Imperial College London

ProfessorElaineHolmes

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Professor of Chemical Biology
 
 
 
//

Contact

 

+44 (0)20 7594 3220elaine.holmes

 
 
//

Location

 

661Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

746 results found

Chin S-T, Boughton BA, Gay MCL, Russell AC, Wang Y, Nambiar V, McHenry MP, Holmes E, Nicholson JK, Loo RLet al., 2024, Unravelling inulin molecules in food sources using a matrix-assisted laser desorption/ionization magnetic resonance mass spectrometry (MALDI-MRMS) pipeline., Food Res Int, Vol: 184

Inulin, a polysaccharide characterized by a β-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with spec

Journal article

Lodge S, Litton E, Gray N, Ryan M, Millet O, Fear M, Raby E, Currie A, Wood F, Holmes E, Wist J, Nicholson JKet al., 2024, Stratification of Sepsis Patients on Admission into the Intensive Care Unit According to Differential Plasma Metabolic Phenotypes., J Proteome Res, Vol: 23, Pages: 1328-1340

Delayed diagnosis of patients with sepsis or septic shock is associated with increased mortality and morbidity. UPLC-MS and NMR spectroscopy were used to measure panels of lipoproteins, lipids, biogenic amines, amino acids, and tryptophan pathway metabolites in blood plasma samples collected from 152 patients within 48 h of admission into the Intensive Care Unit (ICU) where 62 patients had no sepsis, 71 patients had sepsis, and 19 patients had septic shock. Patients with sepsis or septic shock had higher concentrations of neopterin and lower levels of HDL cholesterol and phospholipid particles in comparison to nonsepsis patients. Septic shock could be differentiated from sepsis patients based on different concentrations of 10 lipids, including significantly lower concentrations of five phosphatidylcholine species, three cholesterol esters, one dihydroceramide, and one phosphatidylethanolamine. The Supramolecular Phospholipid Composite (SPC) was reduced in all ICU patients, while the composite markers of acute phase glycoproteins were increased in the sepsis and septic shock patients within 48 h admission into ICU. We show that the plasma metabolic phenotype obtained within 48 h of ICU admission is diagnostic for the presence of sepsis and that septic shock can be differentiated from sepsis based on the lipid profile.

Journal article

Whiley L, Lawler NG, Zeng AX, Lee A, Chin S-T, Bizkarguenaga M, Bruzzone C, Embade N, Wist J, Holmes E, Millet O, Nicholson JK, Gray Net al., 2024, Cross-Validation of Metabolic Phenotypes in SARS-CoV-2 Infected Subpopulations Using Targeted Liquid Chromatography-Mass Spectrometry (LC-MS)., J Proteome Res, Vol: 23, Pages: 1313-1327

To ensure biological validity in metabolic phenotyping, findings must be replicated in independent sample sets. Targeted workflows have long been heralded as ideal platforms for such validation due to their robust quantitative capability. We evaluated the capability of liquid chromatography-mass spectrometry (LC-MS) assays targeting organic acids and bile acids to validate metabolic phenotypes of SARS-CoV-2 infection. Two independent sample sets were collected: (1) Australia: plasma, SARS-CoV-2 positive (n = 20), noninfected healthy controls (n = 22) and COVID-19 disease-like symptoms but negative for SARS-CoV-2 infection (n = 22). (2) Spain: serum, SARS-CoV-2 positive (n = 33) and noninfected healthy controls (n = 39). Multivariate modeling using orthogonal projections to latent structures discriminant analyses (OPLS-DA) classified healthy controls from SARS-CoV-2 positive (Australia; R2 = 0.17, ROC-AUC = 1; Spain R2 = 0.20, ROC-AUC = 1). Univariate analyses revealed 23 significantly different (p < 0.05) metabolites between healthy controls and SARS-CoV-2 positive individuals across both cohorts. Significant metabolites revealed consistent perturbations in cellular energy metabolism (pyruvic acid, and 2-oxoglutaric acid), oxidative stress (lactic acid, 2-hydroxybutyric acid), hypoxia (2-hydroxyglutaric acid, 5-aminolevulinic acid), liver activity (primary bile acids), and host-gut microbial cometabolism (hippuric acid, phenylpropionic acid, indole-3-propionic acid). These data support targeted LC-MS metabolic phenotyping workflows for biological validation in independent sample sets.

