Imperial College London

Dr Francesco Restuccia

Faculty of EngineeringDepartment of Mechanical Engineering

Honorary Lecturer



f.restuccia Website




609City and Guilds BuildingSouth Kensington Campus





Publication Type

26 results found

Hu Z, He X, Restuccia F, Rein Get al., 2021, Anisotropic and homogeneous model of heat transfer for self-heating ignition of large ensembles of lithium-ion batteries during storage, APPLIED THERMAL ENGINEERING, Vol: 197, ISSN: 1359-4311

Journal article

He X, Hu Z, Restuccia F, Yuan H, Rein Get al., 2021, Self-heating ignition of large ensembles of Lithium-ion batteries during storage with different states of charge and cathodes, APPLIED THERMAL ENGINEERING, Vol: 197, ISSN: 1359-4311

Journal article

Hu Z, He X, Restuccia F, Yuan H, Rein Get al., 2021, Numerical study of scale effects on self-heating ignition of lithium-ion batteries stored in boxes, shelves and racks, APPLIED THERMAL ENGINEERING, Vol: 190, ISSN: 1359-4311

Journal article

Christensen PA, Milojevic Z, Wise MS, Ahmeid M, Attidekou PS, Mrozik W, Dickmann NA, Restuccia F, Lambert SM, Das PKet al., 2021, Thermal and mechanical abuse of electric vehicle pouch cell modules, APPLIED THERMAL ENGINEERING, Vol: 189, ISSN: 1359-4311

Journal article

Yuan H, Restuccia F, Rein G, 2021, Spontaneous ignition of soils: a multi-step reaction scheme to simulate self-heating ignition of smouldering peat fires, International Journal of Wildland Fire, Vol: 30, Pages: 440-453, ISSN: 1049-8001

As organic porous soil, peat is prone to self-heating ignition, a type of spontaneous initiation of fire that can take place at ambient temperatures without an external source. Despite the urgency to tackle peat fires, the understanding of the self-heating ignition of peat is insufficient. In this study, a computational model that integrates the mechanisms of heat transfer, mass transfer and chemistry is incorporated with a three-step reaction scheme that includes drying, biological reaction and oxidative oxidation to simulate the self-heating ignition of smouldering peat. The model is first validated against 13 laboratory-scale experiments from literature. For critical ignition temperature (Tig), the model gives accurate predictions for all experiments with a maximum error of 5°C. The validated model is then upscaled to predict Tig for field-size peat soil layers and compared with the predictions using a one-step scheme. The three-step scheme is shown to give more reliable predictions of Tig than the one-step scheme. According to the simulation results, for a 1.5-m-deep peat layer, self-heating ignition can occur at an average ambient temperature above 40°C. This is the first time that a multi-step scheme is used to simulate the self-heating ignition of peat, aiming to help in the prevention and mitigation of these wildfires.

Journal article

He X, Restuccia F, Zhang Y, Hu Z, Huang X, Fang J, Rein Get al., 2020, Experimental study of self-heating ignition of lithium-ion batteries during storage: effect of the number of cells, Fire Technology, Vol: 56, Pages: 2649-2669, ISSN: 0015-2684

Lithium-ion batteries (LIBs) are widely used as energy storage devices. However, a disadvantage of these batteries is their tendency to ignite and burn, thereby creating a fire hazard. Ignition of LIBs can be triggered by abuse conditions (mechanical, electrical or thermal abuse) or internal short circuit. In addition, ignition could also be triggered by self-heating when LIBs are stacked during storage or transport. However, the open circuit self-heating ignition has received little attention and seems to be misunderstood in the literature. This paper quantifies the self-heating behaviour of LIB by means of isothermal oven experiments. Stacks of 1, 2, 3 and 4 Sanyo prismatic LiCoO2 cells at 30% state of charge were studied. The surface and central temperatures, voltage, and time to ignition were measured. Results show that self-heating ignition of open circuit LIBs is possible and its behaviour has three stages: heating up, self-heating and thermal runaway. We find for the first time that, for this battery type, as the number of cells increases from 1 to 4, the critical ambient temperature decreases from 165.5°C to 153°C. A Frank-Kamenetskii analysis using the measured data confirms that ignition is caused by self-heating. Parameters extracted from Frank-Kamenetskii theory are then used to upscale the laboratory results, which shows large enough LIB ensembles could self-ignite at even ambient temperatures. This is the first experimental study of the effect of the number of cells on self-heating ignition of LIBs, contributing to the understanding of this new fire hazard.

