Imperial College London

Dr. Elita Jauneikaite

Faculty of MedicineSchool of Public Health

Advanced Research Fellow
 
 
 
//

Contact

 

e.jauneikaite

 
 
//

Location

 

UG5Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

42 results found

Gaythorpe KAM, Bhatia S, Mangal T, Unwin HJT, Imai N, Cuomo-Dannenburg G, Walters CE, Jauneikaite E, Bayley H, Kont MD, Mousa A, Whittles LK, Riley S, Ferguson NMet al., 2021, Publisher Correction: Children's role in the COVID-19 pandemic: a systematic review of early surveillance data on susceptibility, severity, and transmissibility., Sci Rep, Vol: 11

Journal article

To K-N, Powell O, Jamrozy D, Kopunova R, Anastasiadou K, Faal A, Secka O, Chalker V, Le Doare K, Jauneikaite Eet al., 2021, RAPD PCR detects co-colonisation of multiple Group B Streptococcus genotypes: a practical molecular technique for screening multiple colonies, Journal of Microbiological Methods, ISSN: 0167-7012

Journal article

Jauneikaite E, Pichon B, Mosavie M, Fallowfield JL, Davey T, Thorpe N, Nelstrop A, Sriskandan S, Lamb LEet al., 2021, Staphylococcus argenteus transmission among healthy Royal Marines: a molecular epidemiology case-study, Journal of Infection, ISSN: 0163-4453

Objectives: During a prospective study of S. aureus carriage in Royal Marines recruits, six S. argenteus strains were identified in four recruits. As S. argenteus sepsis leads to mortality similar to S. aureus, we determined the potential for within same troop transmission, to evaluate future outbreak risk.Methods: We used whole-genome sequencing to characterise S. argenteus and investigate phylogenetic relationships between isolates.Results: S. argenteus strains (t5078, ST2250) were detected in 4/40 recruits in the same troop (training cohort) in weeks 1, 6 or 15 of training. No mec, tsst or LukPV genes were detected. We identified differences of 1-17 core SNPs between S. argenteus from different recruits. In two recruits, two S. argenteus strains were isolated; these could be distinguished by 2 and 15 core SNPs.Conclusions: The identification of S. argenteus within a single troop from the total recruit population suggests a common source for transmission, though high number of SNPs were identified, both within-host and within-cluster. The high number of SNPs between some isolates may indicate a common source of diverse isolates or a high level of S. argenteus mutation in carriage. S. argenteus is newly recognised species; and understanding of the frequency of genetic changes during transmission and transition from asymptomatic carriage to disease is required.

Journal article

Aliabadi S, Anyanwu P, Beech E, Jauneikaite E, Wilson P, Hope R, Majeed A, Muller-Pebody B, Costelloe Cet al., 2021, Effect of antibiotic stewardship interventions in primary care on antimicrobial resistance of Escherichia coli bacteraemia in England (2013-18): a quasi-experimental, ecological, data linkage study., Lancet Infect Dis

BACKGROUND: Antimicrobial resistance is a major global health concern, driven by overuse of antibiotics. We aimed to assess the effectiveness of a national antimicrobial stewardship intervention, the National Health Service (NHS) England Quality Premium implemented in 2015-16, on broad-spectrum antibiotic prescribing and Escherichia coli bacteraemia resistance to broad-spectrum antibiotics in England. METHODS: In this quasi-experimental, ecological, data linkage study, we used longitudinal data on bacteraemia for patients registered with a general practitioner in the English National Health Service and patients with E coli bacteraemia notified to the national mandatory surveillance programme between Jan 1, 2013, and Dec 31, 2018. We linked these data to data on antimicrobial susceptibility testing of E coli from Public Health England's Second-Generation Surveillance System. We did an ecological analysis using interrupted time-series analyses and generalised estimating equations to estimate the change in broad-spectrum antibiotics prescribing over time and the change in the proportion of E coli bacteraemia cases for which the causative bacteria were resistant to each antibiotic individually or to at least one of five broad-spectrum antibiotics (co-amoxiclav, ciprofloxacin, levofloxacin, moxifloxacin, ofloxacin), after implementation of the NHS England Quality Premium intervention in April, 2015. FINDINGS: Before implementation of the Quality Premium, the rate of antibiotic prescribing for all five broad-spectrum antibiotics was increasing at rate of 0·2% per month (incidence rate ratio [IRR] 1·002 [95% CI 1·000-1·004], p=0·046). After implementation of the Quality Premium, an immediate reduction in total broad-spectrum antibiotic prescribing rate was observed (IRR 0·867 [95% CI 0·837-0·898], p<0·0001). This effect was sustained until the end of the study period; a 57% reduction in rate of antibiotic pr

Journal article

Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin Met al., 2021, Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England, Science Translational Medicine, Vol: 13, Pages: 1-12, ISSN: 1946-6234

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modelling framework allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rteff ) below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900-38,400). The infection fatality ratio decreased from 1.00% (95%CrI: 0.85%-1.21%) to 0.79% (95%CrI: 0.63%-0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7%-35.2%) than those residing in the community (7.9%, 95%CrI: 5.9%-10.3%). On 2nd December 2020 England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95%CrI: 5.4%-10.2%) and 22.3% (95%CrI: 19.4%-25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission.

