Imperial College London

ProfessorEtienneBurdet

Faculty of EngineeringDepartment of Bioengineering

Professor of Human Robotics
 
 
 
//

Contact

 

e.burdet CV

 
 
//

Location

 

419BBuilding E - Sir Michael UrenWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

340 results found

Murali PK, Dutta A, Gentner M, Burdet E, Dahiya R, Kaboli Met al., 2022, Active Visuo-Tactile Interactive Robotic Perception for Accurate Object Pose Estimation in Dense Clutter, IEEE ROBOTICS AND AUTOMATION LETTERS, Vol: 7, Pages: 4686-4693, ISSN: 2377-3766

Journal article

Shushtari M, Takagi A, Lee J, Burdet E, Arami Aet al., 2022, Balance strategy in hoverboard control., Scientific Reports, Vol: 12, Pages: 1-11, ISSN: 2045-2322

This study examines how people learn to perform lower limb control in a novel task with a hoverboard requiring to maintain dynamic balance. We designed an experiment to investigate the learning of hoverboard balance and two control strategies: A hip strategy, which mainly uses hip movements to change the angle of the foot, and an ankle strategy relying more on ankle motion to control the orientation of hoverboard plates controlling the motion. Motor learning was indicated by a significant [Formula: see text]% decrease in the trial completion time (p < 0.001) and a significant 24 ± 11% decrease in total muscle activation (p < 0.001). Furthermore, the participants, who had no prior experience riding a hoverboard, learned an ankle strategy to maintain their balance and control the hoverboard. This is supported by significantly stronger cross-correlation, phase synchrony, lower dynamic time warping distance between the hoverboard plate orientation controlling hoverboard motion, and the ankle angle when compared to the hip angle. The adopted ankle strategy was found to be robust to the foot orientation despite salient changes in muscle group activation patterns. Comparison with results of an experienced hoverboard rider confirmed that the first-time riders adopted an ankle strategy.

Journal article

Eden J, Bräcklein M, Ibáñez J, Barsakcioglu DY, Di Pino G, Farina D, Burdet E, Mehring Cet al., 2022, Principles of human movement augmentation and the challenges in making it a reality, Nature Communications, Vol: 13, ISSN: 2041-1723

Augmenting the body with artificial limbs controlled concurrently to one's natural limbs has long appeared in science fiction, but recent technological and neuroscientific advances have begun to make this possible. By allowing individuals to achieve otherwise impossible actions, movement augmentation could revolutionize medical and industrial applications and profoundly change the way humans interact with the environment. Here, we construct a movement augmentation taxonomy through what is augmented and how it is achieved. With this framework, we analyze augmentation that extends the number of degrees-of-freedom, discuss critical features of effective augmentation such as physiological control signals, sensory feedback and learning as well as application scenarios, and propose a vision for the field.

Journal article

Mace M, Mutalib SA, Ogrinc M, Goldsmith N, Burdet Eet al., 2022, GripAble: an accurate, sensitive and robust digital device for measuring grip strength, Journal of Rehabilitation and Assistive Technologies Engineering, Vol: 9, Pages: 1-12, ISSN: 2055-6683

Introduction: Grip strength is a reliable biomarker of overall health and physiological well-being. It is widely used in clinical practice as an outcome measure. This paper demonstrates the measurement characteristics of GripAble, a wireless mobile handgrip device that measures grip force both isometrically and elastically-resisted for assessment and training of hand function. Methods: A series of bench tests were performed to evaluate GripAble's grip force measurement accuracy and sensitivity. Measurement robustness was evaluated through repeated drop tests interwoven with error verification test phases. Results: GripAble's absolute measurement error at the central position was under 0.81 and 1.67 kg (95th percentiles; N = 47) when measuring elastically and isometrically, respectively, providing similar or better accuracy than the industry-standard Jamar device. Sensitivity was measured as 0.062 ± 0.015 kg (mean ± std; 95th percentiles: [0.036, 0.089] kg; N = 47), independent of the applied force. There was no significant performance degradation following impact from 30 drops from a height >1.5 m. Conclusion: GripAble is an accurate and reliable grip strength dynamometer. It is highly sensitive and robust, which in combination with other novel features (e.g. portability, telerehabilitation and digital data tracking) enable broad applicability in a range of clinical caseloads and environments.