Journal article

Roberts JL, Whiley L, Gray N, Gay M, Nitschke P, Masuda R, Holmes E, Nicholson JK, Wist J, Lawler NGet al., 2024, Rapid and Self-Administrable Capillary Blood Microsampling Demonstrates Statistical Equivalence with Standard Venous Collections in NMR-Based Lipoprotein Analysis., Anal Chem, Vol: 96, Pages: 4505-4513

We investigated plasma and serum blood derivatives from capillary blood microsamples (500 μL, MiniCollect tubes) and corresponding venous blood (10 mL vacutainers). Samples from 20 healthy participants were analyzed by 1H NMR, and 112 lipoprotein subfraction parameters; 3 supramolecular phospholipid composite (SPC) parameters from SPC1, SPC2, and SPC3 subfractions; 2 N-acetyl signals from α-1-acid glycoprotein (Glyc), GlycA, and GlycB; and 3 calculated parameters, SPC (total), SPC3/SPC2, and Glyc (total) were assessed. Using linear regression between capillary and venous collection sites, we explained that agreement (Adj. R2 ≥ 0.8, p < 0.001) was witnessed for 86% of plasma parameters (103/120) and 88% of serum parameters (106/120), indicating that capillary lipoprotein, SPC, and Glyc concentrations follow changes in venous concentrations. These results indicate that capillary blood microsamples are suitable for sampling in remote areas and for high-frequency longitudinal sampling of the majority of lipoproteins, SPCs, and Glycs.

Journal article

Serrano-Contreras JI, Lindon JC, Frost G, Holmes E, Nicholson JK, Garcia-Perez Iet al., 2024, Implementation of pure shift 1 H NMR in metabolic phenotyping for structural information recovery of biofluid metabolites with complex spin systems, NMR in Biomedicine, Vol: 37, ISSN: 0952-3480

NMR spectroscopy is a mainstay of metabolic profiling approaches to investigation of physiological and pathological processes. The one-dimensional proton pulse sequences typically used in phenotyping large numbers of samples generate spectra that are rich in information but where metabolite identification is often compromised by peak overlap. Recently developed pure shift (PS) NMR spectroscopy, where all J-coupling multiplicities are removed from the spectra, has the potential to simplify the complex proton NMR spectra that arise from biosamples and hence to aid metabolite identification. Here we have evaluated two complementary approaches to spectral simplification: the HOBS (band-selective with real-time acquisition) and the PSYCHE (broadband with pseudo-2D interferogram acquisition) pulse sequences. We compare their relative sensitivities and robustness for deconvolving both urine and serum matrices. Both methods improve resolution of resonances ranging from doublets, triplets and quartets to more complex signals such as doublets of doublets and multiplets in highly overcrowded spectral regions. HOBS is the more sensitive method and takes less time to acquire in comparison with PSYCHE, but can introduce unavoidable artefacts from metabolites with strong couplings, whereas PSYCHE is more adaptable to these types of spin system, although at the expense of sensitivity. Both methods are robust and easy to implement. We also demonstrate that strong coupling artefacts contain latent connectivity information that can be used to enhance metabolite identification. Metabolite identification is a bottleneck in metabolic profiling studies. In the case of NMR, PS experiments can be included in metabolite identification workflows, providing additional capability for biomarker discovery.

Journal article

Sala S, Nitschke P, Masuda R, Gray N, Lawler NG, Wood JM, Buckler JN, Berezhnoy G, Bolaños J, Boughton BA, Lonati C, Rössler T, Singh Y, Wilson ID, Lodge S, Morillon A-C, Loo RL, Hall D, Whiley L, Evans GB, Grove TL, Almo SC, Harris LD, Holmes E, Merle U, Trautwein C, Nicholson JK, Wist Jet al., 2024, Integrative molecular structure elucidation and construction of an extended metabolic pathway associated with an ancient innate immune response in COVID-19 patients, Journal of Proteome Research, Vol: 23, Pages: 956-970, ISSN: 1535-3893

We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.

Journal article

Ahmad MS, Minaee N, Serrano-Contreras JI, Kaluarachchi M, Shen EY-L, Boulange C, Ahmad S, Phetcharaburanin J, Holmes E, Wist J, Albaloshi AH, Alaama T, Damanhouri ZA, Lodge Set al., 2024, Exploring the interactions between obesity and diabetes: implications for understanding metabolic dysregulation in a Saudi Arabian adult population, Journal of Proteome Research, Vol: 23, Pages: 809-821, ISSN: 1535-3893

The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.