Journal article

Cordery R, Purba A, Begum L, Mills E, Mosavie M, Vieira A, Jauneikaite E, Leung RCY, Ready D, Hoffman P, Lamagni T, Sriskandan Set al., 2021, High frequency transmission, asymptomatic shedding, and airborne spread of Streptococcus pyogenes among schoolchildren exposed to scarlet fever: a longitudinal multi-cohort moleculo-epidemiological contact tracing study

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Despite recommendations regarding prompt treatment of cases and enhanced hygiene measures, scarlet fever outbreaks increased in England between 2014-2018.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We undertook a prospective, intensive contact tracing study in schools with consecutive scarlet fever cases to assess the impact of standard interventions on transmission of <jats:italic>Streptococcus pyogenes</jats:italic> between cases, classroom contacts, households, and classroom environments over 4 weeks using genome sequencing.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>Six classes, comprising 12 scarlet fever cases, 17 household contacts, and 278 classroom contacts were recruited. Prevalence of the outbreak strain in asymptomatic classroom contacts was high, increasing from 9.6% in week 1, to 26.9% in week 2, 23.9% in week 3, then 14.3% in week 4. Colonisation with non-outbreak strains was 0 - 7.5%. Genome sequencing showed clonality of isolates within each of six classes, confirming recent transmission accounted for high carriage. Of asymptomatic classroom contacts with <jats:italic>S. pyogenes</jats:italic>-positive throat swabs who were tested for transmissibility, 6/28 (21%) had positive cough plates and/or hand swabs, of whom three remained <jats:italic>S. pyogenes</jats:italic>-positive for 3 weeks. Only 1/60 surface swabs taken in 3 classrooms yielded <jats:italic>S. pyogenes</jats:italic>. In contrast, settle plates placed in elevated locations were <jats:italic>S. pyogenes</jats:italic>-positive in both classrooms tested.</jats:p></jats:sec><jats:sec><jats:title>Interpretation</jats:title><jats:p><jats:italic>S. p

Journal article

Gaythorpe K, Bhatia S, Mangal T, Unwin H, Imai N, Cuomo-Dannenburg G, Walters C, Jauneikaite E, Bayley H, Kont M, Mousa A, Whittles L, Riley S, Ferguson Net al., 2021, Children’s role in the COVID-19 pandemic: a systematic review of early surveillance data on susceptibility, severity, and transmissibility, Scientific Reports, Vol: 11, Pages: 1-14, ISSN: 2045-2322

Background: SARS-CoV-2 infections have been reported in all age groups including infants, children, and adolescents. However, the role of children in the COVID-19 pandemic is still uncertain. This systematic review of early studies synthesises evidence on the susceptibility of children to SARS-CoV-2 infection, the severity and clinical outcomes in children with SARS-CoV-2 infection, and the transmissibility of SARS-CoV-2 by children in the early phases of the COVID-19 pandemic. Methods and findings: A systematic literature review was conducted in PubMed. Reviewers extracted data from relevant, peer-reviewed studies published up to July 4th 2020 during the first wave of the SARS-CoV-2 outbreak using a standardised form and assessed quality using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. For studies included in the meta-analysis, we used a random effects model to calculate pooled estimates of the proportion of children considered asymptomatic or in a severe or critical state. We identified 2,775 potential studies of which 128 studies met our inclusion criteria; data were extracted from 99, which were then quality assessed. Finally, 29 studies were considered for the meta-analysis that included information of symptoms and/or severity, these were further assessed based on patient recruitment. Our pooled estimate of the proportion of test positive children who were asymptomatic was 21.1% (95% CI: 14.0 - 28.1%), based on 13 included studies, and the proportion of children with severe or critical symptoms was 3.8% (95% CI: 1.5 - 6.0%), based on 14 included studies. We did not identify any studies designed to assess transmissibility in children and found that susceptibility to infection in children was highly variable across studies.Conclusions: Children’s susceptibility to infection and onward transmissibility relative to adults is still unclear and varied widely between studies. However, it is evident that most children e

Journal article

Jauneikaite E, Honeyford K, Blandy O, Mosavie M, Pearson M, Ramzan FA, Ellington MJ, Parkhill J, Costelloe CE, Woodford N, Sriskandan Set al., 2021, Bacterial genotypic and patient risk factors for adverse outcomes in Escherichia coli bloodstream infections: a prospective molecular-epidemiological study

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p><jats:italic>Escherichia coli</jats:italic> bloodstream infections have increased rapidly in the UK, for reasons that are unclear. The relevance of highly fit, or multi-drug resistant lineages such as ST131 to overall <jats:italic>E. coli</jats:italic> disease burden remains to be fully determined. We set out to characterise the prevalence of <jats:italic>E. coli</jats:italic> multi-locus sequence types (MLST) and determine if these were associated with adverse outcomes in an urban population of <jats:italic>E. coli</jats:italic> bacteraemia patients.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We undertook whole genome sequencing of <jats:italic>E. coli</jats:italic> blood isolates from all patients with diagnosed <jats:italic>E. coli</jats:italic> bacteraemia in north-west London from July 2015 to August 2016 and assigned multi-locus sequence types to all isolates. Isolate sequence types were linked to routinely collected antimicrobial susceptibility, patient demographic, and clinical outcome data to explore relationships between the <jats:italic>E. coli</jats:italic> sequence types, patient factors, and outcomes.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>A total of 551 <jats:italic>E. coli</jats:italic> genomes were available for analysis. More than half of these cases were caused by four <jats:italic>E. coli</jats:italic> sequence types: ST131 (21%), ST73 (15%), ST69 (9%) and ST95 (8%). <jats:italic>E. coli</jats:italic> genotype ST131-C2 was associated with non-susceptibility to quinolones and third-generation cephalosporins, and also to amoxicillin, augmentin, gentamicin and trimethoprim. An associat

Journal article

Jauneikaite E, Pichon B, Mosavie M, Fallowfield JL, Davey T, Thorpe N, Nelstrop A, Sriskandan S, Lamb LEet al., 2021, Characterisation of Staphylococcus argenteus carried by healthy Royal Marines: a molecular epidemiology case-study