Journal article

Dall'Orso S, Arichi T, Fitzgibbon SP, Edwards AD, Burdet E, Muceli Set al., 2022, Development of functional organization within the sensorimotor network across the perinatal period, HUMAN BRAIN MAPPING, Vol: 43, Pages: 2249-2261, ISSN: 1065-9471

Journal article

Mutalib SA, Mace M, Seager C, Burdet E, Mathiowetz V, Goldsmith Net al., 2022, Modernising grip dynamometry: Inter-instrument reliability between GripAble and Jamar, BMC Musculoskeletal Disorders, Vol: 23, ISSN: 1471-2474

Introduction:Maximum grip strength (MGS) is a reliable biomarker of overall health and physiological well-being. Therefore, an accurate and reliable measurement device is vital for ensuring the validity of the MGS assessment. This paper presents GripAble, a mobile hand grip device for the assessment of MGS. GripAble’s performance was evaluated using an inter-instrument reliability test against the widely used Jamar PLUS+ dynamometer.Methods:MGS data from sixty-three participants (N = 63, median (IQR) age = 29.0 (29.5) years, 33 M/30 F) from both hands using GripAble and Jamar PLUS+ were collected and compared. Intraclass correlation (ICC), regression, and Bland and Altman analysis were performed to evaluate the inter-instrument reliability and relationship in MGS measurements between GripAble and Jamar PLUS+ .Results:GripAble demonstrates good-to-excellent inter-instrument reliability to the Jamar PLUS+ with ICC3,1 = 0.906 (95% CI [0.87—0.94]). GripAble’s MGS measurement is equivalent to 69% (95% CI [0.67—0.71]%) of Jamar PLUS+’s measurement. There is a proportional difference in mean MGS between the two devices, with the difference in MGS between GripAble and Jamar PLUS+ increasing with MGS.Conclusion:The GripAble is a reliable tool for measuring grip strength. However, the MGS readings from GripAble and Jamar PLUS+ should not be interchanged for serial measurements of the same patient, nor be translated directly from one device to the other. A new normative MGS data using GripAble will be collected and accessed through the software for immediate comparison to age and gender-matched subpopulations.

Journal article

Li R, Li Y, Li SE, Zhang C, Burdet E, Cheng Bet al., 2021, Indirect Shared Control for Cooperative Driving Between Driver and Automation in Steer-by-Wire Vehicles, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Vol: 22, Pages: 7826-7836, ISSN: 1524-9050

Journal article

Carboni G, Nanayakkara T, Takagi A, Burdet Eet al., 2021, Adapting the visuo-haptic perception through muscle coactivation, SCIENTIFIC REPORTS, Vol: 11, ISSN: 2045-2322

Journal article

Lee S-H, Hwang Y-J, Lee H-J, Kim Y-H, Ogrinc M, Burdet E, Kim J-Het al., 2021, Proof-of-Concept of a Sensor-Based Evaluation Method for Better Sensitivity of Upper-Extremity Motor Function Assessment, SENSORS, Vol: 21

Journal article

Broderick M, Almedom L, Burdet E, Burridge J, Bentley Pet al., 2021, Self-Directed Exergaming for Stroke Upper Limb Impairment Increases Exercise Dose Compared to Standard Care, NEUROREHABILITATION AND NEURAL REPAIR, Vol: 35, Pages: 974-985, ISSN: 1545-9683

Journal article

Qian K, Arichi T, Price A, Dall'Orso S, Eden J, Noh Y, Rhode K, Burdet E, Neil M, Edwards AD, Hajnal JVet al., 2021, An eye tracking based virtual reality system for use inside magnetic resonance imaging systems, Scientific Reports, Vol: 11, Pages: 1-17, ISSN: 2045-2322