Journal article

Hu Z, He X, Rein G, Restuccia Fet al., 2020, Numerical study of self-heating ignition of a box of lithium-ion batteries during storage, Fire Technology, Vol: 56, Pages: 2603-2621, ISSN: 0015-2684

Many thermal events have been reported during storage and transport of large numbers of Lithium-ion batteries (LIBs), raising industry concerns and research interests in its mechanisms. Apart from electrochemical failure, self-heating ignition, driven by poor heat transfer could also be a possible cause of fire in large-scale ensembles of LIBs. The classical theories and models of self-heating ignition assume a homogeneous lumped system, whereas LIBs storage involves complex geometry and heterogeneous material composition due to the packaging and insulation, which significantly changes the heat transfer within the system. These effects on the self-heating behaviour of LIBs have not been studied yet. In this study, the self-heating ignition behaviour of a box containing 100 LiCoO2 (LCO) type of cylindrical cells with different insulation is numerically modelled using COMSOL Multiphysics with a multi-step reaction scheme. The model predicts that the critical ambient temperature triggering self-ignition of the box is 125°C, which is 30°C lower than that for a single cell, and the time to thermal runaway is predicted to be 15 times longer. The effects of different insulating materials and packing configurations are also analysed. This work provides novel insights into the self-heating of large-scale LIBs.

Journal article

Bravo Diaz L, He X, Hu Z, Restuccia F, Marinescu M, Barreras JV, Patel Y, Offer G, Rein Get al., 2020, Review—meta-review of fire safety of lithium-ion batteries: industry challenges and research contributions, Journal of The Electrochemical Society, Vol: 167, Pages: 1-14, ISSN: 0013-4651

The Lithium-ion battery (LIB) is an important technology for the present and future of energy storage, transport, and consumer electronics. However, many LIB types display a tendency to ignite or release gases. Although statistically rare, LIB fires pose hazards which are significantly different to other fire hazards in terms of initiation route, rate of spread, duration, toxicity, and suppression. For the first time, this paper collects and analyses the safety challenges faced by LIB industries across sectors, and compares them to the research contributions found in all the review papers in the field. The comparison identifies knowledge gaps and opportunities going forward. Industry and research efforts agree on the importance of understanding thermal runaway at the component and cell scales, and on the importance of developing prevention technologies. But much less research attention has been given to safety at the module and pack scales, or to other fire protection layers, such as compartmentation, detection or suppression. In order to close the gaps found and accelerate the arrival of new LIB safety solutions, we recommend closer collaborations between the battery and fire safety communities, which, supported by the major industries, could drive improvements, integration and harmonization of LIB safety across sectors.

Journal article

Yuan H, Restuccia F, Rein G, 2020, Computational study on self-heating ignition and smouldering spread of coal layers in flat and wedge hot plate configurations, Combustion and Flame, Vol: 214, Pages: 346-357, ISSN: 0010-2180

Porous fuels have the propensity to self-heat. Self-heating ignition has been a hazard and safety concern in fuel production, transportation, and storage for decades. During the process of self-heating ignition, a hot spot forms in the fuel layer and then spreads as a smouldering fire. The understanding of hot spot and smouldering spread is important for prevention, detection, and mitigation of fires. In this paper, we build a computational model that unifies the simulation of self-heating ignition and smouldering spread by adopting a two-step kinetic scheme obtained from literature. The model is validated against hot plate experiments of coal in both flat and wedge configurations. The comparison shows that the model predicts the minimum ignition temperature (Tig) and transient temperature profiles reasonably well. The simulation results demonstrate that the hot spot originates at the hot plate and then spreads towards the free surface due to oxygen consumption. In the wedge configuration, the simulations show that the height of maximum temperature point decreases with wedge angle, and that the influence of wedge angle can be explained by the heat transfer. This model brings together two combustion phenomena (self-heating ignition and smouldering) that were traditionally studied separately and analyses the transient behaviour of hot spot and smouldering spread in detail. It deepens our understanding of self-heating fire and can help mitigate the hazard.

