Imperial College London

Dr Dina Vlachou

Faculty of Natural SciencesDepartment of Life Sciences

Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 1267d.vlachou Website

 
 
//

Location

 

612Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

34 results found

Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Vlachou D, Christophides GKet al., 2021, Anopheles coluzziistearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding, PLoS Pathogens, Vol: 17, ISSN: 1553-7366

Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne

Journal article

Ukegbu CV, Christophides GK, Vlachou D, 2021, Identification of three novel plasmodium factors involved in ookinete to oocyst developmental transition, Frontiers in Cellular and Infection Microbiology, Vol: 11, Pages: 1-17, ISSN: 2235-2988

Plasmodium falciparum malaria remains a major cause of global morbidity and mortality, mainly in sub-Saharan Africa. The numbers of new malaria cases and deaths have been stable in the last years despite intense efforts for disease elimination, highlighting the need for new approaches to stop disease transmission. Further understanding of the parasite transmission biology could provide a framework for the development of such approaches. We phenotypically and functionally characterized three novel genes, PIMMS01, PIMMS57, and PIMMS22, using targeted disruption of their orthologs in the rodent parasite Plasmodium berghei. PIMMS01 and PIMMS57 are specifically and highly expressed in ookinetes, while PIMMS22 transcription starts already in gametocytes and peaks in sporozoites. All three genes show strong phenotypes associated with the ookinete to oocyst transition, as their disruption leads to very low numbers of oocysts and complete abolishment of transmission. PIMMS22 has a secondary essential function in the oocyst. Our results enrich the molecular understanding of the parasite-vector interactions and identify PIMMS01, PIMMS57, and PIMMS22 as new targets of transmission blocking interventions.

Journal article

Witmer K, Fraschka S, Vlachou D, Bartfai R, Christophides Get al., 2020, An epigenetic map of malaria parasite development from host to vector, Scientific Reports, Vol: 10, ISSN: 2045-2322

The malaria parasite replicates asexually in the red blood cells of its vertebrate host employing epigenetic mechanisms to regulate gene expression in response to changes in its environment. We used chromatin immunoprecipitation followed by sequencing in conjunction with RNA sequencing to create an epigenomic and transcriptomic map of the developmental transition from asexual blood stages to male and female gametocytes and to ookinetes in the rodent malaria parasite Plasmodium berghei. Across the developmental stages examined, heterochromatin protein 1 associates with variantly expressed gene families localised at subtelomeric regions and variant gene expression based on heterochromatic silencing is observed only in some genes. Conversely, the euchromatin mark histone 3 lysine 9 acetylation (H3K9ac) is abundant in non-heterochromatic regions across all developmental stages. H3K9ac presents a distinct pattern of enrichment around the start codon of ribosomal protein genes in all stages but male gametocytes. Additionally, H3K9ac occupancy positively correlates with transcript abundance in all stages but female gametocytes suggesting that transcription in this stage is independent of H3K9ac levels. This finding together with known mRNA repression in female gametocytes suggests a multilayered mechanism operating in female gametocytes in preparation for fertilization and zygote development, coinciding with parasite transition from host to vector.

Journal article

Ukegbu CV, Giorgalli M, Tapanelli S, Rona LDP, Jaye A, Wyer C, Angrisano F, Christophides G, Vlachou Det al., 2020, PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector, Proceedings of the National Academy of Sciences of USA, Vol: 117, Pages: 7363-7373, ISSN: 0027-8424

After being ingested by a female Anopheles mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, Plasmodium parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission. We show that an ookinete and sporozoite surface protein designated as PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43) is required for parasite evasion of the Anopheles coluzzii complement-like response. Disruption of PIMMS43 in the rodent malaria parasite Plasmodium berghei triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing components of the complement-like system through RNAi largely restores ookinete-to-oocyst transition but oocysts remain small in size and produce a very small number of sporozoites that additionally are not infectious, indicating that PIMMS43 is also essential for sporogonic development in the oocyst. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African Plasmodium falciparum populations indicates allelic adaptation to sympatric vector populations. These data add to our understanding of mosquito–parasite interactions and identify PIMMS43 as a target of malaria transmission blocking.