Patients undergoing Magnetic Resonance Imaging (MRI) often experience anxiety and sometimes distress prior to and during scanning. Here a full MRI compatible virtual reality (VR) system is described and tested with the aim of creating a radically different experience. Potential benefits could accrue from the strong sense of immersion that can be created with VR, which could create sense experiences designed to avoid the perception of being enclosed and could also provide new modes of diversion and interaction that could make even lengthy MRI examinations much less challenging. Most current VR systems rely on head mounted displays combined with head motion tracking to achieve and maintain a visceral sense of a tangible virtual world, but this technology and approach encourages physical motion, which would be unacceptable and could be physically incompatible for MRI. The proposed VR system uses gaze tracking to control and interact with a virtual world. MRI compatible cameras are used to allow real time eye tracking and robust gaze tracking is achieved through an adaptive calibration strategy in which each successive VR interaction initiated by the subject updates the gaze estimation model. A dedicated VR framework has been developed including a rich virtual world and gaze-controlled game content. To aid in achieving immersive experiences physical sensations, including noise, vibration and proprioception associated with patient table movements, have been made congruent with the presented virtual scene. A live video link allows subject-carer interaction, projecting a supportive presence into the virtual world.

Journal article

Bräcklein M, Ibáñez J, Barsakcioglu DY, Eden J, Burdet E, Mehring C, Farina Det al., 2021, The control and training of single motor units in isometric tasks are constrained by a common synaptic input signal

<jats:title>Abstract</jats:title><jats:p>Recent developments in neural interfaces enable the real-time and non-invasive tracking of motor neuron spiking activity. Such novel interfaces provide a promising basis for human motor augmentation by extracting potential high-dimensional control signals directly from the human nervous system. However, it is unclear how flexibly humans can control the activity of individual motor neurones to effectively increase the number of degrees-of-freedom available to coordinate multiple effectors simultaneously. Here, we provided human subjects (N=7) with real-time feedback on the discharge patterns of pairs of motor units (MUs) innervating a single muscle (tibialis anterior) and encouraged them to independently control the MUs by tracking targets in a 2D space. Subjects learned control strategies to achieve the target-tracking task for various combinations of MUs. These strategies rarely corresponded to a volitional control of independent input signals to individual MUs. Conversely, MU activation was consistent with a common input to the MU pair, while individual activation of the MUs in the pair was predominantly achieved by alterations in de-recruitment order that could be explained with history-dependent changes in motor neuron excitability. These results suggest that flexible MU control based on independent synaptic inputs to single MUs is not a simple to learn control strategy.</jats:p>

Journal article

Budhota A, Chua KSG, Hussain A, Kager S, Cherpin A, Contu S, Vishwanath D, Kuah CWK, Ng CY, Yam LHL, Loh YJ, Rajeswaran DK, Xiang L, Burdet E, Campolo Det al., 2021, Robotic assisted upper limb training post stroke: a randomized control trial using combinatory approach toward reducing workforce demands, Frontiers in Neurology, Vol: 12, ISSN: 1664-2295

Post stroke upper limb rehabilitation is a challenging problem with poor outcomes as 40% of survivors have functionally useless upper limbs. Robot-aided therapy (RAT) is a potential method to alleviate the effort of intensive, task-specific, repetitive upper limb exercises for both patients and therapists. The present study aims to investigate how a time matched combinatory training scheme that incorporates conventional and RAT, using H-Man, compares with conventional training toward reducing workforce demands. In a randomized control trial (NCT02188628, www.clinicaltrials.gov), 44 subacute to chronic stroke survivors with first-ever clinical stroke and predominant arm motor function deficits were recruited and randomized into two groups of 22 subjects: Robotic Therapy (RT) and Conventional Therapy (CT). Both groups received 18 sessions of 90 min; three sessions per week over 6 weeks. In each session, participants of the CT group received 90 min of 1:1 therapist-supervised conventional therapy while participants of the RT group underwent combinatory training which consisted of 60 min of minimally-supervised H-Man therapy followed by 30 min of conventional therapy. The clinical outcomes [Fugl-Meyer (FMA), Action Research Arm Test and, Grip Strength] and the quantitative measures (smoothness, time efficiency, and task error, derived from two robotic assessment tasks) were independently evaluated prior to therapy intervention (week 0), at mid-training (week 3), at the end of training (week 6), and post therapy (week 12 and 24). Significant differences within group were observed at the end of training for all clinical scales compared with baseline [mean and standard deviation of FMA score changes between baseline and week 6; RT: Δ4.41 (3.46) and CT: Δ3.0 (4.0); p < 0.01]. FMA gains were retained 18 weeks post-training [week 24; RT: Δ5.38 (4.67) and week 24 CT: Δ4.50 (5.35); p < 0.01]. The RT group clinical scores improved similarly when com