Journal article

Restuccia F, Fernandez-Anez N, Rein G, 2019, Experimental measurement of particle size effects on the self-heating ignition of biomass piles: Homogeneous samples of dust and pellets, Fuel, Vol: 256, ISSN: 0016-2361

Biomass can become an important fuel source for future power generation worldwide. However biomass piles are prone to self-heating and can lead to fire. When storing and transporting biomass, it is usually in the form of pellets which vary in diameter but are on average in the order of 7 mm. However, pellets tend to break up into smaller particles and into dust down to the µm size. For self-heating, size of particles is known to matter but the topic is poorly studied for biomass piles. This work presents an experimental study on the self-heating ignition behaviour of different particle sizes of wheat biomass. We study for the first time homogeneous samples from the dust scale to pellet diameter size, ranging from diameters of 300 µm to 6.5 mm. Experiments are done in an isothermal oven to find minimum ignition temperatures as a function of sample volume. The results are analysed using Frank-Kamenetskii theory. For the homogeneous biomass samples studied, we show that particle diameter variation does not bring a large change in self-heating ignition behaviour. The present work can be used to help quantify size effects on biomass ignition and help address the safety problems of biomass fires.

Journal article

Restuccia F, Masek O, Hadden R, Rein Get al., 2019, Quantifying self-heating ignition of biochar as a function of feedstock and the pyrolysis reactor temperature, Fuel, Vol: 236, Pages: 201-213, ISSN: 0016-2361

Biochar is produced from biomass through pyrolysis in a reactor under controlled conditions. Different feedstock and reactor temperatures produce materials with different physical and chemical properties. Because biomass, biochar and torrefied biomass are reactive porous media and can undergo self-heating, there is a fire hazard associated to their production, transport, and storage. This hazard needs to be tackled in biomass industries like power generation, where self-heating of biomass can cause significant problems, like the 2012 fire at Tilbury Power Plant (UK). Using basket experiments inside a thermostatically controlled laboratory oven, augmented with thermogravimetry and conductivity measurements, we experimentally study the ignition conditions of pellets and biochar made of softwood, wheat and rice husk. For softwood, we also study biochar produced at different reactor temperatures ranging from 350 to 800 °C. In total, 173 experiments were conducted with 1036 h of oven run time. By investigating the self-heating behaviour of these samples via the Frank-Kamenetskii theory, we quantify and upscale for the first time the reactivity of biochar as a function of feedstock and also of the reactor temperature. The results show that in order from higher to lower tendency to self-heating, the rank is softwood, wheat and rice husk. The reactivity of the softwood is not a monotonic function of pyrolysis reactor temperature but that biochar is most prone to self-heating when produced at 450 °C. Reactivity decreases at higher reactor temperatures, and at 600 °C the biochar is less reactive than the original feedstock. This work improves the fundamental understanding of the fire hazard posed by biomass self-heating, providing insights necessary for successful and safer biomass industries.

Journal article

Yuan H, Restuccia F, Richter F, Rein Get al., 2019, A computational model to simulate self-heating ignition across scales, configurations, and coal origins, Fuel, Vol: 236, Pages: 1100-1109, ISSN: 0016-2361

Self-heating of fuel layers can trigger ignition when the temperature of the surroundings is sufficiently high. Self-heating ignition has been a hazard and safety concern in raw materials production, transportation, and storage facilities for centuries. Hot plate and oven-basket experiments are the two most used lab-scale experiments to assess the hazard of self-heating ignition. While extensive experiments have been done to study this phenomenon, modelling of the experiments is substantially lagging behind. A computational model that can accurately simulate self-heating ignition under the two experimental configurations has not been developed yet. In this study, we build such a model by coupling heat transfer, mass transfer, and chemistry using the open-source code Gpyro. Due to the accessibility of large amount of experimental data, coal is chosen as the material for model validation. A literature review of the kinetic parameters for coal samples from different origins reveals that there is a compensation effect between the activation energy and exponential factor. Combining the compensation effect with our model, we simulate 6 different experimental studies covering the two experimental configurations, a wide range of sample sizes (heights ranging from 5 mm to 126 mm), and various coal origins (6 countries). The model accurately predicts critical ignition temperature (Tig) for all 24 experiments with an error below 7 °C. This computational model unifies for the first time the two most used self-heating ignition experiments and provides theoretical insights to understand self-ignition for different fuels under different conditions.

