Imperial College London

Dr Fangce Guo

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Research Fellow
 
 
 
//

Contact

 

fangce.guo

 
 
//

Location

 

422Skempton BuildingSouth Kensington Campus

//

Summary

 

Summary

Dr Fangce Guo is an advanced research fellow in the Urban Systems Laboratory (USL) and Centre for Transport Studies (CTS) at Imperial College London. Her current research interests include short-term traffic forecasting, sensor data analysis, traffic state estimation, traffic data fusion and car park management in Intelligent Transport Systems (ITS).

Fangce holds a BS in Electronic/Information Engineering and a BA from Dalian University of Technology China, an MSc in Communications and Signal Processing and a PhD in Intelligent Transport Systems from Imperial College London.

Fangce is working on an urban health project to reduce health inequalities in cities worldwide funded by the Wellcome Trust. She recently completed working on the oneTRANSPORT project (onetransport.uk.net), funded by Innovate UK, which developed an IoT platform for predictive analytics in the transport field.

Publications

Journals

Wang H, Pawlak J, Faghih Imani A, et al., 2023, When does it pay off to use electricity demand data with rich information about households and their activities? A comparative machine learning approach to demand modelling, Energy and Buildings, Vol:295, ISSN:0378-7788, Pages:1-15

Gao H, Liu K, Wang J, et al., 2023, Modular Bus Unit Scheduling for an Autonomous Transit System under Range and Charging Constraints, Applied Sciences (switzerland), Vol:13

Zhai X, Guo F, Krishnan R, 2023, An Online Optimal Bus Signal Priority Strategy to Equalise Headway in Real-Time, Information, Vol:14

Yu L, Guo F, Sivakumar A, et al., 2023, Few-Shot traffic prediction based on transferring prior knowledge from local network, Transportmetrica B, Vol:11, ISSN:2168-0566

Li T, Guo F, Krishnan R, et al., 2022, An analysis of the value of optimal routing and signal timing control strategy with connected autonomous vehicles, Journal of Intelligent Transportation Systems, ISSN:1547-2450, Pages:1-15

More Publications