Journal article

Berret B, Conessa A, Schweighofer N, Burdet Eet al., 2021, Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision, PLOS COMPUTATIONAL BIOLOGY, Vol: 17, ISSN: 1553-734X

Journal article

Ivanova E, Eden J, Zhu S, Carboni G, Yurkewich A, Burdet Eet al., 2021, Short time delay does not hinder haptic communication benefits, IEEE Transactions on Haptics, Vol: 14, Pages: 322-327, ISSN: 1939-1412

Haptic communication, the exchange of force and tactile information during dancing or moving a table together, has been shown to benefit the performance of human partners. Similarly, it could also be used to improve the performance of robots working in contact with a human operator. As we move to more robot integrated workspaces, how common network features such as delay or jitter impact haptic communication need to be better understood. Here using a human-like interactive robotic controller, that has been found to be indistinguishable by humans to human interaction, we evaluate how subjects’ performance and perception is altered by varying levels of transmission delay. We find that subjects are able to recognise haptic delay at very small levels within haptic interaction. However, while they are consciously aware of the delay they can only compensate for it up until a certain point, after which they perceive it as the addition of noise/impedance into the system.

Journal article

Noccaro A, Eden J, Di Pino G, Formica D, Burdet Eet al., 2021, Human performance in three-hands tasks., Scientific Reports, Vol: 11, Pages: 1-8, ISSN: 2045-2322

The successful completion of complex tasks like hanging a picture or laparoscopic surgery requires coordinated motion of more than two limbs. User-controlled supernumerary robotic limbs (SL) have been proposed to bypass the need for coordination with a partner in such tasks. However, neither the capability to control multiple limbs alone relative to collaborative control with partners, nor how that capability varies across different tasks, is well understood. In this work, we present an investigation of tasks requiring three-hands where the foot was used as an additional source of motor commands. We considered: (1) how does simultaneous control of three hands compare to a cooperating dyad; (2) how this relative performance was altered by the existence of constraints emanating from real or virtual physical connections (mechanical constraints) or from cognitive limits (cognitive constraints). It was found that a cooperating dyad outperformed a single user in all scenarios in terms of task score, path efficiency and motion smoothness. However, while the participants were able to reach more targets with increasing mechanical constraints/decreasing number of simultaneous goals, the relative difference in performance between a dyad and a participant performing trimanual activities decreased, suggesting further potential for SLs in this class of scenario.

Journal article

Huang Y, Lai W, Cao L, Liu J, Li X, Burdet E, Phee SJet al., 2021, A three-limb teleoperated robotic system with foot control for flexible endoscopic surgery, Annals of Biomedical Engineering, Vol: 49, Pages: 2282-2296, ISSN: 0090-6964