Journal article

Ryan MJ, Raby E, Whiley L, Masuda R, Lodge S, Nitschke P, Maker GL, Wist J, Holmes E, Wood FM, Nicholson JK, Fear MW, Gray Net al., 2023, Nonsevere burn induces a prolonged systemic metabolic phenotype indicative of a persistent inflammatory response postinjury, Journal of Proteome Research, ISSN: 1535-3893

Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic comorbidity and disease. To date, research has primarily focused on the systemic response to severe injury, with little in the literature reported on the impact of nonsevere injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of a nonsevere burn injury, longitudinal plasma was collected from adults (n = 35) who presented at hospital with a nonsevere burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from nonburn control participants (n = 14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoprotein signatures and 852 lipid species from across 20 subclasses. Multivariate data modeling (orthogonal projections to latent structures-discriminate analysis; OPLS-DA) revealed alterations in lipoprotein and lipid metabolism when comparing the baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value < 1.0e-4), low density lipoprotein-2 subfractions (variable importance in projection score; VIP > 6.83e-1) and monoacyglyceride (20:4) (p-value < 1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP > 7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, and phosphatidylserines. The results indicate a persistent systemic metabolic phenotype that occurs even in cases of a nonsevere burn injury. The phenotype is indicative of an acute inflammatory profile that continues to be sustained postinjury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabo

Journal article

Pham C, Thomson S, Chin S-T, Vuillermin P, O'Hely M, Burgner D, Tanner S, Saffery R, Mansell T, Bong S, Holmes E, Sly PD, Gray N, Ponsonby A-L, Barwon ISIGet al., 2023, Maternal oxidative stress during pregnancy associated with emotional and behavioural problems in early childhood: implications for foetal programming, MOLECULAR PSYCHIATRY, ISSN: 1359-4184

Journal article

Strout N, Pasic L, Hicks C, Chua X-Y, Tashvighi N, Butler P, Liu Z, El-Assaad F, Holmes E, Susic D, Samaras K, Craig ME, Davis GK, Henry A, Ledger WL, El-Omar EMet al., 2023, The MothersBabies Study, an Australian Prospective Cohort Study Analyzing the Microbiome in the Preconception and Perinatal Period to Determine Risk of Adverse Pregnancy, Postpartum, and Child-Related Health Outcomes: Study Protocol., Int J Environ Res Public Health, Vol: 20

The microbiome has emerged as a key determinant of human health and reproduction, with recent evidence suggesting a dysbiotic microbiome is implicated in adverse perinatal health outcomes. The existing research has been limited by the sample collection and timing, cohort design, sample design, and lack of data on the preconception microbiome. This prospective, longitudinal cohort study will recruit 2000 Australian women, in order to fully explore the role of the microbiome in the development of adverse perinatal outcomes. Participants are enrolled for a maximum of 7 years, from 1 year preconception, through to 5 years postpartum. Assessment occurs every three months until pregnancy occurs, then during Trimester 1 (5 + 0-12 + 6 weeks gestation), Trimester 2 (20 + 0-24 + 6 weeks gestation), Trimester 3 (32 + 0-36 + 6 weeks gestation), and postpartum at 1 week, 2 months, 6 months, and then annually from 1 to 5 years. At each assessment, maternal participants self-collect oral, skin, vaginal, urine, and stool samples. Oral, skin, urine, and stool samples will be collected from children. Blood samples will be obtained from maternal participants who can access a study collection center. The measurements taken will include anthropometric, blood pressure, heart rate, and serum hormonal and metabolic parameters. Validated self-report questionnaires will be administered to assess diet, physical activity, mental health, and child developmental milestones. Medications, medical, surgical, obstetric history, the impact of COVID-19, living environments, and pregnancy and child health outcomes will be recorded. Multiomic bioinformatic and statistical analyses will assess the association between participants who developed high-risk and low-risk pregnancies, adverse postnatal conditions, and/or childhood disease, and their microbiome for the different sample types.

