Imperial College London

DrFrancescaTroiani

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Research Associate
 
 
 
//

Contact

 

f.troiani Website CV

 
 
//

Location

 

B422Bessemer BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

6 results found

Cavuto M, Hallam R, Rapeaux A, Maslik M, Troiani F, Constandinou Tet al., 2019, Live demonstration: a public engagement platform for invasive neural interfaces, IEEE Biomedical Circuits and Systems (BioCAS) Conference, Publisher: IEEE, Pages: 1-1

Neural interfaces, and more specifically ones ofthe invasive/implantable variety, today are a topic of muchcontroversy, often making the general public uncomfortable andintimidated. We have thus devised a bespoke interactive demoto help people understand brain implants and their need inthe age of wearable devices, with the secondary objective ofintroducing the wireless cortical neural probe that we, at NGNI(Next Generation Neural Interfaces) lab, are developing.

Conference paper

Troiani F, Nikolic K, Constandinou TG, 2019, Correction: Simulating optical coherence tomography for observing nerve activity: a finite difference time domain bi-dimensional model, PLoS ONE, Vol: 14, ISSN: 1932-6203

[This corrects the article DOI: 10.1371/journal.pone.0200392.].

Journal article

Troiani F, Nikolic K, Constandinou TG, 2018, Simulating optical coherence tomography for observing nerve activity: a finite difference time domain bi-dimensional model

We present a finite difference time domain (FDTD) model for computation of Aline scans in time domain optical coherence tomography (OCT). By simulatingonly the end of the two arms of the interferometer and computing theinterference signal in post processing, it is possible to reduce thecomputational time required by the simulations and, thus, to simulate muchbigger environments. Moreover, it is possible to simulate successive A linesand thus obtaining a cross section of the sample considered. In this paper wepresent the model applied to two different samples: a glass rod filled withwater-sucrose solution at different concentrations and a peripheral nerve. Thiswork demonstrates the feasibility of using OCT for non-invasive, direct opticalmonitoring of peripheral nerve activity, which is a long-sought goal ofneuroscience.

Working paper

Troiani F, Nikolic K, Constandinou TG, 2018, Simulating optical coherence tomography for observing nerve activity: a finite difference time domain bi-dimensional model, PLoS ONE, Vol: 13, Pages: 1-14, ISSN: 1932-6203

We present a finite difference time domain (FDTD) model for computation of A line scans in time domain optical coherence tomography (OCT). The OCT output signal is created using two different simulations for the reference and sample arms, with a successive computation of the interference signal with external software. In this paper we present the model applied to two different samples: a glass rod filled with water-sucrose solution at different concentrations and a peripheral nerve. This work aims to understand to what extent time domain OCT can be used for non-invasive, direct optical monitoring of peripheral nerve activity.

Journal article

Troiani F, Nikolic K, Constandinou TG, 2017, Optical coherence tomography for compound action potential detection: a computational study, SPIE/OSA European Conferences on Biomedical Optics (ECBO), Publisher: Optical Society of America / SPIE, Pages: 1-3

The feasibility of using time domain optical coherence tomography (TD-OCT) to detect compound action potential in a peripheral nerve and the setup characteristics, are studied through the use of finite-difference time-domain (FDTD) technique.

Conference paper

Troiani F, Nikolic K, Constandinou TG, 2016, Optical Coherence Tomography for detection of compound action potential in Xenopus Laevis sciatic nerve, SPIE Photonics West (BIOS)

Due to optical coherence tomography (OCT) high spatial and temporal resolution, this technique could be used to observe the quick changes in the refractive index that accompany action potential. In this study we explorethe use of time domain Optical Coherence Tomography (TD-OCT) for real time action potential detection in ex vivo Xenopus Laevis sciatic nerve. TD-OCT is the easiest and less expensive OCT technique and, if successful indetecting real time action potential, it could be used for low cost monitoring devices. A theoretical investigation into the order of magnitude of the signals detected by a TD-OCT setup is provided by this work. A lineardependence between the refractive index and the intensity changes is observed and the minimum SNR for which the setup could work is found to be SNR = 2 x10⁴.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01009323&limit=30&person=true