<jats:title>Abstract</jats:title><jats:sec><jats:title>Objectives</jats:title><jats:p>During a prospective study of <jats:italic>S. aureus</jats:italic> carriage in Royal Marines (RM) recruits, six <jats:italic>S. argenteus</jats:italic> strains were identified in four recruits undertaking military training together. As <jats:italic>S. argenteus</jats:italic> sepsis leads to mortality similar to <jats:italic>S. aureus</jats:italic>, we determined the potential for person-to-person transmission, to evaluate future outbreak risk.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We used whole-genome sequencing to characterise <jats:italic>S. argenteus</jats:italic> and investigate phylogenetic relationships between isolates. Participant colonisation with <jats:italic>S. aureus</jats:italic> and skin and soft tissue infection acquisition were recorded.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>All six <jats:italic>S. argenteus</jats:italic> strains were <jats:italic>spa</jats:italic>-type t5078, ST2250. Strains were detected in 4/40 recruits in the same troop (training cohort) in weeks 1, 6 or 15 of training. No <jats:italic>mec, tsst</jats:italic> or <jats:italic>LukPV</jats:italic> genes were detected. We identified differences of 10-35 core SNPs between <jats:italic>S. argenteus</jats:italic> from different recruits. In two recruits, two <jats:italic>S. argenteus</jats:italic> strains were isolated; these could be distinguished by 3 and 15 core SNPs in each case. <jats:italic>S. argenteus</jats:italic> was not identified in any one of the other 21 participating troops (1,012 recruits).</jats:p></jats:sec><jats:sec><jats:title>Conclusions&

Journal article

Wan Y, Mills E, Leung RCY, Vieira A, Jauneikaite E, Zhi X, Croucher NJ, Woodford N, Ellington MJ, Sriskandan Set al., 2021, Diverse Genetic Determinants of Nitrofurantoin Resistance in UK Escherichia coli

<jats:title>Abstract</jats:title><jats:p>Antimicrobial resistance in enteric or urinary <jats:italic>Escherichia coli</jats:italic> is a risk factor for invasive <jats:italic>E. coli</jats:italic> infections. Due to widespread trimethoprim resistance amongst urinary <jats:italic>E. coli</jats:italic> and increased bacteraemia incidence, a national recommendation to prescribe nitrofurantoin for uncomplicated urinary tract infection was made in 2018. Nitrofurantoin resistance is reported in &lt;6% urinary <jats:italic>E. coli</jats:italic> isolates in the UK. However, mechanisms underpinning nitrofurantoin resistance in these isolates remain unknown. This study aimed to identify genetic determinants of nitrofurantoin resistance in a local <jats:italic>E. coli</jats:italic> collection and assess their prevalence in a larger dataset of <jats:italic>E. coli</jats:italic> genomes. Deleterious point mutations and gene-inactivating insertion sequences in both chromosomal nitroreductase genes <jats:italic>nfsA</jats:italic> and <jats:italic>nfsB</jats:italic> were identified in genomes of nine nitrofurantoin-resistant urinary <jats:italic>E. coli</jats:italic> isolates collected from north west London. Eight types of genetic alterations were identified when comparing sequences of <jats:italic>nfsA</jats:italic>, <jats:italic>nfsB</jats:italic>, and the associated gene <jats:italic>ribE</jats:italic> in 12,412 <jats:italic>E. coli</jats:italic> genomes collected from across the UK. Evolutionary analysis revealed homoplasic mutations and explained the order of stepwise mutations. An algorithm was developed to predict nitrofurantoin susceptibility and predictions for 20 accessible isolates were experimentally validated. Only one genome carrying <jats:italic>oqxAB</jats:italic>, a mobile gene

Journal article

Collin SM, Groves N, O' Sullivan C, Jauneikaite E, Patel D, CUnney R, Meehan M, Reynolds A, Smith A, Lindsay D, Doherty L, Davies E, Chalker V, Lamb P, Afshar B, Balasegaram S, Coelho J, Ready D, Brown CS, Efstratiou A, Le Doare K, Sriskandan S, Heath PT, Lamagni Tet al., 2021, Uncovering infant group B streptococcal (GBS) disease clusters in the UK and Ireland through genomic analysis: a population-based epidemiological study, Clinical Infectious Diseases, Vol: 72, Pages: e296-e302, ISSN: 1058-4838

BackgroundThe true frequency of hospital outbreaks of invasive group B streptococcal (iGBS; Streptococcus agalactiae) disease in infants is unknown. We used whole genome sequencing (WGS) of iGBS isolates collected during a period of enhanced surveillance of infant iGBS disease in the UK and Ireland to determine the number of clustered cases.MethodsPotentially linked iGBS cases from infants with early (<7 days of life) or late-onset (7–89 days) disease were identified from WGS data (HiSeq 2500 platform, Illumina) from clinical sterile site isolates collected between 04/2014 and 04/2015. We assessed time and place of cases to determine a single-nucleotide polymorphism (SNP) difference threshold for clustered cases. Case details were augmented through linkage to national hospital admission data and hospital record review by local microbiologists.ResultsAnalysis of sequences indicated a cutoff of ≤5 SNP differences to define iGBS clusters. Among 410 infant iGBS isolates, we identified 7 clusters (4 genetically identical pairs with 0 SNP differences, 1 pair with 3 SNP differences, 1 cluster of 4 cases with ≤1 SNP differences) of which 4 clusters were uncovered for the first time. The clusters comprised 16 cases, of which 15 were late-onset (of 192 late-onset cases with sequenced isolates) and 1 an early-onset index case. Serial intervals between cases ranged from 0 to 59 (median 12) days.ConclusionsApproximately 1 in 12 late-onset infant iGBS cases were part of a hospital cluster. Over half of the clusters were previously undetected, emphasizing the importance of routine submission of iGBS isolates to reference laboratories for cluster identification and genomic confirmation.