Journal article

Ukegbu CV, Giorgalli M, Tapanelli S, Rona LDP, Jaye A, Wyer C, Angrisano F, Blagborough AM, Christophides GK, Vlachou Det al., 2019, Plasmodium PIMMS43 is required for ookinete evasion of the mosquito complement-like response and sporogonic development in the oocyst

<jats:title>Abstract</jats:title><jats:p>Malaria transmission requires <jats:italic>Plasmodium</jats:italic> parasites to successfully infect a female <jats:italic>Anopheles</jats:italic> mosquito, surviving a series of robust innate immune responses. Understanding how parasites evade these responses can highlight new ways to block malaria transmission. We show that ookinete and sporozoite surface protein PIMMS43 is required for <jats:italic>Plasmodium</jats:italic> ookinete evasion of the <jats:italic>Anopheles coluzzii</jats:italic> complement-like system and for sporogonic development in the oocyst. Disruption of <jats:italic>P. berghei</jats:italic> PIMMS43 triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing the complement-like system restores ookinete-to-oocyst transition. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African <jats:italic>P. falciparum</jats:italic> populations indicates allelic adaptation to sympatric vector populations. These data significantly add to our understanding of mosquito-parasite interactions and identify PIMMS43 as a target of interventions aiming at malaria transmission blocking.</jats:p><jats:sec><jats:title>Author summary</jats:title><jats:p>Malaria is a devastating disease transmitted among humans through mosquito bites. Mosquito control has significantly reduced clinical malaria cases and deaths in the last decades. However, as mosquito resistance to insecticides is becoming widespread impacting on current control tools, such as insecticide impregnated bed nets and indoor spraying, new interventions are urgently needed, especially those that target disease transmission. Here, we characterize

Journal article

Witmer K, Fraschka SAK, Vlachou D, Bártfai R, Christophides Get al., 2019, Epigenetic regulation underlying Plasmodium berghei gene expression during its developmental transition from host to vector, bioRxiv, ISSN: 2045-2322

ABSTRACT Epigenetic regulation of gene expression is an important attribute in the survival and adaptation of the malaria parasite Plasmodium in its human host. Our understanding of epigenetic regulation of gene expression in Plasmodium developmental stages beyond asexual replication in the mammalian host is sparse. We used chromatin immune-precipitation (ChIP) and RNA sequencing to create an epigenetic and transcriptomic map of the murine parasite Plasmodium berghei development from asexual blood stages to male and female gametocytes, and finally, to ookinetes. We show that heterochromatin 1 (HP1) almost exclusively associates with variantly expressed gene families at subtelomeric regions and remains stable across stages and various parasite lines. Variant expression based on heterochromatic silencing is observed only in very few genes. In contrast, the active histone mark histone 3 Lysine 9 acetylation (H3K9ac) is found between heterochromatin boundaries and occurs as a sharp peak around the start codon for ribosomal protein genes. H3K9ac occupancy positively correlates with gene transcripts in asexual blood stages, male gametocytes and ookinetes. Interestingly, H3K9ac occupancy does not correlate with transcript abundance in female gametocytes. Finally, we identify novel DNA motifs upstream of ookinete-specific genes thought to be involved in transcriptional activation upon fertilization.

Journal article

Ukegbu CV, Giogalli M, Yassine H, Luis Ramirez J, Taxiarchi C, Barillas-Mury C, Christophides GKet al., 2017, Plasmodium berghei P47 is essential for ookinete protection from the Anopheles gambiae complement-like response, Scientific Reports, Vol: 7, ISSN: 2045-2322

Malaria is a mosquito-borne disease affecting millions of people every year. The rodent parasite Plasmodium berghei has served as a model for human malaria transmission studies and played a pivotal role in dissecting the mosquito immune response against infection. The 6-cysteine protein P47, known to be important for P. berghei female gamete fertility, is shown to serve a different function in Plasmodium falciparum, protecting ookinetes from the mosquito immune response. Here, we investigate the function of P. berghei P47 in Anopheles gambiae mosquito infections. We show that P47 is expressed on the surface of both female gametocytes and ookinetes where it serves distinct functions in promoting gametocyte-to-ookinete development and protecting ookinetes from the mosquito complement-like response, respectively. The latter function is essential, as ookinetes lacking P47 are targeted for killing while traversing the mosquito midgut cells and eliminated upon exposure to hemolymph proteins of the complement-like system. Silencing key factors of the complement-like system restores oocyst development and disease transmission to rodent hosts. Our data establish a dual role of P. berghei P47 in vivo and reinforce the use of this parasite to study the impact of the mosquito immune response on human malaria transmission.