Journal article

Hu Y, Christensen E, Restuccia F, Rein Get al., 2019, Transient gas and particle emissions from smouldering combustion of peat, Proceedings of the Combustion Institute, Vol: 37, Pages: 4035-4042, ISSN: 1540-7489

Smouldering combustion of peat drives the largest fires on Earth, and their emissions play an important role in global carbon balance and regional air quality. Here we report a series of controlled laboratory experiments of peat fires. Peat samples of 100% moisture content in dry basis were burnt in an open-top reactor with dimensions of 20 × 20 × 10 cm. The diagnostics are a unique set of simultaneous measurements consisting of real-time mass loss, up to 20 different gas species concentration, size-fractioned particle mass (PM10, PM2.5and PM1), temperature profile, and visual and infrared imaging. This comprehensive framework of measurements reveals that the evolution of the emissions varies in time with four observed stages (ignition, growth, steady and burn out) which are characterised by different combustion dynamics. Mass flux measurements show that CO2, CO, CH4and NH3are the four most predominant gas species emitted in the steady stage. Incorporating the mass loss rate, the transient emission factors (EFm) of both gas and particle species are calculated and reported here for the first time. Averaging the steady stage, the EFm of PM2.5reached 23.12 g kg-1, which accounts for 87.2% of the total particle mass, and PM1EFmwas reported to be 15.04 g kg-1. The EFm of alkane species (CH4, C2H6, C3H8, C4H10) were found to peak within the ignition stage, whereas the EFmof CO2, CO and NH3kept increasing during the steady stage. Because of these measurements, for the first time we were able to validate the EF calculated by assuming averaged values and a carbon balance, which is the preferred method used in remote sensing and atmospheric sciences. This work contributes to a better understanding of peat fire emissions and could help develop strategies tackling regional haze.

Journal article

Restuccia F, 2019, Conduction, Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, Editors: Manzello, Publisher: Springer International Publishing, Pages: 1-6, ISBN: 9783319517278

Book chapter

, 2019, Fire Effects on Soil Properties, Publisher: CSIRO Publishing

<jats:p>Wildland fires are occurring more frequently and affecting more of Earth's surface than ever before. These fires affect the properties of soils and the processes by which they form, but the nature of these impacts has not been well understood. Given that healthy soil is necessary to sustain biodiversity, ecosystems and agriculture, the impact of fire on soil is a vital field of research.&#x0D;Fire Effects on Soil Properties brings together current research on the effects of fire on the physical, biological and chemical properties of soil. Written by over 60 international experts in the field, it includes examples from fire-prone areas across the world, dealing with ash, meso and macrofauna, smouldering fires, recurrent fires and management of fire-affected soils. It also describes current best practice methodologies for research and monitoring of fire effects and new methodologies for future research. This is the first time information on this topic has been presented in a single volume and the book will be an important reference for students, practitioners, managers and academics interested in the effects of fire on ecosystems, including soil scientists, geologists, forestry researchers and environmentalists.&#x0D;&#x0D;</jats:p>


Vermesi I, Restuccia F, Walker-Ravena C, Rein Get al., 2018, Carbon monoxide diffusion through porous walls: evidence found in incidents and experimental studies, Frontiers in Built Environment, Vol: 4, Pages: 1-8, ISSN: 2297-3362

It has been reported recently that carbon monoxide (CO) diffuses through gypsum board at a surprisingly high rate (Hampson et al., 2013). Because CO is poisonous and a by-product of systems typically present in residential housing such as boilers, generators and automobile engines, this finding could have a significant impact on the safety standards published by the National Fire Protection Association (NFPA) and International Code Council (ICC). In the USA, state legislation mandates the requirements for CO detection and warning equipment to be installed, but currently only enforces CO detection if there are communicating openings between the garage and occupied areas of a building. Therefore, there is a need to find out whether CO indeed diffuses through porous walls. In addition to investigating the validity of the experiments by Hampson (Hampson et al., 2013), this paper also collects a series of instances in the literature that show the diffusion of CO or other carbon-based gases. We have found a number of actual incidents and laboratory experiments which confirmed the transport of CO through other types of porous walls. We also found studies on the transport of other hydrocarbon gases with larger molecules than CO that can also diffuse through porous walls. We have also analyzed in detail the data from the recent experiments with a mass transfer model and confirm the validity of the findings for gypsum board. After 200 min, the CO concentration in the control chamber was around 200 ppm, which is high enough to affect people. Our analysis independently confirms that CO can diffuse through porous walls at a fast rate and that the phenomena merits further research for consideration in life safety standards.