Journal article

Walsh LH, Walsh AM, Garcia-Perez I, Crispie F, Costabile A, Ellis R, Finlayson J, Finnegan LA, Claesson MJ, Holmes E, Cotter PDet al., 2023, Comparison of the relative impacts of acute consumption of an inulin-enriched diet, milk kefir or a commercial probiotic product on the human gut microbiome and metabolome, NPJ SCIENCE OF FOOD, Vol: 7

Journal article

Lodge S, Lawler NGG, Gray N, Masuda R, Nitschke P, Whiley L, Bong S-H, Yeap BBB, Dwivedi G, Spraul M, Schaefer H, Gil-Redondo R, Embade N, Millet O, Holmes E, Wist J, Nicholson JKKet al., 2023, Integrative Plasma Metabolic and Lipidomic Modelling of SARS-CoV-2 Infection in Relation to Clinical Severity and Early Mortality Prediction, INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol: 24, ISSN: 1661-6596

Journal article

Begum S, Lodge S, Hall D, Johnson BZ, Bong SH, Whiley L, Gray N, Fear VS, Fear MW, Holmes E, Wood FM, Nicholson JKet al., 2023, Cardiometabolic disease risk markers are increased following burn injury in children, FRONTIERS IN PUBLIC HEALTH, Vol: 11

Journal article

Chin S-T, Hoerlendsberger G, Wong KW, Li S, Bong SH, Whiley L, Wist J, Masuda R, Greeff J, Holmes E, Nicholson JK, Loo RLet al., 2023, Targeted lipidomics coupled with machine learning for authenticating the provenance of chicken eggs, FOOD CHEMISTRY, Vol: 410, ISSN: 0308-8146

Journal article

Ryan MJ, Grant-St James A, Lawler NG, Fear MW, Raby E, Wood FM, Maker GL, Wist J, Holmes E, Nicholson JK, Whiley L, Gray Net al., 2023, Comprehensive Lipidomic Workflow for Multicohort Population Phenotyping Using Stable Isotope Dilution Targeted Liquid Chromatography-Mass Spectrometry, JOURNAL OF PROTEOME RESEARCH, Vol: 22, Pages: 1419-1433, ISSN: 1535-3893

Journal article

Mendez DFG, Sanabria J, Wist J, Holmes Eet al., 2023, Effect of Operational Parameters on the Cultivation of the Gut Microbiome in Continuous Bioreactors Inoculated with Feces: A Systematic Review, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, Vol: 71, Pages: 6213-6225, ISSN: 0021-8561

Journal article

Alsaleh M, Sithithaworn P, Khuntikeo N, Loilome W, Yongvanit P, Hughes T, O'Connor T, Andrews R, Wadsworth C, Williams R, Koomson L, Cox IJ, Holmes E, Taylor-Robinson SDet al., 2023, Urinary metabolic profiling of liver fluke-induced cholangiocarcinoma—a follow-up study, Journal of Clinical and Experimental Hepatology, Vol: 13, Pages: 203-217, ISSN: 0973-6883

Background/Aims:Global liquid chromatography mass spectrometry (LC-MS) profiling in a Thai population has previously identified a urinary metabolic signature in Opisthorchis viverrini-induced cholangiocarcinoma (CCA), primarily characterised by disturbance in acylcarnitine, bile acid, steroid, and purine metabolism. However, the detection of thousands of analytes by LC-MS in a biological sample in a single experiment potentially introduces false discovery errors. To verify these observed metabolic perturbations, a second validation dataset from the same population was profiled in a similar fashion.Methods:Reverse-phase ultra-performance liquid-chromatography mass spectrometry was utilised to acquire the global spectral profile of 98 spot urine samples (from 46 healthy volunteers and 52 CCA patients) recruited from Khon Kaen, northeast Thailand (the highest incidence of CCA globally).Results:Metabolites were differentially expressed in the urinary profiles from CCA patients. High urinary elimination of bile acids was affected by the presence of obstructive jaundice. The urine metabolome associated with non-jaundiced CCA patients showed a distinctive pattern, similar but not identical to published studies. A panel of 10 metabolites achieved a diagnostic accuracy of 93.4% and area under the curve value of 98.8% (CI = 96.3%–100%) for the presence of CCA.Conclusions:Global characterisation of the CCA urinary metabolome identified several metabolites of biological interest in this validation study. Analyses of the diagnostic utility of the discriminant metabolites showed excellent diagnostic potential. Further larger scale studies are required to confirm these findings internationally, particularly in comparison to sporadic CCA, not associated with liver fluke infestation.

