Publications
722 results found
Lodge S, Lawler NG, Gray N, et al., 2023, Integrative Plasma Metabolic and Lipidomic Modelling of SARS-CoV-2 Infection in Relation to Clinical Severity and Early Mortality Prediction., Int J Mol Sci, Vol: 24
An integrative multi-modal metabolic phenotyping model was developed to assess the systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients were collected in 2020 and classified into four levels of severity ranging from mild symptoms to severe ventilated cases. These samples were investigated using a combination of quantitative Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine pathway coverage. All platforms revealed highly significant differences in metabolite patterns between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The total number of significant metabolites increased with severity with 344 out of the 1034 quantitative variables being common to all severity classes. Metabolic signatures showed a continuum of changes across the respiratory severity levels with the most significant and extensive changes being in the most severely affected patients. Even mildly affected respiratory patients showed multiple highly significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model, which highlighted a different set of metabolites to those defining the basic disease. Specifically, hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly elevated in the non-surviving patient group (Cliff's delta 0.91-0.95) and two phosphoethanolamines (PE.O 18:0/18:1, Cliff's delta = -0.98 and PE.P 16:0/18:1, Cliff's delta = -0.93)
Masuda R, Wist J, Lodge S, et al., 2023, Plasma lipoprotein subclass variation in middle-aged and older adults: Sex-stratified distributions and associations with health status and cardiometabolic risk factors., J Clin Lipidol, ISSN: 1933-2874
BACKGROUND: Circulating lipids and lipoproteins mediate cardiovascular risk, however routine plasma lipid biochemistry provides limited information on pro-atherogenic remnant particles. OBJECTIVE: We analysed plasma lipoprotein subclasses including very low-density and intermediate-density lipoprotein (VLDL and IDL); and assessed their associations with health and cardiometabolic risk. METHODS: From 1,976 community-dwelling adults aged 45-67 years, 114/1071 women (10.6%) and 153/905 men (16.9%) were categorised as very healthy. Fasting plasma lipoprotein profiles comprising 112 parameters were measured using 1H nuclear magnetic resonance (NMR) spectroscopy, and associations with health status and cardiometabolic risk factors examined. RESULTS: HDL cholesterol was higher, and IDL and VLDL cholesterol and triglycerides lower, in very healthy women compared to other women, and women compared to men. IDL and VLDL cholesterol and triglyceride were lower in very healthy men compared to other men. HDL cholesterol and apolipoprotein (apo) A-I were inversely, and IDL and VLDL cholesterol, apoB-100, and apoB-100/apoA-I ratio directly associated with body mass index (BMI) in women and men. In women, LDL, IDL and VLDL cholesterol increased with age. Women with diabetes and cardiovascular disease had higher cholesterol, triglycerides, phospholipids and free cholesterol across IDL and VLDL fractions, with similar trends for men with diabetes. CONCLUSION: Lipoprotein subclasses and density fractions, and their lipid and apolipoprotein constituents, are differentially distributed by sex, health status and BMI. Very healthy women and men are distinguished by favourable lipoprotein profiles, particularly lower concentrations of VLDL and IDL, providing reference intervals for comparison with general populations and adults with cardiometabolic risk factors.
García Mendez DF, Sanabria J, Wist J, et al., 2023, Effect of Operational Parameters on the Cultivation of the Gut Microbiome in Continuous Bioreactors Inoculated with Feces: A Systematic Review., J Agric Food Chem, Vol: 71, Pages: 6213-6225
Since the early 1980s, multiple researchers have contributed to the development of in vitro models of the human gastrointestinal system for the mechanistic interrogation of the gut microbiome ecology. Using a bioreactor for simulating all the features and conditions of the gastrointestinal system is a massive challenge. Some conditions, such as temperature and pH, are readily controlled, but a more challenging feature to simulate is that both may vary in different regions of the gastrointestinal tract. Promising solutions have been developed for simulating other functionalities, such as dialysis capabilities, peristaltic movements, and biofilm growth. This research field is under constant development, and further efforts are needed to drive these models closer to in vivo conditions, thereby increasing their usefulness for studying the gut microbiome impact on human health. Therefore, understanding the influence of key operational parameters is fundamental for the refinement of the current bioreactors and for guiding the development of more complex models. In this review, we performed a systematic search for operational parameters in 229 papers that used continuous bioreactors seeded with human feces. Despite the reporting of operational parameters for the various bioreactor models being variable, as a result of a lack of standardization, the impact of specific operational parameters on gut microbial ecology is discussed, highlighting the advantages and limitations of the current bioreactor systems.