Journal article

Ukegbu CV, Akinosoglou KA, Christophides GKC, Vlachou Det al., 2017, Plasmodium berghei PIMMS2 promotes ookinete invasion of the Anopheles gambiae mosquito midgut, Infection and Immunity, Vol: 85, ISSN: 1098-5522

Mosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 (Plasmodium Invasion of Mosquito Midgut Screen candidate 2), a Plasmodium berghei protein with structural similarities to subtilisin-like proteins. PIMMS2 orthologs are present in the genomes of all plasmodia and are mapped between the subtilisin-encoding genes SUB1 and SUB3. P. berghei PIMMS2 is specifically expressed in zygotes and ookinetes and is localized on the ookinete surface. Loss of PIMMS2 function through gene disruption by homologous recombination leads to normal development of motile ookinetes that exhibit severely impaired capacity to traverse the mosquito midgut and transform to oocysts. Genetic complementation of the disrupted locus with a mutated PIMMS2 allele reveals that amino acid residues corresponding to the putative subtilisin-like catalytic triad are important but not essential for the protein function. Our data demonstrate that PIMMS2 is a novel ookinete-specific protein that promotes parasite traversal of the mosquito midgut epithelium and establishment of mosquito infection.

Journal article

Ukegbu CV, Cho J-S, Christophides GK, Vlachou Det al., 2015, Transcriptional silencing and activation of paternal DNA during Plasmodium berghei zygotic development and transformation to oocyst, Cellular Microbiology, Vol: 17, Pages: 1230-1240, ISSN: 1462-5822

The malaria parasite develops sexually in the mosquito midgut upon entry with the ingested blood meal before it can invade the midgut epithelium and embark on sporogony. Recent data have identified a number of distinct transcriptional programmes operating during this critical phase of the parasite life cycle. We aimed at characterizing the parental contribution to these transcriptional programmes and establish the genetic framework that would guide further studies of Plasmodium zygotic development and ookinete-to-oocyst transition. To achieve this we used in vitro and in vivo cross-fertilization experiments of various parasite lines expressing fluorescent reporters under the control of constitutive and stage-specific promoters. The results revealed that the zygote/ookinete stage exhibits a maternal phenotype with respect to constitutively expressed reporters, which is derived from either maternal mRNA inheritance or transcription of the maternal allele. The respective paternal alleles are silenced in the zygote/ookinete but reactivated after midgut invasion and transformation to oocyst. Transcripts specifically produced in the zygote/ookinete are synthesized de novo by both parental alleles. These findings highlight a putative role of epigenetic regulation of Plasmodium zygotic development and add substantially to the emerging picture of the molecular mechanisms regulating this important stage of malaria transmission.

Journal article

Akinosoglou KA, Bushell ESC, Ukegbu CV, Schlegelmilch T, Cho J-S, Redmond S, Sala K, Christophides GK, Vlachou Det al., 2015, Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission, CELLULAR MICROBIOLOGY, Vol: 17, Pages: 254-268, ISSN: 1462-5814

Journal article

Ukegbu VC, Bushell E, Trasanidis N, Taxiarchi C, Akinosoglou KA, Cho J-S, Sala K, Redmond S, Cohuet A, Vlachou Det al., 2014, Molecular characterization of the Anopheles-Plasmodium interactions in the mosquito midgut” Pathogens and Global Health 107, no. 8 (2013): 402

Akinosoglou KA, Cho JS, Sala K, Redmond S

Conference paper

Schlegelmilch T, Vlachou D, 2013, Cell biological analysis of mosquito midgut invasion: the defensive role of the actin-based ookinete hood, PATHOGENS AND GLOBAL HEALTH, Vol: 107, Pages: 480-492, ISSN: 2047-7724

Journal article

Ukegbu VC, Bushell E, Trasanidis N, Taxiarchi C, Akinosoglou KA, Cho J-S, Sala K, Redmond S, Cohuet A, Vlachou Det al., 2013, MOLECULAR CHARACTERIZATION OF THE ANOPHELES PLASMODIUM INTERACTIONS IN THE MOSQUITO MIDGUT, PATHOGENS AND GLOBAL HEALTH, Vol: 107, Pages: 402-402, ISSN: 2047-7724

Journal article

Vlachou D, 2011, Differences in An. gambiae gene regulation in response to ingestion of local and geographically distant isolates of P. falciparum., 60th Annual Meeting, American Society of Tropical Medicine and Hygiene (ASTMH), Philadelphia, PA, USA, December 2011.

