quaternary river terraces and alluvial fans. Geomorphic strain markers are examined using field mapping, high-resolution lidar topographic data, 10Be surface exposure dating, and subsurface well data to provide evidence for a young, active SSCF along the northern flank of the Santa Clara River Valley. Displacement rates for the SSCF are calculated over 103–104 yr timescales with maximum slip rates for the central SSCF of 1.9[Formula presented] mm yr−1 between ∼19–7 ka and minimum slip rates of 1.3[Formula presented] mm yr−1 since ∼7 ka. Uplift rates for the central SSCF have not varied significantly over the last ∼58 ka, with a maximum value of 1.7[Formula presented] mm yr−1 for the interval ∼58–19 ka, and a minimum value of 1.2±0.3 mm yr−1 since ∼7 ka. The SSCF is interpreted as a young, active structure with onset of activity at some time after ∼58 ka. The geometry for the SSCF presented here, with a ∼20° north dip in the subsurface, is the first interpretation of the SSCF based on geological field data. Our new interpretation is significantly different from the previously proposed model-derived geometry, which dips more steeply at 45–60° and intersects the surface in the middle of the Santa Clara River Valley. We suggest that the SSCF may rupture in tandem with the main San Cayetano fault. Additionally, the SSCF could potentially act as a rupture pathway between the Ventura and San Cayetano faults in large-magnitude, multi-fault earthquakes in southern California. However, given structural complexities, including significant changes

Journal article

Rainsley E, Menviel L, Fogwill CJ, Turney CSM, Hughes ALC, Rood DHet al., 2018, Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks, SCIENTIFIC REPORTS, Vol: 8, ISSN: 2045-2322

Understanding feedbacks between the Greenland Ice Sheet (GrIS) and the Atlantic Meridional Overturning Circulation (AMOC) is crucial for reducing uncertainties over future sea level and ocean circulation change. Reconstructing past GrIS dynamics can extend the observational record and elucidate mechanisms that operate on multi-decadal timescales. We report a highly-constrained last glacial vertical profile of cosmogenic isotope exposure ages from Sermilik Fjord, a marine-terminating ice stream in the southeast sector of the GrIS. Our reconstruction reveals substantial ice-mass loss throughout the Younger Dryas (12.9-11.7 ka), a period of marked atmospheric and sea-surface cooling. Earth-system modelling reveals that southern GrIS marginal melt was likely driven by strengthening of the Irminger Current at depth due to a weakening of the AMOC during the Younger Dryas. This change in North Atlantic circulation appears to have drawn warm subsurface waters to southeast Greenland despite markedly cooler sea surface temperatures, enhancing thermal erosion at the grounding lines of palaeo ice-streams, supporting interpretation of regional marine-sediment cores. Given current rates of GrIS meltwater input into the North Atlantic and the vulnerability of major ice streams to water temperature changes at the grounding line, this mechanism has important implications for future AMOC changes and northern hemisphere heat transport.

Journal article

Bierman PR, Rood DH, Shakun JD, Portenga EW, Corbett LBet al., 2018, Directly dating postglacial Greenlandic land-surface emergence at high resolution using in situ 10Be, Quaternary Research, Vol: 90, Pages: 110-126, ISSN: 0033-5894

Postglacial emergence curves are used to infer mantle rheology, delimit ice extent, and test models of the solid Earth response to changing ice and water loads. Such curves are rarely produced by direct dating of land emergence; rather, most rely on the presence of radiocarbon-datable organic material and inferences made between the age of sedimentary deposits and landforms indicative of former sea level. Here, we demonstrate a new approach, 10Be dating, to determine rates of postglacial land emergence in two different settings. In southern Greenland (Narsarsuaq/Igaliku), we date directly the exposure, as relative sea level fell, of gravel beaches and rocky outcrops allowing determination of rapid, post–Younger Dryas emergence. In western Greenland (Kangerlussuaq), we constrain Holocene isostatic response by dating the sequential stripping of terrace sediment driven by land-surface uplift, relative sea-level fall, and resulting fluvial incision. The technique we employ provides high temporal and elevation resolution important for quantifying rapid emergence immediately after deglaciation and less rapid uplift during the middle Holocene. 10Be-constrained emergence curves can improve knowledge of relative sea-level change by dating land emergence along rocky coasts, at elevations and locations where radiocarbon-datable sediments are not present, and without the lag time needed for organic material to accumulate.

Journal article

Schmidt AH, Gonzalez VS, Bierman PR, Neilson TB, Rood DHet al., 2018, Agricultural land use doubled sediment loads in western China's rivers, Anthropocene, Vol: 21, Pages: 95-106, ISSN: 2213-3054

Land use changes, such as deforestation and agricultural expansion, increase soil erosion on the scale of hillslopes and small drainage basins. However, the effects of these changes on the sediment load in rivers is poorly quantified, with a few studies scattered globally, and only 10 data points in the world's most populous nation, China. At 20 different sites in western China, we compare contemporary fluvial sediment yield data collected daily over 4 to 26 years between 1945 and 1987 (median=19years) to long-term measures of sediment generation based on new isotopic measurements of in situ 10 Be (beryllium-10) in river sediments. We find that median sediment yield at these sites exceeds background sediment generation rates by a factor of two (from 0.13 to 5.79 times, median 1.85 times) and that contemporary sediment yield is statistically significantly different from long-term sediment generation rates (p < 0.05). Agricultural land use is directly and significantly proportional to the ratio of contemporary sediment yield to long term sediment generation rates (Spearman correlation coefficient rho=0.52, p < 0.05). We support these findings by calculating erosion indices, which compare the delivery of meteoric 10 Be to each watershed with the export of meteoric 10 Be bound to riverine sediment. Erosion indices are also directly and significantly proportional to agricultural land use (rho=0.58, p < 0.05). Together, these data sets suggest that upstream agricultural land use has significantly increased sediment supply to rivers in western China, likely increasing turbidity and decreasing ecosystem services such as fisheries.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00840028&limit=30&person=true