Trovato FM, Zia R, Artru F, et al., 2023, Lysophosphatidylcholines modulate immunoregulatory checkpoints in peripheral monocytes and are associated with mortality in people with acute liver failure., Journal of Hepatology, Vol: 78, Pages: 558-573, ISSN: 0168-8278
BACKGROUND AND AIMS: Acute liver failure (ALF) is a life-threatening disease characterised by high-grade inflammation and immunoparesis with a high incidence of death from sepsis. Here, we aimed to describe the metabolic dysregulation in ALF and determine whether systemic immune responses are modulated via the lysophosphatidylcholine(LPC)-autotaxin(ATX)-lysophosphatidylcholinic acid (LPA) pathway. METHODS: 96 ALF patients, 71 healthy controls (HC), 104 patients with cirrhosis and 31 septic patients were recruited. The pathways of interest were identified based on multivariate statistical analysis of proton nuclear magnetic resonance (1HNMR) spectroscopy, untargeted ultraperformance liquid chromatography-mass spectrometry (UPLC-MS)-based lipidomics and validated with a targeted metabolomics panel. Peripheral blood mononuclear cells were cultured with LPA 16:0, 18:0, 18:1, and their immune checkpoint surface expression was assessed by flow cytometry. LPA receptor (LPAR) transcript-level expression of monocytes was investigated and the effect of LPAR antagonism was also examined in vitro. RESULTS: LPC 16:0 was found highly discriminant between ALF and HC. There was an increase in ATX and LPA in ALF compared to HC and sepsis. LPCs 16:0, 18:0 and 18:1 were reduced in ALF patients with poor prognosis. Treatment of monocytes with LPA 16:0 increased their PD-L1 expression and reduced CD155, CD163, MerTK levels, without effect on T and NK/CD56+T cells immune checkpoints. LPAR1 and 3 antagonism in culture reversed the LPA effect on monocyte expression of MerTK and CD163. MerTK and CD163, but not LPARs genes, were differently expressed and upregulated in monocytes from ALF patients compared to controls. CONCLUSION: Reduced amounts of LPCs are biomarkers of poor prognosis in patients with ALF. The LPC-ATX-LPA axis appears to modulate innate immune response in ALF via LPAR1 and LPAR3. Further investigations are required to identify novel therapeutic agents targeting these recept
Alsaleh M, Sithithaworn P, Khuntikeo N, et al., 2023, Urinary metabolic profiling of liver fluke-induced cholangiocarcinoma—a follow-up study, Journal of Clinical and Experimental Hepatology, Vol: 13, Pages: 203-217, ISSN: 0973-6883
Background/Aims:Global liquid chromatography mass spectrometry (LC-MS) profiling in a Thai population has previously identified a urinary metabolic signature in Opisthorchis viverrini-induced cholangiocarcinoma (CCA), primarily characterised by disturbance in acylcarnitine, bile acid, steroid, and purine metabolism. However, the detection of thousands of analytes by LC-MS in a biological sample in a single experiment potentially introduces false discovery errors. To verify these observed metabolic perturbations, a second validation dataset from the same population was profiled in a similar fashion.Methods:Reverse-phase ultra-performance liquid-chromatography mass spectrometry was utilised to acquire the global spectral profile of 98 spot urine samples (from 46 healthy volunteers and 52 CCA patients) recruited from Khon Kaen, northeast Thailand (the highest incidence of CCA globally).Results:Metabolites were differentially expressed in the urinary profiles from CCA patients. High urinary elimination of bile acids was affected by the presence of obstructive jaundice. The urine metabolome associated with non-jaundiced CCA patients showed a distinctive pattern, similar but not identical to published studies. A panel of 10 metabolites achieved a diagnostic accuracy of 93.4% and area under the curve value of 98.8% (CI = 96.3%–100%) for the presence of CCA.Conclusions:Global characterisation of the CCA urinary metabolome identified several metabolites of biological interest in this validation study. Analyses of the diagnostic utility of the discriminant metabolites showed excellent diagnostic potential. Further larger scale studies are required to confirm these findings internationally, particularly in comparison to sporadic CCA, not associated with liver fluke infestation.
