Imperial College London

ProfessorDominicWithers

Faculty of MedicineInstitute of Clinical Sciences

Clinical Chair in Diabetes & Endocrinology
 
 
 
//

Contact

 

d.withers

 
 
//

Location

 

Hammersmith HospitalHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

127 results found

Liao C-Y, Anderson SS, Chicoine NH, Mayfield JR, Garret BJ, Kwok CS, Academia EC, Hsu Y-M, Miller DM, Bair AM, Wilson JA, Tannady G, Stewart EM, Adamson SS, Wang J, Withers DJ, Kennedy BKet al., 2017, Evidence that S6K1, but not 4E-BP1, mediates skeletal muscle pathology associated with loss of A-type lamins, Cell Discovery, Vol: 3, ISSN: 2056-5968

The mechanistic target of rapamycin (mTOR) signaling pathway plays a central role in aging and a number of different disease states. Rapamycin, which suppresses activity of the mTOR complex 1 (mTORC1), shows preclinical (and sometimes clinical) efficacy in a number of disease models. Among these are Lmna−/− mice, which serve as a mouse model for dystrophy-associated laminopathies. To confirm that elevated mTORC1 signaling is responsible for the pathology manifested in Lmna−/− mice and to decipher downstream genetic mechanisms underlying the benefits of rapamycin, we tested in Lmna−/− mice whether survival could be extended and disease pathology suppressed either by reduced levels of S6K1 or enhanced levels of 4E-BP1, two canonical mTORC1 substrates. Global heterozygosity for S6K1 ubiquitously extended lifespan of Lmna−/− mice (Lmna−/− S6K1+/− mice). This life extension is due to improving muscle, but not heart or adipose, function, consistent with the observation that genetic ablation of S6K1 specifically in muscle tissue also extended survival of Lmna−/− mice. In contrast, whole-body overexpression of 4E-BP1 shortened the survival of Lmna−/− mice, likely by accelerating lipolysis. Thus, rapamycin-mediated lifespan extension in Lmna−/− mice is in part due to the improvement of skeletal muscle function and can be phenocopied by reduced S6K1 activity, but not 4E-BP1 activation.

Journal article

Hine C, Kim H-J, Zhu Y, Harputlugil E, Longchamp A, Matos MS, Ramadoss P, Bauerle K, Brace L, Asara JM, Ozaki CK, Cheng S-Y, Singha S, Ahn KH, Kimmelman A, Fisher FM, Pissios P, Withers DJ, Selman C, Wang R, Yen K, Longo VD, Cohen P, Bartke A, Kopchick JJ, Miller R, Hollenberg AN, Mitchell JRet al., 2017, Hypothalamic-pituitary axis regulates hydrogen sulfide production, Cell Metabolism, Vol: 25, Pages: 1320-+, ISSN: 1550-4131

Decreased growth hormone (GH) and thyroid hormone (TH) signaling are associated with longevity and metabolic fitness. The mechanisms underlying these benefits are poorly understood, but may overlap with those of dietary restriction (DR), which imparts similar benefits. Recently we discovered that hydrogen sulfide (H2S) is increased upon DR and plays an essential role in mediating DR benefits across evolutionary boundaries. Here we found increased hepatic H2S production in long-lived mouse strains of reduced GH and/or TH action, and in a cell-autonomous manner upon serum withdrawal in vitro. Negative regulation of hepatic H2S production by GH and TH was additive and occurred via distinct mechanisms, namely direct transcriptional repression of the H2S-producing enzyme cystathionine γ-lyase (CGL) by TH, and substrate-level control of H2S production by GH. Mice lacking CGL failed to downregulate systemic T4 metabolism and circulating IGF-1, revealing an essential role for H2S in the regulation of key longevity-associated hormones.

Journal article

Selman C, Withers DJ, 2017, Physiology: an atypical switch for metabolism and ageing, NATURE, Vol: 542, Pages: 299-300, ISSN: 0028-0836

Journal article

Van de Pette M, Abbas A, Feytout A, McNamara G, Bruno L, To WK, Dimond A, Sardini A, Webster Z, McGinty J, Paul EJ, Ungless MA, French PMW, Withers DJ, Uren A, Ferguson-Smith AC, Merkenschlager M, John RM, Fisher AGet al., 2017, Visualizing changes in Cdkn1c expression links early life adversity to imprint mis-regulation in adults, Cell Reports, Vol: 31, Pages: 1090-1099, ISSN: 2211-1247