Conference paper

Mendes AM, Awono-Ambene PH, Nsango SE, Cohuet A, Fontenille D, Kafatos FC, Christophides GK, Morlais I, Vlachou Det al., 2011, Infection Intensity-Dependent Responses of Anopheles gambiae to the African Malaria Parasite Plasmodium falciparum, INFECTION AND IMMUNITY, Vol: 79, Pages: 4708-4715, ISSN: 0019-9567

Journal article

Churcher TS, Bousema TJ, Drakeley CJ, Harris C, Cohuet A, Morlais I, Vlachou D, Dawes EJ, Basanez M-Get al., 2010, LOW GAMETOCYTE DENSITIES RESTRICT THE DEVELOPMENT OF PLASMODIUM FALCIPARUM WITHIN ANOPHELES GAMBIAE WITH IMPLICATIONS FOR THE HUMAN RESERVOIR OF INFECTION AND PARASITE ELIMINATION, 59th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 169-169, ISSN: 0002-9637

Conference paper

Bushell ESC, Ecker A, Schlegelmilch T, Goulding D, Dougan G, Sinden RE, Christophides GK, Kafatos FC, Vlachou Det al., 2009, Paternal Effect of the Nuclear Formin-like Protein MISFIT on Plasmodium Development in the Mosquito Vector, PLOS PATHOGENS, Vol: 5, ISSN: 1553-7366

Journal article

Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, Waters AP, Cowman AF, Crabb BS, de Koning-Ward TFet al., 2009, Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites, NUCLEIC ACIDS RESEARCH, Vol: 37, Pages: 3788-3798, ISSN: 0305-1048

Journal article

Mendes AM, Schlegelmilch T, Cohuet A, Awono-Ambene P, De Iorio M, Fontenille D, Morlais I, Christophides GK, Kafatos FC, Vlachou Det al., 2008, Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa, PLOS PATHOGENS, Vol: 4, ISSN: 1553-7366

Journal article

Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, MacCallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, Zdobnov EM, Christophides GKet al., 2007, Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes, SCIENCE, Vol: 316, Pages: 1738-1743, ISSN: 0036-8075

Journal article

Vlachou D, Schlegelmilch T, Runn E, Mendes A, Kafatos FCet al., 2006, The developmental migration of Plasmodium in mosquitoes, CURRENT OPINION IN GENETICS & DEVELOPMENT, Vol: 16, Pages: 384-391, ISSN: 0959-437X

Journal article

Vlachou D, Kafatos FC, 2005, The complex interplay between mosquito positive and negative regulators of Plasmodium development, CURRENT OPINION IN MICROBIOLOGY, Vol: 8, Pages: 415-421, ISSN: 1369-5274

Journal article

Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FCet al., 2005, Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion, CURRENT BIOLOGY, Vol: 15, Pages: 1185-1195, ISSN: 0960-9822

Journal article

Christophides G, Meister S, Koutsos A, Blass C, Kanzok S, Vlachou D, Schlegelmilch T, Osta M, Zheng L, Kafatos Fet al., 2005, Systems biology of the Anopheles gainbiae innate immunity [MIM-GC-22590], ACTA TROPICA, Vol: 95, Pages: S44-S45, ISSN: 0001-706X

Journal article

Vlachou D, Zimmermann T, Cantera R, Janse CJ, Waters AP, Kafatos FCet al., 2004, Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion, CELLULAR MICROBIOLOGY, Vol: 6, Pages: 671-685, ISSN: 1462-5814

Journal article

Osta MA, Christophides GK, Vlachou D, Kafatos FCet al., 2004, Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics, JOURNAL OF EXPERIMENTAL BIOLOGY, Vol: 207, Pages: 2551-2563, ISSN: 0022-0949

Journal article

Christophides GK, Vlachou D, Kafatos FC, 2004, Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae, IMMUNOLOGICAL REVIEWS, Vol: 198, Pages: 127-148, ISSN: 0105-2896

Journal article

Dessens JT, Siden-Kiamos I, Mendoza J, Mahairaki V, Khater E, Vlachou D, Xu XJ, Kafatos FC, Louis C, Dimopoulos G, Sinden REet al., 2003, SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development, MOLECULAR MICROBIOLOGY, Vol: 49, Pages: 319-329, ISSN: 0950-382X

Journal article

Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Muller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu JN, Zheng LB, Bork P, Kafatos FCet al., 2002, Immunity-related genes and gene families in Anopheles gambiae, SCIENCE, Vol: 298, Pages: 159-165, ISSN: 0036-8075

Journal article

Vlachou D, Komitopoulou K, 2001, The chorion genes of the medfly. II. DNA sequence evolution of the autosomal chorion genes s18, s15, s19 and s16 in Diptera, GENE, Vol: 270, Pages: 41-52, ISSN: 0378-1119

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00462334&limit=30&person=true