Journal article

Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Brazeau N, Cuomo-Dannenburg G, Hamlet A, Thompson H, Baguelin M, Fitzjohn R, Knock E, Lees J, Whittles L, Mellan T, Winskill P, COVID-19 Response Team IC, Howard N, Clapham H, Checchi F, Ferguson N, Ghani A, Walker P, Beals Eet al., 2021, Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria, Nature Communications, Vol: 12, Pages: 1-10, ISSN: 2041-1723

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% – 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 – 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% – 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus.

Journal article

Ragonnet-Cronin M, Boyd O, Geidelberg L, Jorgensen D, Nascimento F, Siveroni I, Johnson R, Baguelin M, Cucunuba Z, Jauneikaite E, Mishra S, Watson O, Ferguson N, Cori A, Donnelly C, Volz Eet al., 2021, Genetic evidence for the association between COVID-19 epidemic severity and timing of non-pharmaceutical interventions, Nature Communications, Vol: 12, Pages: 1-7, ISSN: 2041-1723

Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non- pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were examined in relation to the dates of the most stringent interventions in each location as well as to the number of cumulative COVID-19 deaths and phylodynamic estimates of epidemic size. Here we report that the time elapsed between epidemic origin and maximum intervention is associated with different measures of epidemic severity and explains 11% of the variance in reported deaths one month after the most stringent intervention. Locations where strong non-pharmaceutical interventions were implemented earlier experienced 30 much less severe COVID-19 morbidity and mortality during the period of study.

Journal article

Myall A, Peach RL, Wan Y, Mookerjee S, Jauneikaite E, Bolt F, Price J, Davies F, Weiße AY, Holmes A, Barahona Met al., 2021, Characterising contact in disease outbreaks via a network model of spatial-temporal proximity

<jats:title>ABSTRACT</jats:title><jats:p>Contact tracing is a key tool in epidemiology to identify and control outbreaks of infectious diseases. Existing contact tracing methodologies produce contact maps of individuals based on a binary definition of contact which can be hampered by missing data and indirect contacts. Here, we present a Spatial-temporal Epidemiological Proximity (StEP) model to recover contact maps in disease outbreaks based on movement data. The StEP model accounts for imperfect data by considering probabilistic contacts between individuals based on spatial-temporal proximity of their movement trajectories, creating a robust movement network despite possible missing data and unseen transmission routes. Using real-world data we showcase the potential of StEP for contact tracing with outbreaks of multidrug-resistant bacteria and COVID-19 in a large hospital group in London, UK. In addition to the core structure of contacts that can be recovered using traditional methods of contact tracing, the StEP model reveals missing contacts that connect seemingly separate outbreaks. Comparison with genomic data further confirmed that these recovered contacts indeed improve characterisation of disease transmission and so highlights how the StEP framework can inform effective strategies of infection control and prevention.</jats:p>

Journal article

Pi L, Expert P, Clarke JM, Jauneikaite E, Costelloe CEet al., 2021, Electronic health record enabled track and trace in an urban hospital network: implications for infection prevention and control

<jats:title>ABSTRACT</jats:title><jats:p>Healthcare-associated infections represent one of the most significant challenges for modern medicine as they can significantly impact patients’lives. Carbapenemase-producing Enterobacteriaceae (CPE) pose the greatest clinical threat, given the high levels of resistance to carbapenems, which are considered as agents of ‘last resort’ against life-threatening infections. Understanding patterns of CPE infection spreading in hospitals is paramount to design effective infection control protocols to mitigate the presence of CPE in hospitals. We used patient electronic health records from three urban hospitals to: i) track microbiologically confirmed carbapenemase producing <jats:italic>Escherichia coli</jats:italic> (CP-Ec) carriers and ii) trace the patients they shared place and time with until their identification. We show that yearly contact networks in each hospital consistently exhibit a core-periphery structure, highlighting the presence of a core set of wards where most carrier-contact interactions occured before being distributed to peripheral wards. We also identified functional communities of wards from the general patient movement network. The contact networks projected onto the general patient movement community structure showed a comprehensive coverage of the hospital. Our findings highlight that infections such as CP-Ec infections can reach virtually all parts of hospitals through first-level contacts.</jats:p>

Journal article

Boonyasiri A, Jauneikaite E, Brinkac LM, Greco C, Lerdlamyong K, Tangkoskul T, Nguyen K, Thamlikitkul V, Fouts DEet al., 2021, Genomic and clinical characterisation of multidrug-resistant carbapenemase-producing ST231 and ST16 Klebsiella pneumoniae isolates colonising patients at Siriraj hospital, Bangkok, Thailand from 2015 to 2017., BMC Infectious Diseases, Vol: 21, Pages: 1-11, ISSN: 1471-2334

BACKGROUND: Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) have continually grown as a global public health threat, with significant mortality rates observed across the world. We examined the clinical data from patients with CPE infections and their outcomes, concentrating on Klebsiella pneumoniae isolates. We analysed the clinical information, performed antimicrobial susceptibility testing, and conducted molecular epidemiological and genomic analyses on the isolates to identify patterns in the data. METHODS: The clinical characteristics of 33 hospitalised patients with confirmed CPE, including patient-related factors associated with the development of CPE infections, were examined. Patients were divided according to whether they were "colonised" or "infected" with CPE and by the timing and frequency of their rectal swab collections, from which 45 swabs were randomly selected for analysis. CPE isolates were purified, and antimicrobial susceptibility tests performed. Whole genome sequences of these isolates were determined and analysed to compute bacterial multilocus sequence types and plasmid replicon types, infer phylogenetic relationships, and identify antimicrobial resistance and virulence genes. RESULTS: Altogether, 88.9% (40/45) of the CPE isolates were K. pneumoniae. The most abundant carbapenemase gene family in the K. pneumoniae isolates (33/39) was blaOXA-232, with blaNDM-1 additionally identified in 19 of them. All CPE isolates carrying either blaOXA-232 or blaNDM-1 were resistant to meropenem, but only 40 from 45 were susceptible to colistin. Among the CPE-infected patients (n = 18) and CPE-colonised patients who developed CPE infections during the study (n = 3), all but one received standard colistin-based combination therapy. Phylogenetic analysis revealed the polyclonal spread of carbapenemase-producing K. pneumoniae (CPKP) within the patient population, with the following two major