Flexible endoscopy requires a lot of skill to manipulate both the endoscope and the associated instruments. In most robotic flexible endoscopic systems, the endoscope and instruments are controlled separately by two operators, which may result in communication errors and inefficient operation. Our solution is to enable the surgeon to control both the endoscope and the instruments. Here, we present a novel tele-operation robotic endoscopic system commanded by one operator using the continuous and simultaneous movements of their two hands and one foot. This 13-degree-of-freedom (DoF) system integrates a foot-controlled robotic flexible endoscope and two hand-controlled robotic endoscopic instruments, a robotic grasper and a robotic cauterizing hook. A dedicated foot-interface transfers the natural foot movements to the 4-DoF movements of the endoscope while two other commercial hand interfaces map the movements of the two hands to the two instruments individually. An ex-vivo experiment was carried out by six subjects without surgical experience, where the simultaneous control with foot and hands was compared with a sequential clutch-based hand control. The participants could successfully teleoperate the endoscope and the two instruments to cut the tissues at scattered target areas in a porcine stomach. Foot control yielded 43.7% faster task completion and required less mental effort as compared to the clutch-based hand control scheme, which proves the concept of three-limb tele-operation surgery and the developed flexible endoscopic system.

Journal article

Huang Y, Lai W, Cao L, Burdet E, Phee SJet al., 2021, Design and Evaluation of a Foot-Controlled Robotic System for Endoscopic Surgery, IEEE ROBOTICS AND AUTOMATION LETTERS, Vol: 6, Pages: 2469-2476, ISSN: 2377-3766

Journal article

Takagi A, Li Y, Burdet E, 2021, Flexible Assimilation of Human's Target for Versatile Human-Robot Physical Interaction, IEEE TRANSACTIONS ON HAPTICS, Vol: 14, Pages: 421-431, ISSN: 1939-1412

Journal article

McClelland VM, Fischer P, Foddai E, Dall'Orso S, Burdet E, Brown P, Lin J-Pet al., 2021, EEG measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy, NEUROIMAGE-CLINICAL, Vol: 30, ISSN: 2213-1582

Journal article

Kuehn J, Bagnato C, Burdet E, Haddadin Set al., 2021, Arm movement adaptation to concurrent pain constraints, Scientific Reports, Vol: 11, Pages: 1-13, ISSN: 2045-2322

How do humans coordinate their movements in order to avoid pain? This paper investigates a motor task in the presence of concurrent potential pain sources: the arm must be withdrawn to avoid a slap on the hand while avoiding an elbow obstacle with an electrical noxious stimulation. The results show that our subjects learned to control the hand retraction movement in order to avoid the potential pain. Subject-specific motor strategies were used to modify the joint movement coordination to avoid hitting the obstacle with the elbow at the cost of increasing the risk of hand slap. Furthermore, they used a conservative strategy as if assuming an obstacle in 100% of the trials.

Journal article

Dall'Orso S, Fifer WP, Balsam PD, Brandon J, O'Keefe C, Poppe T, Vecchiato K, Edwards AD, Burdet E, Arichi Tet al., 2021, Cortical processing of multimodal sensory learning in human neonates, Cerebral Cortex, Vol: 31, Pages: 1827-1836, ISSN: 1047-3211

Following birth, infants must immediately process and rapidly adapt to the array of unknown sensory experiences associated with their new ex-utero environment. However, although it is known that unimodal stimuli induce activity in the corresponding primary sensory cortices of the newborn brain, it is unclear how multimodal stimuli are processed and integrated across modalities. The latter is essential for learning and understanding environmental contingencies through encoding relationships between sensory experiences; and ultimately likely subserves development of life-long skills such as speech and language. Here, for the first time, we map the intracerebral processing which underlies auditory-sensorimotor classical conditioning in a group of 13 neonates (median gestational age at birth: 38 weeks + 4 days, range: 32 weeks + 2 days to 41 weeks + 6 days; median postmenstrual age at scan: 40 weeks + 5 days, range: 38 weeks + 3 days to 42 weeks + 1 days) with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (MRI) and magnetic resonance (MR) compatible robotics. We demonstrate that classical conditioning can induce crossmodal changes within putative unimodal sensory cortex even in the absence of its archetypal substrate. Our results also suggest that multimodal learning is associated with network wide activity within the conditioned neural system. These findings suggest that in early life, external multimodal sensory stimulation and integration shapes activity in the developing cortex and may influence its associated functional network architecture.