Journal article

Trovato FM, Zia R, Artru F, Mujib S, Jerome E, Cavazza A, Coen M, Wilson I, Holmes E, Morgan P, Singanayagam A, Bernsmeier C, Napoli S, Bernal W, Wendon J, Miquel R, Menon K, Patel VC, Smith J, Atkinson SR, Triantafyllou E, McPhail MJet al., 2023, Lysophosphatidylcholines modulate immunoregulatory checkpoints in peripheral monocytes and are associated with mortality in people with acute liver failure., Journal of Hepatology, Vol: 78, Pages: 558-573, ISSN: 0168-8278

BACKGROUND AND AIMS: Acute liver failure (ALF) is a life-threatening disease characterised by high-grade inflammation and immunoparesis with a high incidence of death from sepsis. Here, we aimed to describe the metabolic dysregulation in ALF and determine whether systemic immune responses are modulated via the lysophosphatidylcholine(LPC)-autotaxin(ATX)-lysophosphatidylcholinic acid (LPA) pathway. METHODS: 96 ALF patients, 71 healthy controls (HC), 104 patients with cirrhosis and 31 septic patients were recruited. The pathways of interest were identified based on multivariate statistical analysis of proton nuclear magnetic resonance (1HNMR) spectroscopy, untargeted ultraperformance liquid chromatography-mass spectrometry (UPLC-MS)-based lipidomics and validated with a targeted metabolomics panel. Peripheral blood mononuclear cells were cultured with LPA 16:0, 18:0, 18:1, and their immune checkpoint surface expression was assessed by flow cytometry. LPA receptor (LPAR) transcript-level expression of monocytes was investigated and the effect of LPAR antagonism was also examined in vitro. RESULTS: LPC 16:0 was found highly discriminant between ALF and HC. There was an increase in ATX and LPA in ALF compared to HC and sepsis. LPCs 16:0, 18:0 and 18:1 were reduced in ALF patients with poor prognosis. Treatment of monocytes with LPA 16:0 increased their PD-L1 expression and reduced CD155, CD163, MerTK levels, without effect on T and NK/CD56+T cells immune checkpoints. LPAR1 and 3 antagonism in culture reversed the LPA effect on monocyte expression of MerTK and CD163. MerTK and CD163, but not LPARs genes, were differently expressed and upregulated in monocytes from ALF patients compared to controls. CONCLUSION: Reduced amounts of LPCs are biomarkers of poor prognosis in patients with ALF. The LPC-ATX-LPA axis appears to modulate innate immune response in ALF via LPAR1 and LPAR3. Further investigations are required to identify novel therapeutic agents targeting these recept

Journal article

Garcia-Perez I, Posma JM, Chambers ES, Mathers JC, Draper J, Beckmann M, Nicholson JK, Holmes E, Frost Get al., 2023, Dietary metabotype modelling predicts individual responses to dietary interventions (Vol 1, pg 355, 2020) (Retraction of Vol 1, Pg 355, 2020), NATURE FOOD, Vol: 4, Pages: 269-269

Journal article

Bergner R, Onida S, Velineni R, Spagou K, Gohel MS, Bouschbacher M, Bohbot S, Shalhoub J, Holmes E, Davies AHet al., 2023, Metabolic profiling reveals changes in serum predictive of venous ulcer healing, Annals of Surgery, Vol: 277, Pages: e467-e474, ISSN: 0003-4932

Objective: The aim of this study was to identify potential biomarkers predictive of healing or failure to heal in a population with venous leg ulceration.Summary Background Data: Venous leg ulceration presents important physical, psychological, social and financial burdens. Compression therapy is the main treatment, but it can be painful and time-consuming, with significant recurrence rates. The identification of a reliable biochemical signature with the ability to identify nonhealing ulcers has important translational applications for disease prognostication, personalized health care and the development of novel therapies.Methods: Twenty-eight patients were assessed at baseline and at 20 weeks. Untargeted metabolic profiling was performed on urine, serum, and ulcer fluid, using mass spectrometry and nuclear magnetic resonance spectroscopy.Results: A differential metabolic phenotype was identified in healing (n = 15) compared to nonhealing (n = 13) venous leg ulcer patients. Analysis of the assigned metabolites found ceramide and carnitine metabolism to be relevant pathways. In this pilot study, only serum biofluids could differentiate between healing and nonhealing patients. The ratio of carnitine to ceramide was able to differentiate between healing phenotypes with 100% sensitivity, 79% specificity, and 91% accuracy.Conclusions: This study reports a metabolic signature predictive of healing in venous leg ulceration and presents potential translational applications for disease prognostication and development of targeted therapies.