Journal article

Aliabadi S, Anyanwu P, Beech E, Jauneikaite E, Wilson P, Hope R, Majeed A, Muller-Pebody B, Costelloe, Costelloe Cet al., 2021, Do antibiotic stewardship interventions in primary care have an effect on antimicrobial resistance of Escherichia coli bacteraemia in England? An ecological analysis of national data between 2013-2018, The Lancet Infectious Diseases, ISSN: 1473-3099

Background: We sought to evaluate the effectiveness of a national antimicrobial stewardship intervention, the Quality Premium (QP), on broad-spectrum antibiotic prescribing and Escherichia coli bacteraemia resistance to broad-spectrum antibiotics in England. Methods: We used longitudinal data on patients registered with a general practitioner in the English National Health Service and patients with E. coli bacteraemia notified to the national mandatory surveillance programme between January 2013-December 2018.We conducted an ecological analysis using interrupted time series (ITS) analyses and generalised estimating equations (GEE) to estimate the change in broad-spectrum antibiotics prescribing over time and change in the proportion of E. coli bacteraemia cases where the causative bacteria were resistant to each antibiotic individually or to at least one of the five antibiotics, after implementation of the QP. Findings: Following the implementation of the QP in April 2015, we observed an immediate downward step-change in broad-spectrum antibiotic prescribing incidence rate of 0.867per 1000 patients (95% CI: 0.837 to 0.898, p<0·001). We found that the pre-intervention slope for total antibiotic usage was an IRR of 1.002(CI: 1.000to 1.004, p-value=0.046). The change in slope for total antibiotic usage was an IRR of 0.993(CI: 0.991to 0.995, p<0·001). We also observed a downward step-change in resistance rate of 0.947 per 1000 E. coli isolates tested (95% CI: 0.918 to 0.977, p<0·001).We found that the pre-intervention slope for total antibiotic resistance was an IRR of 1.001 (CI: 0.999 to 1.003, p-value=0.346). The change in slope level for total antibiotic usage was an IRR of 0.999 (CI: 0.997 to 1.000, p=0.112). On examination of the long-term effect following implementation of the QP, there was an increase in the number of isolates resistant to at least one of the five broad-spectrum antibiotics tested.134Interpretati

Journal article

Knock E, Whittles L, Lees J, Perez Guzman P, Verity R, Fitzjohn R, Gaythorpe K, Imai N, Hinsley W, Okell L, Rosello A, Kantas N, Walters C, Bhatia S, Watson O, Whittaker C, Cattarino L, Boonyasiri A, Djaafara A, Fraser K, Fu H, Wang H, Xi X, Donnelly C, Jauneikaite E, Laydon D, White P, Ghani A, Ferguson N, Cori A, Baguelin Met al., 2020, Report 41: The 2020 SARS-CoV-2 epidemic in England: key epidemiological drivers and impact of interventions

England has been severely affected by COVID-19. We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional 2020 surveillance data. Only national lockdown brought the reproduction number below 1 consistently; introduced one week earlier in the first wave it could have reduced mortality by 23,300 deaths on average. The mean infection fatality ratio was initially ~1.3% across all regions except London and halved following clinical care improvements. The infection fatality ratio was two-fold lower throughout in London, even when adjusting for demographics. The infection fatality ratio in care homes was 2.5-times that in the elderly in the community. Population-level infection-induced immunity in England is still far from herd immunity, with regional mean cumulative attack rates ranging between 4.4% and 15.8%.

Report

Boonyasiri A, Jauneikaite E, Brinkac LM, Greco C, Lerdlamyong K, Tangkoskul T, Nguyen K, Thamlikitkul V, Fouts DEet al., 2020, Genomic epidemiology of carbapenemase-producing Enterobacteriaceae in hospitalised patients in Bangkok, Thailand from 2015 to 2017, Publisher: ELSEVIER SCI LTD, Pages: 28-29, ISSN: 1201-9712

Conference paper

Gaythorpe K, Bhatia S, Mangal T, Unwin H, Imai N, Cuomo-Dannenburg G, Walters C, Jauneikaite E, Bayley H, Kont M, Mousa A, Whittles L, Riley S, Ferguson Net al., 2020, Report 37: Children’s role in the COVID-19 pandemic: a systematic review of early surveillance data on susceptibility, severity, and transmissibility

SARS-CoV-2 infections have been reported in all age groups including infants, children, and adolescents. However, the role of children in the COVID-19 pandemic is still uncertain. This systematic review of early studies synthesises evidence on the susceptibility of children to SARS-CoV-2 infection, the severity and clinical outcomes in children with SARS-CoV-2 infection, and the transmissibility of SARS-CoV-2 by children. A systematic literature review was conducted in PubMed. Reviewers extracted data from relevant, peer-reviewed studies published during the first wave of the SARS-CoV-2 outbreak using a standardised form and assessed quality using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. For studies included in the meta-analysis, we used a random effects model to calculate pooled estimates of the proportion of children considered asymptomatic or in a severe or critical state. We identified 2,775 potential studies of which 128 studies met our inclusion criteria; data were extracted from 99, which were then quality assessed. Finally, 29 studies were considered for the meta-analysis that included information of symptoms and/or severity, these were further assessed based on patient recruitment. Our pooled estimate of the proportion of test positive children who were asymptomatic was 21.1% (95% CI: 14.0 - 28.1%), based on 13 included studies, and the proportion of children with severe or critical symptoms was 3.8% (95% CI: 1.5 - 6.0%), based on 14 included studies. We did not identify any studies designed to assess transmissibility in children and found that susceptibility to infection in children was highly variable across studies.Children’s susceptibility to infection and onward transmissibility relative to adults is still unclear and varied widely between studies. However, it is evident that most children experience clinically mild disease or remain asymptomatically infected. More comprehensive contact-tracing studie