Journal article

Huang HY, Farkhatdinov I, Arami A, Bouri M, Burdet Eet al., 2021, Cable-driven robotic interface for lower limb neuromechanics identification, IEEE Transactions on Biomedical Engineering, Vol: 68, Pages: 461-469, ISSN: 0018-9294

This paper presents a versatile cable-driven robotic interface to investigate the single-joint joint neuromechanics of the hip, knee and ankle in the sagittal plane. This endpoint-based interface offers highly dynamic interaction and accurate position control (as is typically required for neuromechanics identification), and provides measurements of position, interaction force and EMG of leg muscles. It can be used with the subject upright, corresponding to a natural posture during walking or standing, and does not impose kinematic constraints on a joint, in contrast to existing interfaces. Mechanical evaluations demonstrated that the interface yields a rigidity above 500 N/m with low viscosity. Tests with a rigid dummy leg and linear springs show that it can identify the mechanical impedance of a limb accurately. A smooth perturbation is developed and tested with a human subject, which can be used to estimate the hip neuromechanics.

Journal article

Sena A, Rouxel Q, Ivanova E, Burdet E, Li Zet al., 2021, Haptic Bimanual System for Teleoperation of Time-Delayed Tasks, Pages: 1234-1239

This paper presents a novel teleoperation system, which has been designed to address challenges in the remote control of spaceborne bimanual robotic tasks. The primary interest for designing this system is to assess and increase the efficacy of users performing bimanual tasks, while ensuring the safety of the system and minimising the user's mental load. This system consists of two seven-axis robots that are remotely controlled through two haptic control interfaces. The mental load of the user is monitored using a head-mounted interface, which collects eye gaze data and provides components for the holographic user interface. The development of this system enables the safe execution of tasks remotely, which is a critical building block for developing and deploying future space missions as well as other high-risk tasks.

Conference paper

Huang Y, Ivanova E, Eden J, Burdet Eet al., 2021, Identification of multiple limbs coordination strategies in a three-goal independent task, IEEE Transactions on Medical Robotics and Bionics

Many surgical tasks require three or more tools operating together. A supernumerary robotic arm under the surgeon&#x2019;s control could enable one surgeon to control three surgical tools simultaneously without assistance, thereby avoiding the common communication errors of the operation room. However, how do humans consider the complexity of controlling more than two arms together? In this paper, the coordination strategy used during three limb independent motion tasks is studied. The level of coordination increased over a two-day pilot study, and the resulting coordination pattern was in general consistent within subjects. Whether the subject used a fixed order of targets or a random sequence was found to reduce the improvement of pattern consistency after practice. The foot-controlled third hand exhibited less consistent patterns.

Journal article

Blondin CM, Ivanova E, Eden J, Burdet Eet al., 2021, Perception and Performance of Electrical Stimulation for Proprioception, 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), Pages: 4550-4554, ISSN: 1557-170X

Journal article

Huang Y, Eden J, Ivanova E, Phee SJ, Burdet Eet al., 2021, Trimanipulation: Evaluation of human performance in a 3-handed coordination task, Pages: 882-887, ISSN: 1062-922X

Many teleoperation tasks require three or more tools working together, which need the cooperation of multiple operators. The effectiveness of such schemes may be limited by communication issues between individuals. Trimanipulation by a single operator using an artificial third arm controlled together with their natural arms may address this issue. Foot-controlled interfaces have previously shown the capability to be used for the continuous control of robot arms. However, the use of such interfaces for controlling a supernumerary robotic limb in coordination with the natural limbs is not well understood. In this paper, a teleoperation task imitating physically-coupled hands in a virtual reality scene was conducted with 14 subjects to evaluate human performance during trimanipulation. The participants were required to move three limbs together in a coordinated way mimicking three arms holding a shared physical object. It was found that after a short practice session, three-hand trimanipulation with a single subject's hands and foot was still slower than dyad operation. However, they displayed similar performance in their success rate and higher motion efficiency than two people cooperating.