Imprinted genes are regulated according to parental origin and can influence embryonic growth and metabolism and confer disease susceptibility.Here we designed sensitive allele-specific reporters to non-invasively monitor imprinted Cdkn1cexpression in mice and showed that expression was modulated by environmental factors encounteredin utero.Acute exposure to chromatin modifyingdrugs resulted in de-repression of paternally inherited (silent) Cdkn1calleles in embryos that was temporary and resolved after birth.In contrast, deprivation of maternal dietary proteinin uteroprovoked permanent de-repression of imprinted Cdkn1cexpression that was sustained into adulthood and occurred through a folate-dependent mechanism of DNA methylation loss.Given the function of imprinted genes in regulating behavior and metabolic processes in adults, these results establish imprinting deregulation as a credible mechanism linking early life adversity to later-life outcomes.Furthermore,Cdkn1c-luciferasemice offer non-invasivetools to identify factors that disrupt epigenetic processes and strategies to limit their long-term impact.

Journal article

Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martínez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O'Dowd JF, Harikumar P, Tóth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian Het al., 2016, Chronic activation of γ2 AMPK induces obesity and reduces β cell function, Cell Metabolism, Vol: 23, Pages: 821-836, ISSN: 1932-7420

Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK γ2 subunit, exhibit ghrelin signaling-dependent hyperphagia, obesity, and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation throughout all tissues can have adverse metabolic consequences, with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease.

Journal article

Selman C, Sinclair A, Pedroni S, Irvine E, Michie A, Withers DJet al., 2016, Evidence that hematopoietic stem cell function is preserved during aging in long-lived S6K1 mutant mice, Oncotarget, Vol: 7, Pages: 29937-29943, ISSN: 1949-2553

The mechanistic target of rapamycin (mTOR) signalling pathway plays a highly conserved role in aging; mice lacking ribosomal protein S6 kinase 1 (S6K1-/-) have extended lifespan and healthspan relative to wild type (WT) controls. Exactly how reduced mTOR signalling induces such effects is unclear, although preservation of stem cell function may be important. We show, using gene expression analyses, that there was a reduction in expression of cell cycle genes in young (12 week) and aged (80 week) S6K1-/- BM-derived c-Kit+ cells when compared to age-matched WT mice, suggesting that these cells are more quiescent in S6K1-/- mice. In addition, we investigated hematopoietic stem cell (HSC) frequency and function in young and aged S6K1-/- and WT mice. Young, but not aged, S6K1-/- mice had more LSK (lineage-, c-Kit+, Sca-1+) cells (% of bone marrow (BM)), including the most primitive long-term repopulating HSC (LT-HSC) relative to WT controls. Donor-derived engraftment of LT-HSCs in recipient mice was unaffected by genotype in young mice, but was enhanced in transplants using LT-HSCs derived from aged S6K1-/- mice. Our results are the first to provide evidence that age-associated HSC functional decline is ameliorated in a long-lived mTOR mutant mouse.

Journal article

Gil J, Withers DJ, 2016, Ageing: out with the old, Nature, Vol: 530, Pages: 164-165, ISSN: 0028-0836

The selective elimination of cells that have adopted an irreversible, senescent state has now been shown to extend the lifespan of mice and to ameliorate some age-related disease processes.

Journal article

Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martínez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gil Jet al., 2015, Erratum: mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype., Nat Cell Biol, Vol: 17

Journal article

Ilse S Pienaar, Sarah E Gartside, Puneet Sharma, De Paola V, Sabine Gretenkord, Dominic Withers, Joanna L Elson, David T Dexteret al., 2015, Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease, Molecular Neurodegeneration, Vol: 10, ISSN: 1750-1326

Background: Patients with advanced Parkinson's disease (PD) often present with axial symptoms, includingpostural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) ofa highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, theunderlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hamperingoptimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre+ transgenic rats were sham-lesioned orrendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomalsystem inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD),to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of thehuman PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including apartial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients.Results: In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in thelactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO),dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait,sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordingsrevealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fosexpression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased byCNO administration, consistent with upregulated neuronal activation in this defined neuronal population.Conclusions: Overall, these findings provide evidence that functional modulation of PPN cholinergic neuronsalleviates parkinson

Journal article

Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, Georgilis A, Montoya A, Wolter K, Dharmalingam G, Faull P, Carroll T, Martinez-Barbera JP, Cutillas P, Reisinger F, Heikenwalder M, Miller RA, Withers D, Zender L, Thomas GJ, Gill Jet al., 2015, mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype, Nature Cell Biology, Vol: 17, Pages: 1205-1217, ISSN: 1476-4679

Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.

