Imperial College London

MrFedericoMazza

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Research Postgraduate
 
 
 
//

Contact

 

f.mazza15 Website

 
 
//

Location

 

B422Bessemer BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

4 results found

Ahmadi N, Cavuto ML, Feng P, Leene LB, Maslik M, Mazza F, Savolainen O, Szostak KM, Bouganis C-S, Ekanayake J, Jackson A, Constandinou TGet al., 2019, Towards a distributed, chronically-implantable neural interface, 9th IEEE/EMBS International Conference on Neural Engineering (NER), Publisher: IEEE, Pages: 719-724, ISSN: 1948-3546

We present a platform technology encompassing a family of innovations that together aim to tackle key challenges with existing implantable brain machine interfaces. The ENGINI (Empowering Next Generation Implantable Neural Interfaces) platform utilizes a 3-tier network (external processor, cranial transponder, intracortical probes) to inductively couple power to, and communicate data from, a distributed array of freely-floating mm-scale probes. Novel features integrated into each probe include: (1) an array of niobium microwires for observing local field potentials (LFPs) along the cortical column; (2) ultra-low power instrumentation for signal acquisition and data reduction; (3) an autonomous, self-calibrating wireless transceiver for receiving power and transmitting data; and (4) a hermetically-sealed micropackage suitable for chronic use. We are additionally engineering a surgical tool, to facilitate manual and robot-assisted insertion, within a streamlined neurosurgical workflow. Ongoing work is focused on system integration and preclinical testing.

Conference paper

Mazza F, Liu Y, Donaldson N, Constandinou TGet al., 2018, Integrated devices for micro-package integrity monitoring in mm-scale neural implants, IEEE Biomedical Circuits and Systems (BioCAS) Conference 2018, Publisher: IEEE, Pages: 295-298

Recent developments in the design of active im-plantable devices have achieved significant advances, for example,an increased number of recording channels, but too oftenpractical clinical applications are restricted by device longevity.It is important however to complement efforts for increased func-tionality with translational work to develop implant technologiesthat are safe and reliable to be hosted inside the human bodyover long periods of time. This paper first examines techniquescurrently used to evaluate micro-package hermeticity and keychallenges, highlighting the need for new,in situinstrumentationthat can monitor the encapsulation status over time. Two novelcircuits are then proposed to tackle the specific issue of moisturepenetration inside a sub-mm, silicon-based package. They bothshare the use of metal tracks on the different layers of the CMOSstack to measure changes in impedance caused by moisturepresent in leak cracks or diffused into the oxide layers.

Conference paper

Leene L, Maslik M, Feng P, Szostak K, Mazza F, Constandinou TGet al., 2018, Autonomous SoC for neural local field potential recording in mm-scale wireless implants, IEEE International Symposium on Circuits and Systems, Publisher: IEEE, Pages: 1-5, ISSN: 2379-447X

Next generation brain machine interfaces fundamentally need to improve the information transfer rate and chronic consistency when observing neural activity over a long period of time. Towards this aim, this paper presents a novel System-on-Chip (SoC) for a mm-scale wireless neural recording node that can be implanted in a distributed fashion. The proposed self-regulating architecture allows each implant to operate autonomously and adaptively load the electromagnetic field to extract a precise amount of power for full-system operation. This can allow for a large number of recording sites across multiple implants extending through cortical regions without increased control overhead in the external head-stage. By observing local field potentials (LFPs) only, chronic stability is improved and good coverage is achieved whilst reducing the spatial density of recording sites. The system features a ΔΣ based instrumentation circuit that digitises high fidelity signal features at the sensor interface thereby minimising analogue resource requirements while maintaining exceptional noise efficiency. This has been implemented in a 0.35 μm CMOS technology allowing for wafer-scale post-processing for integration of electrodes, RF coil, electronics and packaging within a 3D structure. The presented configuration will record LFPs from 8 electrodes with a 825 Hz bandwidth and an input referred noise figure of 1.77μVrms. The resulting electronics has a core area of 2.1 mm2 and a power budget of 92 μW

Conference paper

Szostak K, Mazza F, Maslik M, Feng P, Leene L, Constandinou TGet al., 2017, Microwire-CMOS Integration of mm-Scale Neural Probes for Chronic Local Field Potential Recording, IEEE Biomedical Circuits and Systems (BioCAS) Conference, Publisher: IEEE, Pages: 492-495

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01156053&limit=30&person=true