Journal article

Rein G, Huang X, Restuccia F, McArdle Tet al., 2017, Detection of landmines in peat soils by controlled smouldering combustion: Experimental proof of concept of O-Revealer, Experimental Thermal and Fluid Science, Vol: 88, Pages: 632-638, ISSN: 0894-1777

We study a novel landmine detection technology, called O-Revealer, which uses controlled smouldering combustion and is valid for minefields in peat soils. We have conducted laboratory experiments with two types of dummy landmines buried in peat, the plastic SB-33 and the metal PROM-1. The ignition and spread of a smouldering front was monitored under different soil moisture and wind conditions. Special attention was paid to the thermal conditions that could trigger thermal runaway of the explosive charge. In all experiments, the smouldering fire burned across the peat, leaving the dummy completely exposed to the open for easy identification and quick demining. The spread rate and peak temperature both decrease with soil moisture, and both increase with wind speed. The results show that for the SB-33 landmine, the heat damage to the shell can be significant, and the chance of thermal runaway ranges between low (moist peat and no wind) to high (dry peat and wind). For PROM-1 landmine, the damage and chance of runaway are always very low. In addition, using rock samples, we show that O-Revealer helps identify objects buried in the soil, thereby avoiding false detections. These experiments show the benefits of the technology and its feasibility for field application in peat minefields worldwide like Falkland Islands, Vietnam, Burma, Laos, Uganda, Zimbabwe or former Yugoslavia.

Journal article

Restuccia F, Huang X, Rein G, 2017, Self-ignition of natural fuels: can wildfires of carbon-rich soil start by self-heating?, Fire Safety Journal, Vol: 91, Pages: 828-834, ISSN: 1873-7226

Carbon-rich soils, like histosols or gelisols, cover more than 3% of the Earth's land surface, and store roughly three times more carbon than the Earth's forests. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture contents are low enough. An example of soil combustion happens in peatlands, where smouldering wildfires are common in both boreal and tropical regions. This work focuses on understanding soil ignition by self-heating, which is due to spontaneous exothermic reactions in the presence of oxygen under certain thermal conditions. We investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic content (IC) ranging from 3% to 86% of dry weight: we use sand as a surrogate of inorganic matter and peat as a surrogate of organic matter. This range is very wide and covers all IC values of known carbon-rich soils on Earth. The experimental results show that self-heating ignition in different soil types is possible, even with the 86% inorganic content, but the tendency to ignite decreases quickly with increasing IC. We report a clear increase in ambient temperature required for ignition as the IC increases. Combining results from 39 thermostatically-controlled oven experiments, totalling 401 h of heating time, with the Frank-Kamenetskii theory of ignition, the lumped chemical kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different thicknesses for a range of ambient temperatures ranging from 0 °C to 40 °C. The analysis predicts the critical soil layer thicknesses in nature for self-ignition at various possible environmental temperatures. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m, but at 86% IC the layer has to be 1.8 km thick, which is impossible to find in nature. We estimate that th

Journal article

Restuccia F, Ptak N, Rein G, 2016, Self-heating behavior and ignition of shale rock, Combustion and Flame, Vol: 176, Pages: 213-219, ISSN: 1556-2921

The combustion of shale, a porous sedimentary rock, has been reported at times in outcrop deposits and piles. However, the initiating event of most of these fires is unknown. It could be that, under the right conditions, shale rock undergoes spontaneous exothermic reactions in the presence of oxygen. This work studies experimentally and for the first time the self-heating behavior of shale rock. As shale has high inert content, novel diagnostics such as mass loss measurements and observation ofcharring are introduced to the self-heating ignition criteria in respect to other self-heating materials.Using field samples collected from the outcrop at Kimmeridge Bay (UK) and the Frank-Kamenetskii theory of ignition, we determine the effective kinetic parameters for two particle-size distributions of shale. These parameters are then used to upscale the results to geological deposits and mining piles of different thicknesses. We show that for fine particles, with diameter below 2 mm, spontaneous ignition is possible for deposits of thickness between 10.7 m and 607 m at ambient temperatures between -20 ᵒC and 44 ᵒC. For the same ambient temperature range, the critical thickness is in excess of 30 km for deposits made of coarse particles with diameter below 17 mm. Our results indicate that shale rock is reactive, with reactivity highly dependent on particle diameter, and that self-ignition is possible for small particles in outcrops, piles or geological deposits accidentally exposed to oxygen.