Ryan MJ, Grant-St James A, Lawler NG, et al., 2023, Comprehensive Lipidomic Workflow for Multicohort Population Phenotyping Using Stable Isotope Dilution Targeted Liquid Chromatography-Mass Spectrometry, JOURNAL OF PROTEOME RESEARCH, ISSN: 1535-3893
Bergner R, Onida S, Velineni R, et al., 2023, Metabolic profiling reveals changes in serum predictive of venous ulcer healing, Annals of Surgery, Vol: 277, Pages: e467-e474, ISSN: 0003-4932
Objective: The aim of this study was to identify potential biomarkers predictive of healing or failure to heal in a population with venous leg ulceration.Summary Background Data: Venous leg ulceration presents important physical, psychological, social and financial burdens. Compression therapy is the main treatment, but it can be painful and time-consuming, with significant recurrence rates. The identification of a reliable biochemical signature with the ability to identify nonhealing ulcers has important translational applications for disease prognostication, personalized health care and the development of novel therapies.Methods: Twenty-eight patients were assessed at baseline and at 20 weeks. Untargeted metabolic profiling was performed on urine, serum, and ulcer fluid, using mass spectrometry and nuclear magnetic resonance spectroscopy.Results: A differential metabolic phenotype was identified in healing (n = 15) compared to nonhealing (n = 13) venous leg ulcer patients. Analysis of the assigned metabolites found ceramide and carnitine metabolism to be relevant pathways. In this pilot study, only serum biofluids could differentiate between healing and nonhealing patients. The ratio of carnitine to ceramide was able to differentiate between healing phenotypes with 100% sensitivity, 79% specificity, and 91% accuracy.Conclusions: This study reports a metabolic signature predictive of healing in venous leg ulceration and presents potential translational applications for disease prognostication and development of targeted therapies.
Ruffieux H, Hanson AL, Lodge S, et al., 2023, A patient-centric modeling framework captures recovery from SARS-CoV-2 infection, NATURE IMMUNOLOGY, Vol: 24, Pages: 349-+, ISSN: 1529-2908
- Author Web Link
- Cite
- Citations: 1
Chin S-T, Hoerlendsberger G, Wong KW, et al., 2023, Targeted lipidomics coupled with machine learning for authenticating the provenance of chicken eggs, FOOD CHEMISTRY, Vol: 410, ISSN: 0308-8146
Garcia-Perez I, Posma JM, Chambers ES, et al., 2023, Dietary metabotype modelling predicts individual responses to dietary interventions (Vol 1, pg 355, 2020) (Retraction of Vol 1, Pg 355, 2020), NATURE FOOD
Gee LMV, Barron-Millar B, Leslie J, et al., 2023, Anti-cholestatic therapy with obeticholic acid improves short-term memory in bile duct-ligated mice, American Journal of Pathology, Vol: 193, Pages: 11-26, ISSN: 0002-9440
Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.
Martinez Gili L, Pechlivanis A, McDonald J, et al., 2023, Bacterial and metabolic phenotypes associated with inadequate response to ursodeoxycholic acid treatment in primary biliary cholangitis, Gut Microbes, Vol: 15, Pages: 1-19, ISSN: 1949-0976
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with ursodeoxycholic acid (UDCA) as first-line treatment. Poor response to UDCA is associated with a higher risk of progressing to cirrhosis, but the underlying mechanisms are unclear. UDCA modulates the composition of primary and bacterial-derived bile acids (BAs). We characterized the phenotypic response to UDCA based on BA and bacterial profiles of PBC patients treated with UDCA. Patients from the UK-PBC cohort (n = 419) treated with UDCA for a minimum of 12-months were assessed using the Barcelona dynamic response criteria. BAs from serum, urine, and feces were analyzed using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and fecal bacterial composition measured using 16S rRNA gene sequencing. We identified 191 non-responders, 212 responders, and a subgroup of responders with persistently elevated liver biomarkers (n = 16). Responders had higher fecal secondary and tertiary BAs than non-responders and lower urinary bile acid abundances, with the exception of 12-dehydrocholic acid, which was higher in responders. The sub-group of responders with poor liver function showed lower alpha-diversity evenness, lower abundance of fecal secondary and tertiary BAs than the other groups and lower levels of phyla with BA-deconjugation capacity (Actinobacteriota/Actinomycetota, Desulfobacterota, Verrucomicrobiota) compared to responders. UDCA dynamic response was associated with an increased capacity to generate oxo-/epimerized secondary BAs. 12-dehydrocholic acid is a potential biomarker of treatment response. Lower alpha-diversity and lower abundance of bacteria with BA deconjugation capacity might be associated with an incomplete response to treatment in some patients.
Begum S, Lodge S, Hall D, et al., 2023, Cardiometabolic disease risk markers are increased following burn injury in children., Front Public Health, Vol: 11
INTRODUCTION: Burn injury in children causes prolonged systemic effects on physiology and metabolism leading to increased morbidity and mortality, yet much remains undefined regarding the metabolic trajectory towards specific health outcomes. METHODS: A multi-platform strategy was implemented to evaluate the long-term immuno-metabolic consequences of burn injury combining metabolite, lipoprotein, and cytokine panels. Plasma samples from 36 children aged 4-8 years were collected 3 years after a burn injury together with 21 samples from non-injured age and sex matched controls. Three different 1H Nuclear Magnetic Resonance spectroscopic experiments were applied to capture information on plasma low molecular weight metabolites, lipoproteins, and α-1-acid glycoprotein. RESULTS: Burn injury was characterized by underlying signatures of hyperglycaemia, hypermetabolism and inflammation, suggesting disruption of multiple pathways relating to glycolysis, tricarboxylic acid cycle, amino acid metabolism and the urea cycle. In addition, very low-density lipoprotein sub-components were significantly reduced in participants with burn injury whereas small-dense low density lipoprotein particles were significantly elevated in the burn injured patient plasma compared to uninjured controls, potentially indicative of modified cardiometabolic risk after a burn. Weighted-node Metabolite Correlation Network Analysis was restricted to the significantly differential features (q <0.05) between the children with and without burn injury and demonstrated a striking disparity in the number of statistical correlations between cytokines, lipoproteins, and small molecular metabolites in the injured groups, with increased correlations between these groups. DISCUSSION: These findings suggest a 'metabolic memory' of burn defined by a signature of interlinked and perturbed immune and metabolic function. Burn injury is associated with a series of adverse metabolic changes that persist c
Misra R, Sarafian M, Pechlivanis A, et al., 2022, Ethnicity associated microbial and metabonomic profiling in newly diagnosed ulcerative colitis, Clinical and Experimental Gastroenterology, Vol: 15, Pages: 199-212, ISSN: 1178-7023
Introduction:Ulcerative colitis (UC) differs across geography and ethnic groups. Gut microbial diversity plays a pivotal role in disease pathogenesis and differs across ethnic groups. The functional diversity in microbial-driven metabolites may have a pathophysiologic role and offer new therapeutic avenues.Methods:Demographics and clinical data were recorded from newly diagnosed UC patients. Blood, urine and faecal samples were collected at three time points over one year. Bacterial content was analysed by 16S rRNA sequencing. Bile acid profiles and polar molecules in three biofluids were measured using liquid-chromatography mass spectrometry (HILIC) and nuclear magnetic resonance spectroscopy.Results:We studied 42 patients with a new diagnosis of UC (27 South Asians; 15 Caucasians) with 261 biosamples. There were significant differences in relative abundance of bacteria at the phylum, genus and species level. Relative concentrations of urinary metabolites in South Asians were significantly lower for hippurate (positive correlation for Ruminococcus) and 4-cresol sulfate (Clostridia) (p<0.001) with higher concentrations of lactate (negative correlation for Bifidobacteriaceae). Faecal conjugated and primary conjugated bile acids concentrations were significantly higher in South Asians (p=0.02 and p=0.03 respectively). Results were unaffected by diet, phenotype, disease severity and ongoing therapy. Comparison of time points at diagnosis and at 1 year did not reveal changes in microbial and metabolic profile.Conclusion:Ethnic-related microbial metabolite associations were observed in South Asians with UC. This suggests a predisposition to UC may be influenced by environmental factors reflected in a distinct gene-environment interaction. The variations may serve as markers to identify risk factors for UC and modified to enhance therapeutic response.
Brignardello J, Fountana S, Posma JM, et al., 2022, Characterization of diet-dependent temporal changes in circulating short-chain fatty acid concentrations: a randomized crossover dietary trial, The American Journal of Clinical Nutrition, Vol: 116, Pages: 1368-1378, ISSN: 0002-9165
Background: Production of Short-chain fatty acids (SCFAs) from food is a complex and dynamic saccharolytic fermentation process mediated by both human and gut microbial factors. SCFA production and knowledge of the relationship between SCFA profiles and dietary patterns is lacking. Objective: Temporal changes in SCFA levels in response to two contrasting diets were investigated using a novel GC-MS method.Design: Samples were obtained from a randomized, controlled, crossover trial designed to characterize the metabolic response to four diets. Participants (n=19) undertook these diets during an inpatient stay (of 72-h). Serum samples were collected 2-h after breakfast (AB), lunch (AL) and dinner (AD) on day 3 and a fasting sample (FA) was obtained on day 4. 24-h urine samples were collected on day 3. In this sub-study, samples from the two extreme diets representing a diet with high adherence to WHO healthy eating recommendations and a typical Western diet were analyzed using a bespoke GC-MS method developed to detect and quantify 10 SCFAs and precursors in serum and urine samples. Results: Considerable inter-individual variation in serum SCFA concentrations was observed across all time points and temporal fluctuations were observed for both diets. Although the sample collection timing exerted a greater magnitude of effect on circulating SCFA concentrations, the unhealthy diet was associated with a lower concentration of acetic acid (FA: coefficient=-17.0; standard error (SE)=5.8; p-trend=0.00615), 2-methylbutyric acid (AL: coefficient=-0.1; SE=0.028; p-trend=4.13x10-4 and AD: coefficient =-0.1; SE:=0.028; p-trend=2.28x10-3) and 2-hydroxybutyric acid (FA: coefficient=-15.8; standard error=5.11; p-trend: 4.09x10-3). In contrast lactic acid was significantly higher in the unhealthy diet (AL: coefficient=750.2; standard error=315.2; p-trend=0.024 and AD: coefficient=1219.3; standard error=322.6; p-trend: 8.28x10-4). Conclusion: The GC-MS method allowed robust mapping of
Dehghan A, Pinto RC, Karaman I, et al., 2022, Metabolome-wide association study on ABCA7 indicates a role of ceramide metabolism in Alzheimer's disease., Proceedings of the National Academy of Sciences of USA, Vol: 119, Pages: 1-12, ISSN: 0027-8424
Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.
Yau A, Fear MW, Gray N, et al., 2022, Enhancing the accuracy of surgical wound excision following burns trauma via application of Rapid Evaporative IonisationMass Spectrometry (REIMS), BURNS, Vol: 48, Pages: 1574-1583, ISSN: 0305-4179
Penney N, Yeung K, Garcia Perez I, et al., 2022, Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity, communications medicine, Vol: 2, Pages: 1-18, ISSN: 2730-664X
Background: Resolution of type 2 diabetes (T2D) is common following bariatric surgery, particularly Roux-en-Y gastric bypass. However, the underlying mechanisms have not been fully elucidated.Methods: To address this we compare the integrated serum, urine and faecal metabolic profiles of participants with obesity +/- T2D (n=80, T2D=42) with participants who underwent Roux-en-Y gastric bypass or sleeve gastrectomy (pre and 3-months post-surgery; n=27), taking diet into account. We co-model these data with shotgun metagenomic profiles of the gut microbiota to provide a comprehensive atlas of host-gut microbe responses to bariatric surgery, weight-loss and glycaemic control at the systems level.Results: Here we show that bariatric surgery reverses several disrupted pathways characteristic of T2D. The differential metabolite set representative of bariatric surgery overlaps with both diabetes (19.3% commonality) and body mass index (18.6% commonality). However, the percentage overlap between diabetes and body mass index is minimal (4.0% commonality), consistent with weight-independent mechanisms of T2D resolution. The gut microbiota is more strongly correlated to body mass index than T2D, although we identify some pathways such as amino acid metabolism that correlate with changes to the gut microbiota and which influence glycaemic control.Conclusion: We identify multi-omic signatures associated with responses to surgery, body mass index, and glycaemic control. Improved understanding of gut microbiota - host co-metabolism may lead to novel therapies for weight-loss or diabetes. However, further experiments are required to provide mechanistic insight into the role of the gut microbiota in host metabolism and establish proof of causality.
Sanabria J, Egan S, Masuda R, et al., 2022, Overview of the Nomenclature and Network of Contributors to the Development of Bioreactors for Human Gut Simulation Using Bibliometric Tools: A Fragmented Landscape, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, Vol: 70, Pages: 11458-11467, ISSN: 0021-8561
Kadyrov M, brown B, Whiley L, et al., 2022, Associations of the lipidome with ageing, cognitive decline and exercise behaviours, Metabolites, Vol: 12, ISSN: 2218-1989
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Nitschke P, Lodge S, Hall D, et al., 2022, Direct low field J-edited diffusional proton NMR spectroscopic measurement of COVID-19 inflammatory biomarkers in human serum., The Analyst, Vol: 147, Pages: 4213-4221, ISSN: 0003-2654
A JEDI NMR pulse experiment incorporating relaxational, diffusional and J-modulation peak editing has been implemented for a low field (80 MHz proton resonance frequency) spectrometer system to measure quantitatively two recently discovered plasma markers of SARS-CoV-2 infection and general inflammation. JEDI spectra capture a unique signature of two biomarker signals from acetylated glycoproteins (Glyc) and the supramolecular phospholipid composite (SPC) signals that are relatively enhanced by the combination of relaxation, diffusion and J-editing properties of the JEDI experiment that strongly attenuate contributions from the other molecular species in plasma. The SPC/Glyc ratio data were essentially identical in the 600 MHz and 80 MHz spectra obtained (R2 = 0.97) and showed significantly different ratios for control (n = 28) versus SARS-CoV-2 positive patients (n = 29) (p = 5.2 × 10-8 and 3.7 × 10-8 respectively). Simplification of the sample preparation allows for data acquisition in a similar time frame to high field machines (∼4 min) and a high-throughput version with 1 min experiment time could be feasible. These data show that these newly discovered inflammatory biomarkers can be measured effectively on low field NMR instruments that do not not require housing in a complex laboratory environment, thus lowering the barrier to clinical translation of this diagnostic technology.
Begum S, Johnson BZ, Morillon A-C, et al., 2022, Systemic long-term metabolic effects of acute non-severe paediatric burn injury, SCIENTIFIC REPORTS, Vol: 12, ISSN: 2045-2322
Collier DA, De Marco A, Ferreira IATM, et al., 2022, Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies (vol 593, pg 136, 2022), NATURE, Vol: 608, Pages: E24-E24, ISSN: 0028-0836
Kemp SA, Collier DA, Datir RP, et al., 2022, SARS-CoV-2 evolution during treatment of chronic infection (vol 592, pg 297, 2021), NATURE, Vol: 608, Pages: E23-E23, ISSN: 0028-0836
Gutiérrez CF, Rodríguez-Romero N, Egan S, et al., 2022, Exploiting the Potential of Bioreactors for Creating Spatial Organization in the Soil Microbiome: A Strategy for Increasing Sustainable Agricultural Practices., Microorganisms, Vol: 10, ISSN: 2076-2607
Industrial production of synthetic nitrogen fertilizers and their crop application have caused considerable environmental impacts. Some eco-friendly alternatives try to solve them but raise some restrictions. We tested a novel method to produce a nitrogen bioinoculant by enriching a soil microbial community in bioreactors supplying N2 by air pumping. The biomass enriched with diazotrophic bacteria was diluted and applied to N-depleted and sterilized soil of tomato plants. We estimated microbial composition and diversity by 16S rRNA metabarcoding from soil and bioreactors at different run times and during plant uprooting. Bioreactors promoted the N-fixing microbial community and revealed a hided diversity. One hundred twenty-four (124) operational taxonomic units (OTUs) were assigned to bacteria with a greater Shannon diversity during the reactor's steady state. A total of 753 OTUs were found in the rhizospheres with higher biodiversity when the lowest concentration of bacteria was applied. The apparent bacterial abundance in the batch and continuous bioreactors suggested a more specific functional ecological organization. We demonstrate the usefulness of bioreactors to evidence hidden diversity in the soil when it passes through bioreactors. By obtaining the same growth of inoculated plants and the control with chemical synthesis fertilizers, we evidence the potential of the methodology that we have called directed bioprospecting to grow a complex nitrogen-fixing microbial community. The simplicity of the reactor's operation makes its application promising for developing countries with low technological progress.
U MRA, Shen EY-L, Cartlidge C, et al., 2022, Optimised systematic review tool: Application to candidate biomarkers for the diagnosis of hepatocellular carcinoma, Cancer Epidemiology, Biomarkers and Prevention, Vol: 31, Pages: 1261-1274, ISSN: 1055-9965
This review aims to develop an appropriate review tool for systematically collating metabolites that are dysregulated in disease and applies the method to identify novel diagnostic biomarkers for hepatocellular carcinoma (HCC). Studies that analysed metabolites in blood or urine samples where HCC was compared with comparison groups (healthy, pre-cirrhotic liver disease, cirrhosis) were eligible. Tumour tissue was included to help differentiate primary and secondary biomarkers. Searches were conducted on Medline and EMBASE. A bespoke 'risk-of-bias' tool for metabolomic studies was developed adjusting for analytical quality. Discriminant metabolites for each sample type were ranked using a weighted score accounting for the direction and extent of change and the risk of bias of the reporting publication. A total of 84 eligible studies were included in the review (54 blood, 9 urine and 15 tissue), with six studying multiple sample types. High-ranking metabolites, based on their weighted score, comprised energy metabolites, bile acids, acylcarnitines and lysophosphocholines. This new review tool addresses an unmet need for incorporating quality of study design and analysis to overcome the gaps in standardisation of reporting of metabolomic data. Validation studies, standardised study designs and publications meeting minimal reporting standards are crucial for advancing the field beyond exploratory studies.
Artru F, Atkinson S, Forrest E, et al., 2022, Untargeted lipidomics differentiate ACLF precipitated by severe alcoholic hepatitis, Publisher: ELSEVIER, Pages: S352-S353, ISSN: 0168-8278
Artru F, Atkinson S, Trovato F, et al., 2022, Untargeted lipidomics unveils a specific plasma signature of severe alcoholic hepatitis, International Liver Congress, Publisher: ELSEVIER, Pages: S135-S135, ISSN: 0168-8278
Chan Q, Wren G, Lau CH, et al., 2022, Blood pressure interactions with the DASH dietary pattern, sodium, and potassium: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP), The American Journal of Clinical Nutrition, Vol: 116, Pages: 216-229, ISSN: 1938-3207
BackgroundAdherence to the Dietary Approaches to Stop Hypertension (DASH) diet enhances potassium intake and reduces sodium intake and blood pressure (BP), but the underlying metabolic pathways are unclear.ObjectiveAmong free-living populations, delineate metabolic signatures associated with the DASH diet adherence, 24-hr urinary sodium and potassium excretions and the potential metabolic pathways involved.Design24-hr urinary metabolic profiling by proton nuclear magnetic resonance spectroscopy was used to characterize the metabolic signatures associated with the DASH dietary pattern score (DASH score) and 24-hr excretion of sodium and potassium among participants in the United States (n=2,164) and United Kingdom (n= 496) enrolled in the International Study of Macro- and Micronutrients and Blood Pressure (INTERMAP). Multiple linear regression and cross-tabulation analyses were used to investigate the DASH-BP relation and its modulation by sodium and potassium. Potential pathways associated with DASH adherence, sodium and potassium excretion, and BP were identified using mediation analyses and metabolic reaction networks.ResultsAdherence to DASH diet was associated with urinary potassium excretion (correlation coefficient, r = 0.42, P<0.0001). In multivariable regression analyses, a five-point higher DASH score (range 7 to 35) was associated with a lower systolic BP by 1.35 mmHg (95% confidence interval: -1.95, -0.80, P=1.2 × 10−5); control of the model for potassium but not sodium attenuated the DASH-BP relation. Two common metabolites (hippurate and citrate) mediated the potassium-BP and DASH-BP relationships, while five metabolites (succinate, alanine, S-methyl cysteine sulfoxide, 4-hydroxyhippurate, phenylacetylglutamine) were found specific to the DASH-BP relation.ConclusionsGreater adherence to DASH diet is associated with lower BP and higher potassium intake across levels of sodium intake. The DASH diet recommends greater intake of fruits, veget
Kean IRL, Wagner J, Wijeyesekera A, et al., 2022, Profiling gut microbiota and bile acid metabolism in critically ill children, Scientific Reports, Vol: 12, Pages: 1-12, ISSN: 2045-2322
Broad-spectrum antimicrobial use during the treatment of critical illness influences gastrointestinal fermentation endpoints, host immune response and metabolic activity including the conversion of primary to secondary bile acids. We previously observed reduced fermentation capacity in the faecal microbiota of critically ill children upon hospital admission. Here, we further explore the timecourse of the relationship between the microbiome and bile acid profile in faecal samples collected from critically ill children. The microbiome was assayed by sequencing of the 16S rRNA gene, and faecal water bile acids were measured by liquid chromatography mass spectrometry. In comparison to admission faecal samples, members of the Lachnospiraceae recovered during the late-acute phase (days 8–10) of hospitalisation. Patients with infections had a lower proportion of Lachnospiraceae in their gut microbiota than controls and patients with primary admitting diagnoses. Keystone species linked to ecological recovery were observed to decline with the length of PICU admission. These species were further suppressed in patients with systemic infection, respiratory failure, and undergoing surgery. Bile acid composition recovers quickly after intervention for critical illness which may be aided by the compositional shift in Lachnospiraceae. Our findings suggest gut microbiota recovery can be readily assessed via measurement of faecal bile acids.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.