Report

Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF, Adams G, Pavlu J, Innes AJ, Eades C, Brannigan ET, Findlay J, White L, Bolt F, Kadhani T, Chow Y, Patel B, Mookerjee S, Otter JA, Sriskandan S, Woodford N, Holmes Aet al., 2020, A multi-species cluster of GES-5 carbapenemase producing Enterobacterales linked by a geographically disseminated plasmid, Clinical Infectious Diseases, Vol: 71, Pages: 2553-2560, ISSN: 1058-4838

BACKGROUND: Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics but rare resistance mechanisms can compromise detection. One year after a GES-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole genome sequencing (WGS) (later found to be part of a cluster of three cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital.METHODS: Bacteria were identified by MALDI-TOF, antimicrobial susceptibility testing followed EUCAST guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using PCR detection of GES, pulse-field gel electrophoresis (PFGE) and WGS for the second cluster.RESULTS: The identification of the first GES-5 K. oxytoca isolate was delayed, being identified on WGS. A GES-gene PCR informed the occurrence of the second cluster in real-time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the two clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca,E. coli and E. cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from three hospitals elsewhere in the UK.CONCLUSIONS: Genomic sequencing revolutionized the epidemiological understanding of the clusters, it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally.

Journal article

Bianchi-Jassir F, Paul P, To K-N, Carreras-Abad C, Seale AC, Jauneikaite E, Madhi SA, Russell NJ, Hall J, Madrid L, Bassat Q, Kwatra G, Le Doare K, Lawn JEet al., 2020, Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates., Vaccine, Vol: 38, Pages: 6682-6694, ISSN: 0264-410X

BACKGROUND: 21 million pregnant women worldwide (18%) are estimated to carry Group B Streptococcus (GBS), which is a risk for invasive disease in newborns, pregnant women, and stillbirths. Adults ≥ 60 years or with underlying health conditions are also vulnerable to invasive GBS disease. We undertook systematic reviews on GBS organism characteristics including: capsular polysaccharide (serotype), sequence type (multi-locus sequence types (MLST)), and virulence proteins. We synthesised data by at-risk populations, to inform vaccine development. METHODS: We conducted systematic reviews and meta-analyses to estimate proportions of GBS serotypes for at risk populations: maternal colonisation, invasive disease in pregnant women, stillbirths, infants 0-90 days age, and older adults (≥60 years). We considered regional variation and time trends (2001-2018). For these at-risk population groups, we summarised reported MLST and surface proteins. RESULTS: Based on 198 studies (29247isolates), 93-99% of GBS isolates were serotypes Ia, Ib, II, III, IV and V. Regional variation is likely, but data gaps are apparent, even for maternal colonisation which has most data. Serotype III dominates for infant invasive disease (60%) and GBS-associated stillbirths (41%). ST17 accounted for a high proportion of infant invasive disease (41%; 95%CI: 35-47) and was found almost exclusively in serotype III strains, less present in maternal colonisation (9%; 95%CI:6-13),(4%; 95%CI:0-11) infant colonisation, and adult invasive disease (4%, 95%CI:2-6). Percentages of strains with at least one of alp 1, alp2/3, alpha C or Rib surface protein targets were 87% of maternal colonisation, 97% infant colonisation, 93% infant disease and 99% adult invasive disease. At least one of three pilus islands proteins were reported in all strains. DISCUSSION: A hexavalent vaccine (serotypes Ia, Ib, II, III, IV and V) might provide comprehensive cover for all at-risk populations. Survei

Journal article

Hogan A, Winskill P, Watson O, Walker P, Whittaker C, Baguelin M, Haw D, Lochen A, Gaythorpe K, Ainslie K, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Charles G, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Eales O, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Flaxman S, Green W, Hallett T, Hamlet A, Hinsley W, Imai N, Jauneikaite E, Jeffrey B, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Ower A, Parag K, Ragonnet-Cronin M, Siveroni I, Skarp J, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walters C, Wang H, Wang Y, Whittles L, Xi X, Muhib F, Smith P, Hauck K, Ferguson N, Ghani Aet al., 2020, Report 33: Modelling the allocation and impact of a COVID-19 vaccine

Several SARS-CoV-2 vaccine candidates are now in late-stage trials, with efficacy and safety results expected by the end of 2020. Even under optimistic scenarios for manufacture and delivery, the doses available in 2021 are likely to be limited. Here we identify optimal vaccine allocation strategies within and between countries to maximise health (avert deaths) under constraints on dose supply. We extended an existing mathematical model of SARS-CoV-2 transmission across different country settings to model the public health impact of potential vaccines, using a range of target product profiles developed by the World Health Organization. We show that as supply increases, vaccines that reduce or block infection – and thus transmission – in addition to preventing disease have a greater impact than those that prevent disease alone, due to the indirect protection provided to high-risk groups. We further demonstrate that the health impact of vaccination will depend on the cumulative infection incidence in the population when vaccination begins, the duration of any naturally acquired immunity, the likely trajectory of the epidemic in 2021 and the level of healthcare available to effectively treat those with disease. Within a country, we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly and other high-risk groups. However, if a larger supply is available, the optimal strategy switches to targeting key transmitters (i.e. the working age population and potentially children) to indirectly protect the elderly and vulnerable. Given the likely global dose supply in 2021 (2 billion doses with a two-dose vaccine), we find that a strategy in which doses are allocated to countries in proportion to their population size is close to optimal in averting deaths. Such a strategy also aligns with the ethical principles agreed in pandemic preparedness planning.