Journal article

Roos CI, Scott AC, Belcher CM, Chaloner WG, Aylen J, Bird RB, Coughlan MR, Johnson BR, Johnston FH, McMorrow J, Steelman Tet al., 2016, Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 371, ISSN: 0962-8436

Journal article

Huang X, Restuccia F, Gramola M, Rein Get al., 2016, Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires, Combustion and Flame, Vol: 168, Pages: 393-402, ISSN: 0010-2180

Smouldering combustion is the driving phenomenon of wildfires in peatlands, and is responsible for large amounts of carbon emissions and haze episodes world wide. Compared to flaming fires, smouldering is slow, low-temperature, flameless, and most persistent, yet it is poorly understood. Peat, as a typical organic soil, is a porous and charring natural fuel, thus prone to smouldering. The spread of smouldering peat fire is a multidimensional phenomenon, including two main components: in-depth vertical and surface lateral spread. In this study, we investigate the lateral spread of peat fire under various moisture and wind conditions. Visual and infrared cameras as well as a thermocouple array are used to measure the temperature profile and the spread rate. For the first time the overhang, where smouldering spreads fastest beneath the free surface, is observed in the laboratory, which helps understand the interaction between oxygen supply and heat losses. The periodic formation and collapse of overhangs is observed. The overhang thickness is found to increase with moisture and wind speed, while the spread rate decreases with moisture and increases with wind speed. A simple theoretical analysis is proposed and shows that the formation of overhang is caused by the spread rate difference between the top and lower peat layers as well as the competition between oxygen supply and heat losses.

Journal article

Kim E, Restuccia F, Yang J, Daraio Cet al., 2015, Solitary wave-based delamination detection in composite plates using a combined granular crystal sensor and actuator, Smart Materials and Structures, Vol: 24, Pages: 5004-5004

Journal article

Vermesi I, Restuccia F, Walker-Ravena C, Rein Get al., 2015, Carbon Monoxide Diffusion through Porous Walls: A Critical Review of Literature and Incidents


Cradden LC, Restuccia F, Hawkins SL, Harrison GPet al., 2014, Consideration of wind speed variability in creating a regional aggregate wind power time series, Resources, Vol: 3, Pages: 215-234

For the purposes of understanding the impacts on the electricity network, estimates of hourly aggregate wind power generation for a region are required. However, the availability of wind production data for the UK is limited, and studies often rely on measured wind speeds from a network of meteorological (met) stations. Another option is to use historical wind speeds from a reanalysis dataset, with a resolution of around 40-50 km. Mesoscale models offer a potentially more desirable solution, with a homogeneous set of wind speeds covering a wide area at resolutions of 1-50 km, but they are computationally expensive to run at high resolution. An understanding of the most appropriate choice of data requires knowledge of the variability in time and space and how well that is represented by the choice of model. Here it is demonstrated that in regions offshore, or in relatively smooth terrain where variability in wind speeds is smaller, lower resolution models or single point records may suffice to represent aggregate power generation in a sub-region. The need for high resolution modelling in areas of complex terrain where spatial and temporal variability is higher is emphasised, particularly when the distribution of wind generation capacity is uneven over the region.

Journal article

Dudarev A, Bremer J, Burghart G, Deront L, Doser M, ten Kate H, Perini D, Restuccia F, Ravat S, Winkler Tet al., 2012, Construction and Test of the Magnets for the AEgIS Experiment, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, Vol: 22, ISSN: 1051-8223

Journal article

Yang J, Restuccia F, Daraio C, 2011, Highly nonlinear granular crystal sensor and actuator for delamination detection in composite structures, Pages: 1424-1433

We propose a new "granular crystal sensor and actuator" based on highly nonlinear solitary waves (HNSWs) to detect delaminations in composite structures. HNSWs are compactly-supported energy packets, which are generated by a balance of nonlinear and dispersive effects in nonlinear media. Their unique physical properties allow the usage of HNSWs as novel information carrier for nondestructive evaluation (NDE) and structural health monitoring (SHM) applications. Particularly, HNSW's tunability and high power intensity can enhance sensitivity and energy-efficiency, offering advantages beyond the conventional linear-wave based diagnostic schemes. To efficiently generate and propagate diagnostic HNSWs, we assemble a granular crystal composed of closely packed elastic particles. This granular crystal can function both as actuator and sensor, by exciting a composite structure via injected HNSWs to an area of interest and measuring reflected pulses that carry diagnostic information about defects. In this study, we demonstrate experimentally the ability to detect delaminations in a carbon fiber-reinforced polymer (CFRP) composite panel using a prototype of granular crystal sensor/actuator. Preliminary results show that a compact granular crystal sensor/actuator can successfully detect artificially created delaminations in a composite panel. Due to the compactness and energy-efficiency of the granular crystal sensor/actuator, the proposed diagnostic method has the potential to become a portable and reliable sensing instrument for inspecting structural damages in critical areas of composite structures.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00774288&limit=30&person=true