Journal article

Ruffieux H, Hanson AL, Lodge S, Lawler NG, Whiley L, Gray N, Nolan TH, Bergamaschi L, Mescia F, Turner L, de Sa A, Pelly VS, Kotagiri P, Kingston NR, Bradley J, Holmes E, Wist JK, Nicholson JA, Lyons P, Smith KGC, Richardson S, Bantug G, Hess Cet al., 2023, A patient-centric modeling framework captures recovery from SARS-CoV-2 infection, NATURE IMMUNOLOGY, Vol: 24, Pages: 349-+, ISSN: 1529-2908

Journal article

Gee LMV, Barron-Millar B, Leslie J, Richardson C, Zaki MYW, Luli S, Burgoyne RA, Cameron RIT, Smith GR, Brain JG, Innes B, Jopson L, Dyson JK, McKay KRC, Pechlivanis A, Holmes E, Berlinguer-Palmini R, Victorelli S, Mells GF, Sandford RN, Palmer J, Kirby JA, Kiourtis C, Mokochinski J, Hall Z, Bird TG, Borthwick LA, Morris CM, Hanson PS, Jurk D, Stoll EA, LeBeau FEN, Jones DEJ, Oakley Fet al., 2023, Anti-cholestatic therapy with obeticholic acid improves short-term memory in bile duct-ligated mice, American Journal of Pathology, Vol: 193, Pages: 11-26, ISSN: 0002-9440

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.

Journal article

Posma JM, Perez IG, Karaman I, Gao H, Chan Q, Daviglus M, Van Horn L, Holmes E, Nicholson JK, Elliott Pet al., 2023, Host genomic influence on the gut microbial metabolite-blood pressure relationship, 29th Scientific Meeting of the International Society of Hypertension (Hypertension Kyoto 2022), Publisher: Lippincott, Williams & Wilkins, Pages: E240-E240, ISSN: 0263-6352

Conference paper

Masuda R, Wist J, Lodge S, Kimhofer T, Hunter M, Hui J, Beilby JP, Burnett JR, Dwivedi G, Schlaich MP, Bong S-H, Loo RL, Holmes E, Nicholson JK, Yeap BBet al., 2023, Plasma lipoprotein subclass variation in middle-aged and older adults: Sex-stratified distributions and associations with health status and cardiometabolic risk factors., J Clin Lipidol, Vol: 17, Pages: 677-687, ISSN: 1933-2874

BACKGROUND: Circulating lipids and lipoproteins mediate cardiovascular risk, however routine plasma lipid biochemistry provides limited information on pro-atherogenic remnant particles. OBJECTIVE: We analysed plasma lipoprotein subclasses including very low-density and intermediate-density lipoprotein (VLDL and IDL); and assessed their associations with health and cardiometabolic risk. METHODS: From 1,976 community-dwelling adults aged 45-67 years, 114/1071 women (10.6%) and 153/905 men (16.9%) were categorised as very healthy. Fasting plasma lipoprotein profiles comprising 112 parameters were measured using 1H nuclear magnetic resonance (NMR) spectroscopy, and associations with health status and cardiometabolic risk factors examined. RESULTS: HDL cholesterol was higher, and IDL and VLDL cholesterol and triglycerides lower, in very healthy women compared to other women, and women compared to men. IDL and VLDL cholesterol and triglyceride were lower in very healthy men compared to other men. HDL cholesterol and apolipoprotein (apo) A-I were inversely, and IDL and VLDL cholesterol, apoB-100, and apoB-100/apoA-I ratio directly associated with body mass index (BMI) in women and men. In women, LDL, IDL and VLDL cholesterol increased with age. Women with diabetes and cardiovascular disease had higher cholesterol, triglycerides, phospholipids and free cholesterol across IDL and VLDL fractions, with similar trends for men with diabetes. CONCLUSION: Lipoprotein subclasses and density fractions, and their lipid and apolipoprotein constituents, are differentially distributed by sex, health status and BMI. Very healthy women and men are distinguished by favorable lipoprotein profiles, particularly lower concentrations of VLDL and IDL, providing reference intervals for comparison with general populations and adults with cardiometabolic risk factors.

