Imperial College London

ProfessorDanielRueckert

Faculty of EngineeringDepartment of Computing

Head of Department of Computing
 
 
 
//

Contact

 

+44 (0)20 7594 8333d.rueckert Website

 
 
//

Location

 

568Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

692 results found

Tong T, Gao Q, Guerrero R, Ledig C, Chen L, Rueckert Det al., 2016, A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease, IEEE Transactions on Biomedical Engineering, Vol: 64, Pages: 155-165, ISSN: 1558-2531

OBJECTIVE: Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance (MR) images. METHODS: We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide a more accurate prediction of MCI-to-AD conversion. RESULTS: Using the ADNI dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79%-81% for the prediction of MCI-to-AD conversion within 3 years in 10-fold cross validations. The classification AUC further increases to 84%-92% when age and cognitive measures are combined with the proposed grading biomarker. CONCLUSION: The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space; the removal of the normal aging effect; selection of discriminative voxels; the calculation of the grading biomarker using AD and normal control groups; the integration of sparse representation technique and the combination of cognitive measures. SIGNIFICANCE: The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.

Journal article

Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, Tong T, Guerrero R, Schuh A, Ledig C, Rueckert D, Soininen H, Remes AM, Waldemar G, Hasselbalch S, Mecocci P, van der Flier W, Lötjönen Jet al., 2016, Differential diagnosis of neurodegenerative diseases using structural MRI data, NeuroImage: Clinical, Vol: 11, Pages: 435-449, ISSN: 2213-1582

Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia.Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making.A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by util

Journal article

Dawes T, de Marvao A, Shi W, Fletcher T, Watson G, Wharton J, Rhodes C, Howard L, Gibbs S, Rueckert D, Cook S, Wilkins M, O'Regan Det al., 2016, Use of artificial intelligence to predict survival in pulmonary hypertension, Spring Meeting on Clinician Scientists in Training, Publisher: ELSEVIER SCIENCE INC, Pages: 35-35, ISSN: 0140-6736

Conference paper

de Marvao A, Meyer H, Dawes T, Francis C, Shi W, Bai W, Rueckert D, Birney E, O'Regan DP, Cook Set al., 2016, Development of integrated high-resolution three-dimensional MRI and computational modelling techniques to identify novel genetic and anthropometric determinants of cardiac form and function, Spring Meeting on Clinician Scientists in Training, Publisher: ELSEVIER SCIENCE INC, Pages: 36-36, ISSN: 0140-6736

Conference paper

Ferrazzi G, Nunes RG, Arichi T, Gaspar AS, Barone G, Allievi A, Vasylechko S, Abaei M, Hughes E, Rueckert D, Price AN, Hajnal JVet al., 2016, An exploration of task based fMRI in neonates using echo-shifting to allow acquisition at longer T-E without loss of temporal efficiency, NEUROIMAGE, Vol: 127, Pages: 298-306, ISSN: 1053-8119

Journal article

Peressutti D, Bai W, Shi W, Tobon-Gomez C, Jackson T, Sohal M, Rinaldi A, Rueckert D, King Aet al., 2016, Towards left ventricular scar localisation using local motion descriptors, 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015, Publisher: Springer, Pages: 30-39, ISSN: 0302-9743

We propose a novel technique for the localisation of Left Ventricular (LV) scar based on local motion descriptors. Cardiac MR imaging is employed to construct a spatio-temporal motion atlas where the LV motion of different subjects can be directly compared. Local motion descriptors are derived from the motion atlas and dictionary learning is used for scar classification. Preliminary results on a cohort of 20 patients show a sensitivity and specificity of 80% and 87% in a binary classification setting.

Conference paper

Bai W, Oktay O, Rueckert D, 2016, Classification of myocardial infarcted patients by combining shape and motion features, 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015, Publisher: Springer, Pages: 140-145, ISSN: 0302-9743

Myocardial infarction changes both the shape and motion of the heart. In this work, cardiac shape and motion features are extracted from shape models at ED and ES phases and combined to train a SVM classifier between myocardial infarcted cases and asymptomatic cases. Shape features are characterised by PCA coefficients of a shape model, whereas motion features include wall thickening and wall motion. Evaluated on the STACOM 2015 challenge dataset, the proposed method achieves a high accuracy of 97.5% for classification, which shows that shape and motion features can be useful biomarkers for myocardial infarction, which provide complementary information to late-gadolinium MR assessment.