Report

Monod M, Blenkinsop A, Xi X, Herbert D, Bershan S, Tietze S, Bradley V, Chen Y, Coupland H, Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, Unwin H, Vollmer M, Weber S, Zhu H, Bezancon A, Ferguson N, Mishra S, Flaxman S, Bhatt S, Ratmann O, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Green W, Hamlet A, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Walters C, Donnelly C, Okell L, Bhatia S, Brazeau N, Eales O, Haw D, Imai N, Jauneikaite E, Lees J, Mousa A, Olivera Mesa D, Skarp J, Whittles Let al., 2020, Report 32: Targeting interventions to age groups that sustain COVID-19 transmission in the United States, Pages: 1-32

Following ini􀀂al declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementa􀀂on of non-pharmaceu􀀂cal inter-ven􀀂ons, it is s􀀂ll not known how they are impacted by changing contact pa􀀁erns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impact the loosening of interven􀀂ons such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanis􀀂cally to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age specific contact pa􀀁erns and use this rich rela􀀂onship to reconstruct accurate trans-mission dynamics. Contrary to anecdotal evidence, we find li􀀁le support for age-shi􀀃s in contact and transmission dynamics over 􀀂me. We es􀀂mate that, un􀀂l August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infec􀀂ons in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0-9. In areas with con􀀂nued, community-wide transmission, our transmission model predicts that re-opening kindergartens and el-ementary schools could facilitate spread and lead to considerable excess COVID-19 a􀀁ributable deaths over a 90-day period. These findings indicate that targe􀀂ng interven􀀂ons to adults aged 20-49 are an important con-sidera􀀂on in hal􀀂ng resurgent epidemics, and preven􀀂ng COVID-19-a􀀁ributable deaths when kindergartens and elementary schools reopen.

Journal article

Ledda A, Cummins M, Shaw LP, Jauneikaite E, Cole K, Lasalle F, Barry D, Rosmarin C, Anaraki S, Wareham D, Stoesser N, Paul J, Manuel R, Cherian BP, Didelot Xet al., 2020, Hospital outbreak of carbapenem-resistant Enterobacteriales associated with an OXA-48 plasmid carried mostly byEscherichia coliST399

<jats:title>Abstract</jats:title><jats:p>A hospital outbreak of carbapenem-resistant Enterobacteriales was detected by routine surveillance. Whole genome sequencing and subsequent analysis revealed a conserved promiscuous OXA-48 carrying plasmid as the defining factor within this outbreak. Four different species of Enterobacteriales were involved in the outbreak.<jats:italic>Escherichia coli</jats:italic>ST399 accounted for 20/55 of all the isolates. Comparative genomics with publicly available<jats:italic>E. coli</jats:italic>ST399 sequence data showed that the outbreak isolates formed a unique clade. The OXA-48 plasmid identified in the outbreak differed from other known plasmids by an estimated five homologous recombination events. We estimated a lower bound to the plasmid conjugation rate to be 0.23 conjugation events per lineage per year. Our analysis suggests co-evolution between the plasmid and its main bacterial host to be a key driver of the outbreak. This is the first study to report carbapenem-resistant<jats:italic>E. coli</jats:italic>ST399 carrying OXA48 as the main cause of a plasmid-borne outbreak within a hospital setting. This study supports complementary roles for both plasmid conjugation and clonal expansion in the emergence of this outbreak.</jats:p>

Journal article

Rodriguez Manzano J, Moser N, Malpartida Cardenas K, Moniri A, Fisarova L, Pennisi I, Boonyasiri A, Jauneikaite E, Abdolrasouli A, Otter J, Bolt F, Davies F, Didelot X, Holmes A, Georgiou Pet al., 2020, Rapid detection of mobilized colistin resistance using a nucleic acid based lab-on-a-chip diagnostic system, Scientific Reports, Vol: 10, ISSN: 2045-2322

The increasing prevalence of antimicrobial resistance is a serious threat to global public health. One of the most concerning trends is the rapid spread of Carbapenemase-Producing Organisms (CPO), where colistin has become the last-resort antibiotic treatment. The emergence of colistin resistance, including the spread of mobilized colistin resistance (mcr) genes, raises the possibility of untreatable bacterial infections and motivates the development of improved diagnostics for the detection of colistin-resistant organisms. This work demonstrates a rapid response for detecting the most recently reported mcr gene, mcr−9, using a portable and affordable lab-on-a-chip (LoC) platform, offering a promising alternative to conventional laboratory-based instruments such as real-time PCR (qPCR). The platform combines semiconductor technology, for non-optical real-time DNA sensing, with a smartphone application for data acquisition, visualization and cloud connectivity. This technology is enabled by using loop-mediated isothermal amplification (LAMP) as the chemistry for targeted DNA detection, by virtue of its high sensitivity, specificity, yield, and manageable temperature requirements. Here, we have developed the first LAMP assay for mcr−9 - showing high sensitivity (down to 100 genomic copies/reaction) and high specificity (no cross-reactivity with other mcr variants). This assay is demonstrated through supporting a hospital investigation where we analyzed nucleic acids extracted from 128 carbapenemase-producing bacteria isolated from clinical and screening samples and found that 41 carried mcr−9 (validated using whole genome sequencing). Average positive detection times were 6.58 ± 0.42 min when performing the experiments on a conventional qPCR instrument (n = 41). For validating the translation of the LAMP assay onto a LoC platform, a subset of the samples were tested (n = 20), showing average detection times o