Conference paper

Sakellariou DF, Dall'Orso S, Burdet E, Lin J-P, Richardson MP, McClelland VMet al., 2020, Abnormal microscale neuronal connectivity triggered by a proprioceptive stimulus in dystonia, Scientific Reports, Vol: 10, Pages: 1-12, ISSN: 2045-2322

We investigated modulation of functional neuronal connectivity by a proprioceptive stimulus in sixteen young people with dystonia and eight controls. A robotic wrist interface delivered controlled passive wrist extension movements, the onset of which was synchronised with scalp EEG recordings. Data were segmented into epochs around the stimulus and up to 160 epochs per subject were averaged to produce a Stretch Evoked Potential (StretchEP). Event-related network dynamics were estimated using a methodology that features Wavelet Transform Coherency (WTC). Global Microscale Nodal Strength (GMNS) was introduced to estimate overall engagement of areas into short-lived networks related to the StretchEP, and Global Connectedness (GC) estimated the spatial extent of the StretchEP networks. Dynamic Connectivity Maps showed a striking difference between dystonia and controls, with particularly strong theta band event-related connectivity in dystonia. GC also showed a trend towards higher values in dystonia than controls. In summary, we demonstrate the feasibility of this method to investigate event-related neuronal connectivity in relation to a proprioceptive stimulus in a paediatric patient population. Young people with dystonia show an exaggerated network response to a proprioceptive stimulus, displaying both excessive theta-band synchronisation across the sensorimotor network and widespread engagement of cortical regions in the activated network.

Journal article

Takagi A, De Magistris G, Xiong G, Micaelli A, Kambara H, Koike Y, Savin J, Marsot J, Burdet Eet al., 2020, Analogous adaptations in speed, impulse and endpoint stiffness when learning a real and virtual insertion task with haptic feedback, Scientific Reports, Vol: 10, ISSN: 2045-2322

Humans have the ability to use a diverse range of handheld tools. Owing to its versatility, a virtual environment with haptic feedback of the force is ideally suited to investigating motor learning during tool use. However, few simulators exist to recreate the dynamic interactions during real tool use, and no study has compared the correlates of motor learning between a real and virtual tooling task. To this end, we compared two groups of participants who either learned to insert a real or virtual tool into a fixture. The trial duration, the movement speed, the force impulse after insertion and the endpoint stiffness magnitude decreased as a function of trials, but they changed at comparable rates in both environments. A ballistic insertion strategy observed in both environments suggests some interdependence when controlling motion and controlling interaction, contradicting a prominent theory of these two control modalities being independent of one another. Our results suggest that the brain learns real and virtual insertion in a comparable manner, thereby supporting the use of a virtual tooling task with haptic feedback to investigate motor learning during tool use.

Journal article

Lo Presti D, Dall'Orso S, Muceli S, Arichi T, Neumane S, Lukens A, Sabbadini R, Massaroni C, Caponero MA, Formica D, Burdet E, Schena Eet al., 2020, An fMRI compatible smart device for measuring palmar grasping actions in newborns, Sensors, Vol: 20, Pages: 1-16, ISSN: 1424-8220

Grasping is one of the first dominant motor behaviors that enable interaction of a newborn infant with its surroundings. Although atypical grasping patterns are considered predictive of neuromotor disorders and injuries, their clinical assessment suffers from examiner subjectivity, and the neuropathophysiology is poorly understood. Therefore, the combination of technology with functional magnetic resonance imaging (fMRI) may help to precisely map the brain activity associated with grasping and thus provide important insights into how functional outcomes can be improved following cerebral injury. This work introduces an MR-compatible device (i.e., smart graspable device (SGD)) for detecting grasping actions in newborn infants. Electromagnetic interference immunity (EMI) is achieved using a fiber Bragg grating sensor. Its biocompatibility and absence of electrical signals propagating through the fiber make the safety profile of the SGD particularly favorable for use with fragile infants. Firstly, the SGD design, fabrication, and metrological characterization are described, followed by preliminary assessments on a preterm newborn infant and an adult during an fMRI experiment. The results demonstrate that the combination of the SGD and fMRI can safely and precisely identify the brain activity associated with grasping behavior, which may enable early diagnosis of motor impairment and help guide tailored rehabilitation programs.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00410619&limit=30&person=true