Conference paper

Bai W, Peressutti D, Parisot S, Oktay O, Rajchl M, O Regan D, Cook S, King A, Rueckert Det al., 2016, Beyond the AHA 17-segment model: Motion-driven parcellation of the left ventricle, 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, Publisher: Springer, Pages: 13-20, ISSN: 0302-9743

A major challenge for cardiac motion analysis is the highdimensionality of the motion data. Conventionally, the AHA model is used for dimensionality reduction, which divides the left ventricle into 17 segments using criteria based on anatomical structures. In this paper, a novel method is proposed to divide the left ventricle into homogeneous parcels in terms of motion trajectories. We demonstrate that the motion-driven parcellation has good reproducibility and use it for data reduction and motion description on a dataset of 1093 subjects. The resulting motion descriptor achieves high performance on two exemplar applications, namely gender and age predictions. The proposed method has the potential to be applied to groupwise motion analysis.

Conference paper

Oktay O, Tarroni G, Bai W, de Marvao A, O'Regan D, Cook S, Rueckert Det al., 2016, Respiratory Motion Correction for 2D Cine Cardiac MR Images using Probabilistic Edge Maps, 43rd Computing in Cardiology Conference (CinC), Publisher: IEEE, Pages: 129-132, ISSN: 2325-8861

Conference paper

Rajchl M, Baxter JSH, Qiu W, Khan AR, Fenster A, Peters TM, Rueckert D, Yuan Jet al., 2016, Fast Deformable Image Registration with Non-Smooth Dual Optimization, 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Publisher: IEEE, Pages: 465-472, ISSN: 2160-7508

Conference paper

Oktay O, Bai W, Lee M, Guerrero R, Kamnitsas K, Caballero J, De Marvao A, Cook S, O’Regan D, Rueckert Det al., 2016, Multi-input cardiac image super-resolution using convolutional neural networks, Pages: 246-254, ISSN: 0302-9743

© Springer International Publishing AG 2016. 3D cardiac MR imaging enables accurate analysis of cardiac morphology and physiology. However,due to the requirements for long acquisition and breath-hold,the clinical routine is still dominated by multi-slice 2D imaging,which hamper the visualization of anatomy and quantitative measurements as relatively thick slices are acquired. As a solution,we propose a novel image super-resolution (SR) approach that is based on a residual convolutional neural network (CNN) model. It reconstructs high resolution 3D volumes from 2D image stacks for more accurate image analysis. The proposed model allows the use of multiple input data acquired from different viewing planes for improved performance. Experimental results on 1233 cardiac short and long-axis MR image stacks show that the CNN model outperforms state-of-the-art SR methods in terms of image quality while being computationally efficient. Also,we show that image segmentation and motion tracking benefits more from SR-CNN when it is used as an initial upscaling method than conventional interpolation methods for the subsequent analysis.

Conference paper

Arslan S, Parisot S, Rueckert D, 2016, Boundary mapping through manifold learning for connectivity-based cortical parcellation, Pages: 115-122, ISSN: 0302-9743

© Springer International Publishing AG 2016. The study of the human connectome is becoming more popular due to its potential to reveal the brain function and structure. A critical step in connectome analysis is to parcellate the cortex into coherent regions that can be used to build graphical models of connectivity. Computing an optimal parcellation is of great importance,as this stage can affect the performance of the subsequent analysis. To this end,we propose a new parcellation method driven by structural connectivity estimated from diffusion MRI. We learn a manifold from the local connectivity properties of an individual subject and identify parcellation boundaries as points in this low-dimensional embedding where the connectivity patterns change. We compute spatially contiguous and non-overlapping parcels from these boundaries after projecting them back to the native cortical surface. Our experiments with a set of 100 subjects show that the proposed method can produce parcels with distinct patterns of connectivity and a higher degree of homogeneity at varying resolutions compared to the state-of-the-art methods,hence can potentially provide a more reliable set of network nodes for connectome analysis.

Conference paper

Ledig C, Kaltwang S, Tolonen A, Koikkalainen J, Scheltens P, Barkhof F, Rhodius-Meester H, Tijms B, Lemstra AW, van der Flier W, Lötjönen J, Rueckert Det al., 2016, Differential dementia diagnosis on incomplete data with latent trees, Pages: 44-52, ISSN: 0302-9743

© Springer International Publishing AG 2016. Incomplete patient data is a substantial problem that is not sufficiently addressed in current clinical research. Many published methods assume both completeness and validity of study data. However,this assumption is often violated as individual features might be unavailable due to missing patient examination or distorted/wrong due to inaccurate measurements or human error. In this work we propose to use the Latent Tree (LT) generative model to address current limitations due to missing data. We show on 491 subjects of a challenging dementia dataset that LT feature estimation is more robust towards incomplete data as compared to mean or Gaussian Mixture Model imputation and has a synergistic effect when combined with common classifiers (we use SVM as example). We show that LTs allow the inclusion of incomplete samples into classifier training. Using LTs,we obtain a balanced accuracy of 62% for the classification of all patients into five distinct dementia types even though 20% of the features are missing in both training and testing data (68% on complete data). Further,we confirm the potential of LTs to detect outlier samples within the dataset.

Conference paper

Oda M, Shimizu N, Karasawa K, Nimura Y, Kitasaka T, Misawa K, Fujiwara M, Rueckert D, Mori Ket al., 2016, Regression forest-based atlas localization and direction specific atlas generation for pancreas segmentation, Pages: 556-563, ISSN: 0302-9743

© Springer International Publishing AG 2016. This paper proposes a fully automated atlas-based pancreas segmentation method from CT volumes utilizing atlas localization by regression forest and atlas generation using blood vessel information. Previous probabilistic atlas-based pancreas segmentation methods cannot deal with spatial variations that are commonly found in the pancreas well. Also,shape variations are not represented by an averaged atlas. We propose a fully automated pancreas segmentation method that deals with two types of variations mentioned above. The position and size of the pancreas is estimated using a regression forest technique. After localization,a patient-specific probabilistic atlas is generated based on a new image similarity that reflects the blood vessel position and direction information around the pancreas. We segment it using the EM algorithm with the atlas as prior followed by the graph-cut. In evaluation results using 147 CT volumes,the Jaccard index and the Dice overlap of the proposed method were 62.1% and 75.1%,respectively. Although we automated all of the segmentation processes,segmentation results were superior to the other state-of-the-art methods in the Dice overlap.

Conference paper

Coupé P, Wu G, Zhan Y, Rueckert D, Munsell BCet al., 2016, Preface, ISBN: 9783319471174

Book

Bowles C, Qin C, Ledig C, Guerrero R, Gunn R, Hammers A, Sakka E, Dickie DA, Hernandez MV, Royle N, Wardlaw J, Rhodius-Meester H, Tijms B, Lemstra AW, van der Flier W, Barkhof F, Scheltens P, Rueckert Det al., 2016, Pseudo-healthy Image Synthesis for White Matter Lesion Segmentation, 1st International Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 87-96, ISSN: 0302-9743

Conference paper

Thomaz CE, Amaral V, Gillies DF, Rueckert Det al., 2016, Priori-driven dimensions of face-space: Experiments incorporating eye-tracking information, 9th Biennial ACM Symposium on Eye Tracking Research and Applications (ETRA), Publisher: ASSOC COMPUTING MACHINERY, Pages: 279-282

Conference paper

Murgasova M, Estrin GL, Rutherford M, Rueckert D, Hajnal Jet al., 2016, DISTORTION CORRECTION IN FETAL EPI USING NON-RIGID REGISTRATION WITH LAPLACIAN CONSTRAINT, IEEE 13th International Symposium on Biomedical Imaging (ISBI), Publisher: IEEE, Pages: 1372-1375, ISSN: 1945-7928

Conference paper

Bozek J, Fitzgibbon S, Wright R, Rueckert D, Jenkinson M, Robinson ECet al., 2016, CONSTRUCTION OF A NEONATAL CORTICAL SURFACE ATLAS USING MULTIMODAL SURFACE MATCHING, IEEE 13th International Symposium on Biomedical Imaging (ISBI), Publisher: IEEE, Pages: 775-778, ISSN: 1945-7928

Conference paper

Kerfoot E, Fovargue L, Rivolo S, Shi W, Rueckert D, Nordsletten D, Lee J, Chabiniok R, Razavi Ret al., 2016, Eidolon: Visualization and computational framework for multi-modal biomedical data analysis, Pages: 425-437, ISSN: 0302-9743

© Springer International Publishing Switzerland 2016. Biomedical research, combining multi-modal image and geometry data, presents unique challenges for data visualization, processing, and quantitative analysis. Medical imaging provides rich information, from anatomical to deformation, but extracting this to a coherent picture across image modalities with preserved quality is not trivial. Addressing these challenges and integrating visualization with image and quantitative analysis results in Eidolon, a platform which can adapt to rapidly changing research workflows. In this paper we outline Eidolon, a software environment aimed at addressing these challenges, and discuss the novel integration of visualization and analysis components. These capabilities are demonstrated through the example of cardiac strain analysis, showing the Eidolon supports and enhances the workflow.

Conference paper

Karasawa K, Kitasaka T, Oda M, Nimura Y, Hayashi Y, Fujiwara M, Misawa K, Rueckert D, Mori Ket al., 2016, Structure Specific Atlas Generation and Its Application to Pancreas Segmentation from Contrasted Abdominal CT Volumes, International Workshop on Medical Computer Vision, Publisher: SPRINGER INT PUBLISHING AG, Pages: 47-56, ISSN: 0302-9743

Conference paper

Jia D, Shi W, Rueckert D, Liu L, Ourselin S, Zhuang Xet al., 2016, A multi-resolution multi-model method for coronary centerline extraction based on minimal path, Pages: 320-328, ISSN: 0302-9743

© Springer International Publishing Switzerland 2016. Extracting centerlines of coronary arteries is challenging but important in clinical applications of cardiac computed tomography angiography (CTA). Since manual annotation of coronary arteries is time-consuming, laborintensive and subject to intra- and inter-variations, we propose a new method to fully automatically extract the coronary centerlines. We first develop a new image filter which generates pixels with salient vessel features within a given window. This filter hence can capture sparsely distributed but important vessel points, enabling the minimal path (MP) process to track the key centerline points at different resolution of the images. Then, we reformulate the filter for multi-resolution fast marching, which not only can speed up the coronary tracking process, but also can help the front propagation to step over the indistinct segments of the coronary artery such as at the locations of stenosis. We embed this scheme into the MP framework to develop a multi-resolution multi-model approach (MMP), where the extracted centerlines from low-resolution MP serve as prior and constraints for the high-resolution process. We evaluated the performance of this method using the Rotterdam CTA training data and the coronary artery algorithm evaluation framework. The average inside of our extraction was 0.51 mm and the overlap was 72.9 %. The mean runtime on the original resolution CTA images was 3.4 min using the MMP method.

Conference paper

Nagara K, Oda H, Nakamura S, Oda M, Homma H, Takabatake H, Mori M, Natori H, Rueckert D, Mori Ket al., 2016, Cascade registration of micro CT volumes taken in multiple resolutions, Pages: 269-280, ISSN: 0302-9743

© Springer International Publishing Switzerland 2016. In this paper, we present a preliminary report of a multiscale registration method between micro-focus X-ray CT (micro CT) volumes taken in different scales. 3D fine structures of target objects can be observed on micro CT volumes, which are difficult to observe on clinical CT volumes. Micro CT scanners can scan specimens in various resolutions. In their high resolution volumes, ultra fine structures of specimens can be observed, while scanned areas are limited to very small. On the other hand, in low resolution volumes, large areas can be captured, while fine structures of specimens are difficult to observe. The fusion volume of the high and low resolution volumes will have benefits of both. Because the difference of resolutions between the high and low resolution volumes may vary greatly, an intermediate resolution volume is required for successful fusion of volumes. To perform such volume fusion, a cascade multi-resolution registration technique is required. To register micro CT volumes that have quite different resolutions, we employ a cascade co-registration technique. In the cascade co-registration process, intermediate resolution volumes are used in a registration process of the high and low resolution volumes. In the registration between two volumes, we apply two steps registration techniques. In the first step, a block division is used to register two resolution volumes. Afterward, we estimate the fine spatial positions relating the registered two volumes using the Powell method. The registration result can be used to generate a fusion volume of the high and low resolution volumes.

Conference paper

Alansary A, Kainz B, Rajchl M, Murgasova M, Damodaram M, Lloyd DFA, Davidson A, McDonagh SG, Rutherford MA, Hajnal JV, Rueckert Det al., 2016, PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI., CoRR, Vol: abs/1611.07289

Journal article

Baumgartner CF, Kamnitsas K, Matthew J, Smith S, Kainz B, Rueckert Det al., 2016, Real-Time Standard Scan Plane Detection and Localisation in Fetal Ultrasound Using Fully Convolutional Neural Networks, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II, Editors: Ourselin, Joskowicz, Sabuncu, Unal, Wells, Publisher: Springer International Publishing, Pages: 203-211, ISBN: 978-3-319-46723-8

Book chapter

Alansary A, Lee M, Kainz B, Keraudren K, Malamateniou C, Rutherford M, Hajnal J, Glocker B, Rueckert Det al., 2015, Automatic Brain Localisation in Foetal MRI using Superpixel Graphs, ICML Workshop on Machine Learning meets Medical Imaging, Publisher: Springer, ISSN: 0302-9743

Conference paper

Kainz B, Alansary A, Malamateniou CH, Keraudren K, Rutherford M, Hajnal J, Rueckert Det al., 2015, Flexible reconstruction and correction of unpredictable motion from stacks of 2D images, 18th International Conference, Munich, Germany, October 5-9, 2015, Publisher: Springer International Publishing, Pages: 555-562, ISSN: 0302-9743

We present a method to correct motion in fetal in-utero scan sequences. The proposed approach avoids previously necessary manual segmentation of a region of interest. We solve the problem of non-rigid motion by splitting motion corrupted slices into overlapping patches of finite size. In these patches the assumption of rigid motion approximately holds and they can thus be used to perform a slice-to-volume-based (SVR) reconstruction during which their consistency with the other patches is learned. The learned information is used to reject patches that are not conform with the motion corrected reconstruction in their local areas. We evaluate rectangular and evenly distributed patches for the reconstruction as well as patches that have been derived from super-pixels. Both approaches achieve on 29 subjects aged between 22–37 weeks a sufficient reconstruction quality and facilitate following 3D segmentation of fetal organs and the placenta.

Conference paper

Dawes T, de Marvao A, Shi W, Rueckert D, Cook S, O'Regan DPet al., 2015, Systolic Motion of the Basal Right Ventricular Freewall is the Strongest Predictor of Global Function: A High Resolution 3D Cardiac Magnetic Resonance Study, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Gomez A, de Vecchi A, Jantsch M, Shi W, Pushparajah K, Simpson JM, Smith NP, Rueckert D, Schaeffter T, Penney GPet al., 2015, 4D Blood Flow Reconstruction Over the Entire Ventricle From Wall Motion and Blood Velocity Derived From Ultrasound Data, IEEE Transactions on Medical Imaging, Vol: 34, Pages: 2298-2308, ISSN: 1558-254X

We demonstrate a new method to recover 4D bloodflow over the entire ventricle from partial blood velocity measurementsusing multiple colour Doppler images and ventricularwall motion estimated using BMode images. We applyour approach to realistic simulated data to ascertain the ability ofthe method to deal with incomplete data, as typically happens inclinical practice. Experiments using synthetic data show that theuse of wall motion improves velocity reconstruction, shows moreaccurate flow patterns and improves mean accuracy particularlywhen coverage of the ventricle is poor. The method was appliedto patient data from 6 congenital cases, producing results consistentwith the simulations. The use of wall motion produced moreplausible flow patterns and reduced the reconstruction error in allpatients.

Journal article

Makropoulos A, Aljabar P, Wright R, Hüning B, Merchant N, Arichi T, Tusor N, Hajnal JV, Edwards AD, Counsell SJ, Rueckert Det al., 2015, Regional growth and atlasing of the developing human brain, Neuroimage, Vol: 125, Pages: 456-478, ISSN: 1095-9572

Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45. weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00172041&limit=30&person=true&page=7&respub-action=search.html