Imperial College London


Faculty of EngineeringDepartment of Computing

Head of Department of Computing



+44 (0)20 7594 8333d.rueckert Website




568Huxley BuildingSouth Kensington Campus






BibTex format

author = {Baumgartner, CF and Kolbitsch, C and McClelland, JR and Rueckert, D and King, AP},
doi = {10.1007/978-3-642-38868-2_20},
pages = {232--243},
title = {Groupwise simultaneous manifold alignment for high-resolution dynamic MR imaging of respiratory motion.},
url = {},
year = {2013}

RIS format (EndNote, RefMan)

AB - Respiratory motion is a complicating factor for many applications in medical imaging and there is significant interest in dynamic imaging that can be used to estimate such motion. Magnetic resonance imaging (MRI) is an attractive modality for motion estimation but current techniques cannot achieve good image contrast inside the lungs. Manifold learning is a powerful tool to discover the underlying structure of high-dimensional data. Aligning the manifolds of multiple datasets can be useful to establish relationships between different types of data. However, the current state-of-the-art in manifold alignment is not robust to the wide variations in manifold structure that may occur in clinical datasets. In this work we propose a novel, fully automatic technique for the simultaneous alignment of large numbers of manifolds with varying manifold structure. We apply the technique to reconstruct high-resolution and high-contrast dynamic 3D MRI images from multiple 2D datasets for the purpose of respiratory motion estimation. The proposed method is validated on synthetic data with known ground truth and real data. We demonstrate that our approach can be applied to reconstruct significantly more accurate and consistent dynamic images of the lungs compared to the current state-of-the-art in manifold alignment.
AU - Baumgartner,CF
AU - Kolbitsch,C
AU - McClelland,JR
AU - Rueckert,D
AU - King,AP
DO - 10.1007/978-3-642-38868-2_20
EP - 243
PY - 2013///
SN - 1011-2499
SP - 232
TI - Groupwise simultaneous manifold alignment for high-resolution dynamic MR imaging of respiratory motion.
UR -
UR -
ER -