Imperial College London

ProfessorGrahamCooke

Faculty of MedicineDepartment of Infectious Disease

Vice Dean (Research); Professor of Infectious Diseases
 
 
 
//

Contact

 

g.cooke

 
 
//

Location

 

Infectious Diseases SectionMedical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

414 results found

Eales O, Page AJ, de Oliveira Martins L, Wang H, Bodinier B, Haw D, Jonnerby J, Atchison C, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Chadeau-Hyam M, Donnelly CA, Elliott Pet al., 2021, SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2

<jats:title>Abstract</jats:title><jats:p>Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Here we present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. From 9 to 27 September 2021 (round 14) and 19 October to 5 November 2021 (round 15), all lineages sequenced within REACT-1 were Delta or a Delta sub-lineage with 44 unique lineages identified. The proportion of the original Delta variant (B.1.617.2) was found to be increasing between September and November 2021, which may reflect an increasing number of sub-lineages which have yet to be identified. The proportion of B.1.617.2 was greatest in London, which was further identified as a region with an increased level of genetic diversity. The Delta sub-lineage AY.4.2 was found to be robustly increasing in proportion, with a reproduction number 15% (8%, 23%) greater than its parent and most prevalent lineage, AY.4. Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Though no difference in the viral load based on cycle threshold (Ct) values was identified, a lower proportion of those infected with AY.4.2 had symptoms for which testing is usually recommend (loss or change of sense of taste, loss or change of sense of smell, new persistent cough, fever), compared to AY.4 (p = 0.026). The evolutionary rate of SARS-CoV-2, as measured by the mutation rate, was fou

Journal article

Redd R, Cooper E, Atchison C, Pereira I, Hollings P, Cooper T, Millar C, Ashby D, Riley S, Darzi A, Barclay WS, Cooke GS, Elliott P, Donnelly CA, Ward Het al., 2021, Behavioural responses to SARS-CoV-2 antibody testing in England: REACT-2 study, Wellcome Open Research, Vol: 6, Pages: 203-203

<ns3:p><ns3:bold>Background:  </ns3:bold>This study assesses the behavioural responses to SARS-CoV-2 antibody test results as part of the REal-time Assessment of Community Transmission-2 (REACT-2) research programme, a large community-based surveillance study of antibody prevalence in England.</ns3:p><ns3:p> <ns3:bold>Methods:</ns3:bold> A follow-up survey was conducted six weeks after the SARS-CoV-2 antibody test. The follow-up survey included 4500 people with a positive result and 4039 with a negative result. Reported changes in behaviour were assessed using difference-in-differences models. A nested interview study was conducted with 40 people to explore how they thought through their behavioural decisions.</ns3:p><ns3:p> <ns3:bold>Results:</ns3:bold> While respondents reduced their protective behaviours over the six weeks, we did not find evidence that positive test results changed participant behaviour trajectories in relation to the number of contacts the respondents had, for leaving the house to go to work, or for leaving the house to socialise in a personal place. The qualitative findings supported these results. Most people did not think that they had changed their behaviours because of their test results, however they did allude to some changes in their attitudes and perceptions around risk, susceptibility, and potential severity of symptoms.</ns3:p><ns3:p> <ns3:bold>Conclusions: </ns3:bold>We found limited evidence that knowing your antibody status leads to behaviour change in the context of a research study. While this finding should not be generalised to widespread self-testing in other contexts, it is reassuring given the importance of large prevalence studies, and the practicalities of doing these at scale using self-testing with lateral flow immunoassay (LFIA).</ns3:p>

Journal article

Ward H, Flower B, Garcia PJ, Ong SWX, Altmann DM, Delaney B, Smith N, Elliott P, Cooke Get al., 2021, Global surveillance, research, and collaboration needed to improve understanding and management of long COVID, The Lancet, Vol: 398, Pages: 2057-2059, ISSN: 0140-6736

Journal article

Kraef C, Bentzon A, Panteleev A, Skrahina A, Bolokadze N, Tetradov S, Podlasin R, Karpov I, Borodulina E, Denisova E, Azina I, Lundgren J, Johansen IS, Mocroft A, Podlekareva D, Kirk O, Vassilenko A, Klimuk D, Kondratenko O, Zalutskaya A, Bondarenko V, Mitsura V, Kozorez E, Tumash O, Suetnov O, Paduto D, Iljina V, Kummik T, Mshvidobadze K, Lanchava N, Goginashvili L, Mikiashvili L, Bablishvili N, Rozentale B, Zeltina I, Janushkevich I, Caplinskiene I, Caplinskas S, Kancauskiene Z, Wiercinska-Drapalo A, Thompson M, Kozlowska J, Grezesczuk A, Bura M, Knysz B, Inglot M, Garlicki A, Loster J, uiculescu DD, Rakhmanova A, Panteleev O, Yakovlev A, Kozlov A, Tyukalova A, Vlasova Y, rofimov TT, Kyselyova G, Obel N, Gerstoft J, Kronborg G, Payen MC, abeya KK, Necsoi C, Dabis F, Tsaranazy A, Cazanave C, Furrer H, Sagette M, Rickenbach M, Sculier D, Calmy A, Cavassini M, Bruno A, Bernasconi E, Hoffmann M, Vernazza P, Fehr J, Weber R, Miller R, Vora N, Cooke G, Mullaney S, Wilkins E, George V, Collini P, Dockrell D, Post F, Campbell L, Brum R, Mabonga E, Saigal P, Kegg S, Ainsworth J, Waters A, Dhar J, Ellis K, Girardi E, Rianda A, Galati V, Pinnetti C, Tommasi C, Lapadula G, Di Biagio A, Parisini A, Carbonara S, Angarano G, Purgatorio M, Matteelli A, Apostoli A, Miro JM, Manzardo C, Ligero C, Gonzalez J, Martinez-Martinez JA, Sanchez F, Knobel H, Salvadó M, Lopez-Colomes JL, Martínez-Lacasa X, Cuchí E, Falcó V, Curran A, Tortola MT, Ocaña I, Vidal R, Sambeat MA, Pomar V, Coll P, Pozamczer D, Saumoy M, Alcaide F, Caylà J, Moreno A, Millet JP, Orcau A, Fina L, Romero A, Roldan LL, Iribarren JA, Ibarguren M, Moreno S, González A, Miralles P, Aldámiz-Echevarría T, Losso M, Toibaro J, Gambardella L, Toibaro J, Moreno Macias L, Warley E, Tavella S, Garcia Messina O, Gear O, Laplume H, Marson C, Contarelia J, Michaan M, Scapellato P, Bartoletti B, Palmero D, Elias C, Cortes C, Crabtree B, Mosqueda Gomez JL, Villanueva JA, Gonzalez Hernandez LA, Badial Fet al., 2021, Delayed diagnosis of tuberculosis in persons living with HIV in Eastern Europe: associated factors and effect on mortality—a multicentre prospective cohort study, BMC Infectious Diseases, Vol: 21

<jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Early diagnosis of tuberculosis (TB) is important to reduce transmission, morbidity and mortality in people living with HIV (PLWH).</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>PLWH with a diagnosis of TB were enrolled from HIV and TB clinics in Eastern Europe and followed until 24 months. Delayed diagnosis was defined as duration of TB symptoms (cough, weight-loss or fever) for ≥ 1 month before TB diagnosis. Risk factors for delayed TB diagnosis were assessed using multivariable logistic regression. The effect of delayed diagnosis on mortality was assessed using Kaplan–Meier estimates and Cox models.</jats:p> </jats:sec><jats:sec> <jats:title>Findings</jats:title> <jats:p>480/740 patients (64.9%; 95% CI 61.3–68.3%) experienced a delayed diagnosis. Age ≥ 50 years (vs. &lt; 50 years, aOR = 2.51; 1.18–5.32; p = 0.016), injecting drug use (IDU) (vs. non-IDU aOR = 1.66; 1.21–2.29; p = 0.002), being ART naïve (aOR = 1.77; 1.24–2.54; p = 0.002), disseminated TB (vs. pulmonary TB, aOR = 1.56, 1.10–2.19, p = 0.012), and presenting with weight loss (vs. no weight loss, aOR = 1.63; 1.18–2.24; p = 0.003) were associated with delayed diagnosis. PLWH with a delayed diagnosis were at 36% increased risk of death (hazard ratio = 1.36; 1.04–1.77; p = 0.023, adjusted hazard ratio 1.27; 0.95–1.70; p = 0.103).</jats:p> </jats:sec><j

Journal article

Burdett A, Toumazou C, Sahoo R, Mujan A, Hon T-K, Bedzo-Nutakor J, Casali N, Karvela M, Sohbati M, Cooke GS, Davies GW, Moore LSPet al., 2021, Pooled sputum to optimise the efficiency and utility of rapid, point-of-care molecular SARS-CoV-2 testing, BMC Infectious Diseases, Vol: 21, Pages: 1-10, ISSN: 1471-2334

BackgroundAs SARS-CoV-2 testing expands, particularly to widespread asymptomatic testing, high sensitivity point-of-care PCR platforms may optimise potential benefits from pooling multiple patients’ samples.MethodWe tested patients and asymptomatic citizens for SARS-CoV-2, exploring the efficiency and utility of CovidNudge (i) for detection in individuals’ sputum (compared to nasopharyngeal swabs), (ii) for detection in pooled sputum samples, and (iii) by modelling roll out scenarios for pooled sputum testing.ResultsAcross 295 paired samples, we find no difference (p = 0.1236) in signal strength for sputum (mean amplified replicates (MAR) 25.2, standard deviation (SD) 14.2, range 0–60) compared to nasopharyngeal swabs (MAR 27.8, SD 12.4, range 6–56). At 10-sample pool size we find some drop in absolute strength of signal (individual sputum MAR 42.1, SD 11.8, range 13–60 vs. pooled sputum MAR 25.3, SD 14.6, range 1–54; p < 0.0001), but only marginal drop in sensitivity (51/53,96%). We determine a limit of detection of 250 copies/ml for an individual test, rising only four-fold to 1000copies/ml for a 10-sample pool. We find optimal pooled testing efficiency to be a 12–3-1-sample model, yet as prevalence increases, pool size should decrease; at 5% prevalence to maintain a 75% probability of negative first test, 5-sample pools are optimal.ConclusionWe describe for the first time the use of sequentially dipped sputum samples for rapid pooled point of care SARS-CoV-2 PCR testing. The potential to screen asymptomatic cohorts rapidly, at the point-of-care, with PCR, offers the potential to quickly identify and isolate positive individuals within a population “bubble”.

Journal article

Charania AS, Vergis N, Phillips R, Cornelius V, Katsarou A, Youngstein T, Cook L, Willicombe M, Pilay C, Shturova T, Almonte M, Charania A, Turner R, Kon OM, Cooke G, Thursz M, Cherlin S, Wason J, Milojkovic D, Innes AJ, Cooper Net al., 2021, Multi-Arm Trial of Inflammatory Signal Inhibitors (MATIS) for hospitalised patients with mild or moderate Covid-19 pneumonia: a structured summary of a study protocol for a randomised controlled trial, 63rd ASH Annual Meeting and Exposition, Publisher: American Society of Hematology, Pages: 4200-4200, ISSN: 0006-4971

Conference paper

Knight SR, Gupta RK, Ho A, Pius R, Buchan I, Carson G, Drake TM, Dunning J, Fairfield CJ, Gamble C, Green CA, Halpin S, Hardwick HE, Holden KA, Horby PW, Jackson C, Mclean KA, Merson L, Nguyen-Van-Tam JS, Norman L, Olliaro PL, Pritchard MG, