Imperial College London

Esra Suel

Faculty of MedicineSchool of Public Health

Honorary Research Fellow







609Skempton BuildingSouth Kensington Campus





Esra's research is focused on the use of emerging sources of digital data for characterising urban environmental features and exposures. She is mainly interested in regular monitoring of socio-economic status, housing quality, and transport characteristics in urban areas at high spatial resolution. 

She works with street level images, high resolution sattelite data, and mobile phone data. Methodologically, she is interested in integrating data-driven, a.k.a. machine learning, and hypothesis-driven models to leverage strengths of both the new digital (e.g. large scale continuous, low-cost) and traditional (e.g. semantically rich) data sources.



Jimenez MP, Suel E, Rifas-Shiman SL, et al., 2022, Street-view greenspace exposure and objective sleep characteristics among children, Environmental Research, Vol:214, ISSN:0013-9351

Suel E, Sorek-Hamer M, Moise I, et al., 2022, What you see is what you breathe? Estimating air pollution spatial variation using street level imagery, Remote Sensing, Vol:14, ISSN:2072-4292

Sorek-Hamer M, Von Pohle M, Sahasrabhojanee A, et al., 2022, A deep learning approach for meter-scale air quality estimation in urban environments using very high-spatial-resolution satellite imagery, Atmosphere, Vol:13, ISSN:2073-4433, Pages:1-16

Suel E, Bhatt S, Brauer M, et al., 2021, Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas, Remote Sensing of Environment: an Interdisciplinary Journal, Vol:257, ISSN:0034-4257

More Publications