Journal article

Kierath E, Ryan M, Holmes E, Nicholson JK, Fear MW, Wood FM, Whiley L, Gray Net al., 2023, Plasma lipidomics reveal systemic changes persistent throughout early life following a childhood burn injury., Burns Trauma, Vol: 11, ISSN: 2321-3868

BACKGROUND: Non-severe paediatric burns can result in poor long-term health outcomes. This occurs even in cases with good acute burn-related outcomes, including minimal scarring. The mechanisms that underpin the transition from non-severe burn to sustained negative long-term health impacts are currently unknown. However, sustained metabolic and immune changes have been observed in paediatric burn studies, suggesting these changes may be important.The plasma lipidome consists of a rich pool of bioactive metabolites that play critical roles in systemic processes including molecular signalling and inflammation. We hypothesised that changes in the plasma lipidome may reflect underlying changes in health status and be linked to long-term health after burn trauma. METHODS: This study analysed the lipidome in children who had previously experienced a non-severe burn, compared to non-injured controls. Thirty-three participants were recruited between the ages of 5 and 8 years who had experienced a non-severe burn between the ages of 1 and 3 years. Plasma samples were also collected from a non-injured, healthy, age and gender matched control group (n = 21). Plasma lipids were measured using reversed-phase liquid chromatographymass spectrometery (LC-MS). RESULTS: In total 838 reproducible lipid species from 19 sub-classes passed quality control procedures and progressed to statistical analysis. Analysis of individual lipid metabolites showed significantly higher concentrations of lysophosphatidylethanolamines and phosphatidylethanolamines, and significantly lower concentrations in myristic, palmitic and palmitoleic acids in the plasma of those who had experienced burn injury compared to controls. CONCLUSION: Long-term changes in the lipid profile may give insight into the mechanisms underlying poor long-term health subsequent to non-severe burn injury. Further work to investigate the relationship between long-term pathology and lipidomic changes may lea

Journal article

Martinez Gili L, Pechlivanis A, McDonald J, Begum S, Badrock J, Dyson JK, Jones R, Hirschfield G, Ryder SD, Sandford R, Rushbrook S, Thorburn D, Taylor-Robinson SD, Crossey M, Marchesi J, Mells G, Holmes E, Jones Det al., 2023, Bacterial and metabolic phenotypes associated with inadequate response to ursodeoxycholic acid treatment in primary biliary cholangitis, Gut Microbes, Vol: 15, Pages: 1-19, ISSN: 1949-0976

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, but the underlying mechanisms are unclear. UDCA modulates the composition of primary and bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic acid, which was higher in responders. The sub-group of responders with poor liver function showed lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria with BA deconjugation capacity might be associated with an incomplete response to treatment in some patients.

Journal article

Rowley CE, Lodge S, Egan S, Itsiopoulos C, Christophersen CT, Silva D, Kicic-Starcevich E, O'Sullivan TA, Wist J, Nicholson J, Frost G, Holmes E, D'Vaz Net al., 2023, Altered dietary behaviour during pregnancy impacts systemic metabolic phenotypes., Front Nutr, Vol: 10, ISSN: 2296-861X

RATIONALE: Evidence suggests consumption of a Mediterranean diet (MD) can positively impact both maternal and offspring health, potentially mediated by a beneficial effect on inflammatory pathways. We aimed to apply metabolic profiling of serum and urine samples to assess differences between women who were stratified into high and low alignment to a MD throughout pregnancy and investigate the relationship of the diet to inflammatory markers. METHODS: From the ORIGINS cohort, 51 pregnant women were stratified for persistent high and low alignment to a MD, based on validated MD questionnaires. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the urine and serum metabolite profiles of these women at 36 weeks of pregnancy. The relationship between diet, metabolite profile and inflammatory status was investigated. RESULTS: There were clear differences in both the food choice and metabolic profiles of women who self-reported concordance to a high (HMDA) and low (LMDA) Mediterranean diet, indicating that alignment with the MD was associated with a specific metabolic phenotype during pregnancy. Reduced meat intake and higher vegetable intake in the HMDA group was supported by increased levels of urinary hippurate (p = 0.044) and lower creatine (p = 0.047) levels. Serum concentrations of the NMR spectroscopic inflammatory biomarkers GlycA (p = 0.020) and GlycB (p = 0.016) were significantly lower in the HDMA group and were negatively associated with serum acetate, histidine and isoleucine (p < 0.05) suggesting a greater level of plant-based nutrients in the diet. Serum branched chain and aromatic amino acids were positively associated with the HMDA group while both urinary and serum creatine, urine creatinine and dimethylamine were positively associated with the LMDA group. CONCLUSION: Metabolic phenotypes of pregnant women who had a high alignment with the MD were signifi

Journal article

Misra R, Sarafian M, Pechlivanis A, Ding N, Miguens-Blanco J, McDonald J, Holmes E, Marchesi J, Arebi Net al., 2022, Ethnicity associated microbial and metabonomic profiling in newly diagnosed ulcerative colitis, Clinical and Experimental Gastroenterology, Vol: 15, Pages: 199-212, ISSN: 1178-7023