Journal article

Smith MA, Katsouri L, Irvine EE, Hankir MK, Pedroni SMA, Voshol PJ, Gordon MW, Choudhury AI, Woods A, Vidal-Puig A, Carling D, Withers DJet al., 2015, Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice, Cell Reports, Vol: 11, Pages: 335-343, ISSN: 2211-1247

Journal article

Page MM, Sinclair A, Robb EL, Stuart JA, Withers DJ, Selman Cet al., 2014, Fibroblasts derived from long-lived insulin receptor substrate 1 null mice are not resistant to multiple forms of stress, AGING CELL, Vol: 13, Pages: 962-964, ISSN: 1474-9718

Journal article

Jove M, Naudi A, Ramirez-Nunez O, Portero-Otin M, Selman C, Withers DJ, Pamplona Ret al., 2014, Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice, AGING CELL, Vol: 13, Pages: 828-837, ISSN: 1474-9726

Journal article

Deas E, Piipari K, Machhada A, Li A, Gutierrez-del-Arroyo A, Withers DJ, Wood NW, Abramov AYet al., 2014, PINK1 deficiency in β-cells increases basal insulin secretion and improves glucose tolerance in mice, OPEN BIOLOGY, Vol: 4, ISSN: 2046-2441

Journal article

Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, Hashemi M, Adamo M, Finer N, Fiennes AG, Withers DJ, Batterham RLet al., 2014, Differential Effects of Laparoscopic Sleeve Gastrectomy and Laparoscopic Gastric Bypass on Appetite, Circulating Acyl-ghrelin, Peptide YY3-36 and Active GLP-1 Levels in Non-diabetic Humans, OBESITY SURGERY, Vol: 24, Pages: 241-252, ISSN: 0960-8923

Journal article

Chandarana K, Gelegen C, Irvine EE, Choudhury AI, Amouyal C, Andreelli F, Withers DJ, Batterham RLet al., 2013, Peripheral activation of the Y2-receptor promotes secretion of GLP-1 and improves glucose tolerance, MOLECULAR METABOLISM, Vol: 2, Pages: 142-152, ISSN: 2212-8778

Journal article

Karra E, Daly OG, Choudhury A, Yousseif A, Millership S, Neary MT, Scott WR, Chandarana K, Manning S, Hess ME, Iwakura H, Akamizu T, Millet Q, Gelegen C, Drew ME, Rahman S, Emmanuel JJ, Williams SCR, Ruther UU, Bruning JC, Withers DJ, Zelaya FO, Batterham RLet al., 2013, A link between FTO, ghrelin and impaired brain food-cue responsivity, Journal of Clinical Investigation

Journal article

Page MM, Withers DJ, Selman C, 2013, Longevity of insulin receptor substrate1 null mice is not associated with increased basal antioxidant protection or reduced oxidative damage, AGE, Vol: 35, Pages: 647-658, ISSN: 0161-9152

Journal article

Foukas LC, Bilanges B, Bettedi L, Pearce W, Ali K, Sancho S, Withers DJ, Vanhaesebroeck Bet al., 2013, Long-term p110 PI3K inactivation exerts a beneficial effect on metabolism, EMBO MOLECULAR MEDICINE, Vol: 5, Pages: 563-571, ISSN: 1757-4676

Journal article

Scott WR, Gelegen C, Chandarana K, Karra E, Yousseif A, Amouyal C, Choudhury AI, Andreelli F, Withers DJ, Batterham RLet al., 2013, Differential Pre-mRNA Splicing Regulates Nnat Isoforms in the Hypothalamus after Gastric Bypass Surgery in Mice, PLOS ONE, Vol: 8, ISSN: 1932-6203

Journal article

Neuhaus B, Niessen CM, Mesaros A, Withers DJ, Krieg T, Partridge Let al., 2012, Experimental analysis of risk factors for ulcerative dermatitis in mice, EXPERIMENTAL DERMATOLOGY, Vol: 21, Pages: 712-713, ISSN: 0906-6705

Journal article

Gelegen C, Chandarana K, Choudhury AI, Al-Qassab H, Evans IM, Irvine EE, Hyde CB, Claret M, Andreelli F, Sloan SE, Leiter AB, Withers DJ, Batterham RLet al., 2012, Regulation of hindbrain <i>Pyy</i> expression by acute food deprivation, prolonged caloric restriction, and weight loss surgery in mice, AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, Vol: 303, Pages: E659-E668, ISSN: 0193-1849

Journal article

Page MM, Withers DJ, Selman C, 2012, An evaluation of cellular stress resistance in long-lived insulin receptor substrate-1 (Irs1) null mice, FREE RADICAL BIOLOGY AND MEDICINE, Vol: 53, Pages: S75-S75, ISSN: 0891-5849

Journal article

Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJet al., 2012, Metabotyping of Long-Lived Mice using H-1 NMR Spectroscopy, Journal of Proteome Research, Vol: 11, Pages: 2224-2235, ISSN: 1535-3893

Significant advances in understanding aging have been achieved through studying model organisms with extended healthy lifespans. Employing 1H NMR spectroscopy, we characterized the plasma metabolic phenotype (metabotype) of three long-lived murine models: 30% dietary restricted (DR), insulin receptor substrate 1 null (Irs1–/–), and Ames dwarf (Prop1df/df). A panel of metabolic differences were generated for each model relative to their controls, and subsequently, the three long-lived models were compared to one another. Concentrations of mobile very low density lipoproteins, trimethylamine, and choline were significantly decreased in the plasma of all three models. Metabolites including glucose, choline, glycerophosphocholine, and various lipids were significantly reduced, while acetoacetate, d-3-hydroxybutyrate and trimethylamine-N-oxide levels were increased in DR compared to ad libitum fed controls. Plasma lipids and glycerophosphocholine were also decreased in Irs1–/– mice compared to controls, as were methionine and citrate. In contrast, high density lipoproteins and glycerophosphocholine were increased in Ames dwarf mice, as were methionine and citrate. Pairwise comparisons indicated that differences existed between the metabotypes of the different long-lived mice models. Irs1–/– mice, for example, had elevated glucose, acetate, acetone, and creatine but lower methionine relative to DR mice and Ames dwarfs. Our study identified several potential candidate biomarkers directionally altered across all three models that may be predictive of longevity but also identified differences in the metabolic signatures. This comparative approach suggests that the metabolic networks underlying lifespan extension may not be exactly the same for each model of longevity and is consistent with multifactorial control of the aging process.

Journal article

Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, Choudhury AI, Giese KP, Withers DJ, Pedarzani Pet al., 2012, Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity, PLOS ONE, Vol: 7, ISSN: 1932-6203

Journal article

Page MM, Withers DJ, Selman C, 2011, Contribution of ROS-Metabolism in Tissue Homogenates and Dermal Fibroblasts of Long-Lived Insulin Receptor Substrate 1 (Irs1) Knockout Mice, 18th Annual Meeting of the Society-for-Free-Radical-Biology-and-Medicine (SFRBM), Publisher: ELSEVIER SCIENCE INC, Pages: S78-S79, ISSN: 0891-5849

Conference paper

Irvine EE, Drinkwater L, Radwanska K, Al-Qassab H, Smith MA, O'Brien M, Kielar C, Choudhury AI, Krauss S, Cooper JD, Withers DJ, Giese KPet al., 2011, Insulin receptor substrate 2 is a negative regulator of memory formation, LEARNING & MEMORY, Vol: 18, Pages: 375-383, ISSN: 1072-0502

Journal article

Claret M, Smith MA, Knauf C, Al-Qassab H, Woods A, Heslegrave A, Piipari K, Emmanuel JJ, Colom A, Valet P, Cani PD, Begum G, White A, Mucket P, Peters M, Mizuno K, Batterham RL, Giese KP, Ashworth A, Burcelin R, Ashford ML, Carling D, Withers DJet al., 2011, Deletion of <i>Lkb1</i> in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice, DIABETES, Vol: 60, Pages: 735-745, ISSN: 0012-1797

Journal article

Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, Viollet B, Andreelli F, Withers DJ, Batterham RLet al., 2011, Diet and Gastrointestinal Bypass-Induced Weight Loss The Roles of Ghrelin and Peptide YY, DIABETES, Vol: 60, Pages: 810-818, ISSN: 0012-1797

Journal article

Woods A, Heslegrave AJ, Muckett PJ, Levene AP, Clements M, Mobberley M, Ryder TA, Abu-Hayyeh S, Williamson C, Goldin RD, Ashworth A, Withers DJ, Carling Det al., 2011, LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice, BIOCHEMICAL JOURNAL, Vol: 434, Pages: 49-60, ISSN: 0264-6021

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00164102&person=true&page=2&respub-action=search.html