Journal article

Jauneikaite E, Ferguson T, Mosavie M, Fallowfield JL, Davey T, Thorpe N, Allsopp A, Shaw AM, Fudge D, O'Shea MK, Wilson D, Morgan M, Pichon B, Kearns AM, Sriskandan S, Lamb LEet al., 2020, Staphylococcus aureus colonisation and acquisition of skin and soft tissue infection amongst Royal Marines recruits: A prospective cohort study, Clinical Microbiology and Infection, Vol: 26, Pages: 381.e1-381.e6, ISSN: 1198-743X

Objectives: Skin and soft tissue infections (SSTIs) are a serious health issue for military personnel. Of particular importance are those caused by MRSA and PVL-positive S. aureus (PVL-SA), as they have been associated with outbreaks of SSTIs. A prospective observational study was conducted in Royal Marines recruits to investigate the prevalence of PVL-SA carriage and any association with SSTIs.Methods: 1,012 RM recruits were followed through a 32-week training programme, with nose and throat swabs obtained at weeks 1, 6, 15 and 32. S. aureus isolates were characterised by antibiotic susceptibility testing, spa typing, presence of mecA/C and PVL genes. Retrospective review of the clinical notes for SSTI acquisition was conducted.Results: S. aureus colonisation decreased from week-1 to week-32 (41% to 26%, p<0.0001). Of 1,168 S. aureus isolates, 3/1168 (0.3%) were MRSA and 10/1168 (0.9%) PVL-positive (all MSSA) and 169/1168 (14.5%) were resistant to clindamycin. Isolates showed genetic diversity with 238 different spa types associated with 25 MLST clonal complexes. SSTIs were seen in 35% (351/989) of recruits with 3 training days lost per recruit. SSTI acquisition rate was reduced amongst persistent carriers (p<0.0283). Conclusions: Nose and throat carriage of MRSA and PVL-SA was low amongst recruits, despite a high incidence of SSTIs being reported particularly cellulitis. Carriage strains were predominantly MSSA with a marked diversity of genotypes. Persistent nose and/or throat carriage was not associated with SSTI acquisition. Putative person-to-person transmission within troops was identified based on spa typing requiring further research to confirm and explore potential transmission routes.

Journal article

Collin SM, Lamb P, Jauneikaite E, Le Doare K, Creti R, Berardi A, Heath PT, Sriskandan S, Lamagni Tet al., 2019, Hospital clusters of invasive Group B Streptococcal disease: a systematic review, Journal of Infection, Vol: 79, Pages: 521-527, ISSN: 0163-4453

Objectives: To characterize outbreaks of invasive Group B Streptococcal (iGBS) disease in hospitals.Methods: Systematic review using electronic databases to identify studies describing iGBS outbreaks/clusters or cross-infection/acquisition in healthcare settings where ‘cluster’ was defined as ≥2 linked cases. PROSPERO CRD42018096297.Results: Twenty-five references were included describing 30 hospital clusters (26 neonatal, 4 adult) in 11 countries from 1966 to 2019. Cross-infection between unrelated neonates was reported in 19 clusters involving an early-onset (<7 days of life; n = 3), late-onset (7–90 days; n = 13) index case or colonized infant (n = 3) followed by one or more late-onset cases (median serial interval 9 days (IQR 3–17, range 0–50 days, n = 45)); linkage was determined by phage typing in 3 clusters, PFGE/MLST/PCR in 8, WGS in 4, non-molecular methods in 4. Postulated routes of transmission in neonatal clusters were via clinical personnel and equipment, particularly during periods of crowding and high patient-to-nurse ratio. Of 4 adult clusters, one was attributed to droplet spread between respiratory cases, one to handling of haemodialysis catheters and two unspecified.Conclusions: Long intervals between cases were identified in most of the clusters, a characteristic which potentially hinders detection of GBS hospital outbreaks without enhanced surveillance supported by genomics.

Journal article

Herbert R, Hatcher J, Jauneikaite E, Gharbi M, d'Arc S, Obaray N, Rickards T, Rebec M, Blandy O, Hope R, Thomas A, Bamford K, Jepson A, Sriskandan Set al., 2019, Two-year analysis of Clostridium difficile ribotypes associated with increased severity, Journal of Hospital Infection, Vol: 103, Pages: 388-394, ISSN: 0195-6701

BackgroundCertain Clostridium difficile ribotypes have been associated with complex disease phenotypes including recurrence and increased severity, especially the well-described hypervirulent ribotype RT027. In this study we set out to determine the pattern of ribotypes causing infection and association if any with severity.MethodsAll faecal samples submitted to a large diagnostic laboratory for C. difficile testing between 2011 and 2013 were subject to routine testing and cultured. All C. difficile isolates were ribotyped and associated clinical and demographic patient data were retrieved then linked to ribotyping data.ResultsA total of 86 distinct ribotypes were identified from 705 isolates of C. difficile. Ribotypes RT002 and RT015 were the most prevalent (22.5%, n=159). Only five isolates (0.7%) were the hypervirulent RT027. Ninety of 450 (20%) patients with clinical information available died within 30-days of C. difficile isolation. Ribotype RT220, one of the ten commonest ribotypes, was associated with elevated median C-reactive protein and significantly increased 30-day all-cause mortality when compared with ribotypes RT002 and RT015, and with all other ribotypes found in the study.ConclusionsA wide range of C. difficile ribotypes were responsible for C. difficile infection presentations. Although C. difficile-associated mortality has reduced in recent years, expansion of lineages associated with increased severity could herald increases in future mortality. Enhanced surveillance for emerging lineages such as RT220 that are associated with more severe disease is required, with genomic approaches to dissect pathogenicity.

Journal article

Aliabadi S, Honeyford K, Jauneikaite E, Muller-Pebody B, Costelloe Cet al., 2019, Risk factors for E. coli Susceptibility in Bloods Stream Infections in England Between 2013-2017, Publisher: OXFORD UNIV PRESS, Pages: 111-111, ISSN: 1101-1262

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00837238&limit=30&person=true