Introduction:Ulcerative colitis (UC) differs across geography and ethnic groups. Gut microbial diversity plays a pivotal role in disease pathogenesis and differs across ethnic groups. The functional diversity in microbial-driven metabolites may have a pathophysiologic role and offer new therapeutic avenues.Methods:Demographics and clinical data were recorded from newly diagnosed UC patients. Blood, urine and faecal samples were collected at three time points over one year. Bacterial content was analysed by 16S rRNA sequencing. Bile acid profiles and polar molecules in three biofluids were measured using liquid-chromatography mass spectrometry (HILIC) and nuclear magnetic resonance spectroscopy.Results:We studied 42 patients with a new diagnosis of UC (27 South Asians; 15 Caucasians) with 261 biosamples. There were significant differences in relative abundance of bacteria at the phylum, genus and species level. Relative concentrations of urinary metabolites in South Asians were significantly lower for hippurate (positive correlation for Ruminococcus) and 4-cresol sulfate (Clostridia) (p<0.001) with higher concentrations of lactate (negative correlation for Bifidobacteriaceae). Faecal conjugated and primary conjugated bile acids concentrations were significantly higher in South Asians (p=0.02 and p=0.03 respectively). Results were unaffected by diet, phenotype, disease severity and ongoing therapy. Comparison of time points at diagnosis and at 1 year did not reveal changes in microbial and metabolic profile.Conclusion:Ethnic-related microbial metabolite associations were observed in South Asians with UC. This suggests a predisposition to UC may be influenced by environmental factors reflected in a distinct gene-environment interaction. The variations may serve as markers to identify risk factors for UC and modified to enhance therapeutic response.

Journal article

Brignardello J, Fountana S, Posma JM, Chambers ES, Nicholson JK, Wist J, Frost G, Garcia-Perez I, Holmes Eet al., 2022, Characterization of diet-dependent temporal changes in circulating short-chain fatty acid concentrations: a randomized crossover dietary trial, The American Journal of Clinical Nutrition, Vol: 116, Pages: 1368-1378, ISSN: 0002-9165

Background: Production of Short-chain fatty acids (SCFAs) from food is a complex and dynamic saccharolytic fermentation process mediated by both human and gut microbial factors. SCFA production and knowledge of the relationship between SCFA profiles and dietary patterns is lacking. Objective: Temporal changes in SCFA levels in response to two contrasting diets were investigated using a novel GC-MS method.Design: Samples were obtained from a randomized, controlled, crossover trial designed to characterize the metabolic response to four diets. Participants (n=19) undertook these diets during an inpatient stay (of 72-h). Serum samples were collected 2-h after breakfast (AB), lunch (AL) and dinner (AD) on day 3 and a fasting sample (FA) was obtained on day 4. 24-h urine samples were collected on day 3. In this sub-study, samples from the two extreme diets representing a diet with high adherence to WHO healthy eating recommendations and a typical Western diet were analyzed using a bespoke GC-MS method developed to detect and quantify 10 SCFAs and precursors in serum and urine samples. Results: Considerable inter-individual variation in serum SCFA concentrations was observed across all time points and temporal fluctuations were observed for both diets. Although the sample collection timing exerted a greater magnitude of effect on circulating SCFA concentrations, the unhealthy diet was associated with a lower concentration of acetic acid (FA: coefficient=-17.0; standard error (SE)=5.8; p-trend=0.00615), 2-methylbutyric acid (AL: coefficient=-0.1; SE=0.028; p-trend=4.13x10-4 and AD: coefficient =-0.1; SE:=0.028; p-trend=2.28x10-3) and 2-hydroxybutyric acid (FA: coefficient=-15.8; standard error=5.11; p-trend: 4.09x10-3). In contrast lactic acid was significantly higher in the unhealthy diet (AL: coefficient=750.2; standard error=315.2; p-trend=0.024 and AD: coefficient=1219.3; standard error=322.6; p-trend: 8.28x10-4). Conclusion: The GC-MS method allowed robust mapping of

Journal article

Yau A, Fear MW, Gray N, Ryan M, Holmes E, Nicholson JK, Whiley L, Wood FMet al., 2022, Enhancing the accuracy of surgical wound excision following burns trauma via application of Rapid Evaporative IonisationMass Spectrometry (REIMS), BURNS, Vol: 48, Pages: 1574-1583, ISSN: 0305-4179

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00168606&limit=30&person=true