Publications
124 results found
O'Regan DP, Fitzgerald J, Allsop J, et al., 2005, A comparison of MR cholangiopancreatography at 1.5 and 3.0 Tesla, BRITISH JOURNAL OF RADIOLOGY, Vol: 78, Pages: 894-898, ISSN: 0007-1285
- Author Web Link
- Cite
- Citations: 27
Blunt D, O'Regan D, 2005, Using PACS as a teaching resource, BRITISH JOURNAL OF RADIOLOGY, Vol: 78, Pages: 483-484, ISSN: 0007-1285
- Author Web Link
- Cite
- Citations: 3
O'Regan D, Tait P, 2005, Imaging of the jaundiced patient, HOSPITAL MEDICINE, Vol: 66, Pages: 17-22, ISSN: 1462-3935
- Author Web Link
- Cite
- Citations: 1
Biffi C, Cerrolaza JJ, Tarroni G, et al., Explainable Shape Analysis through Deep Hierarchical Generative Models: Application to Cardiac Remodeling
Quantification of anatomical shape changes still relies on scalar globalindexes which are largely insensitive to regional or asymmetric modifications.Accurate assessment of pathology-driven anatomical remodeling is a crucial stepfor the diagnosis and treatment of heart conditions. Deep learning approacheshave recently achieved wide success in the analysis of medical images, but theylack interpretability in the feature extraction and decision processes. In thiswork, we propose a new interpretable deep learning model for shape analysis. Inparticular, we exploit deep generative networks to model a population ofanatomical segmentations through a hierarchy of conditional latent variables.At the highest level of this hierarchy, a two-dimensional latent space issimultaneously optimised to discriminate distinct clinical conditions, enablingthe direct visualisation of the classification space. Moreover, the anatomicalvariability encoded by this discriminative latent space can be visualised inthe segmentation space thanks to the generative properties of the model, makingthe classification task transparent. This approach yielded high accuracy in thecategorisation of healthy and remodelled hearts when tested on unseensegmentations from our own multi-centre dataset as well as in an externalvalidation set. More importantly, it enabled the visualisation inthree-dimensions of the most discriminative anatomical features between the twoconditions. The proposed approach scales effectively to large populations,facilitating high-throughput analysis of normal anatomy and pathology inlarge-scale studies of volumetric imaging.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.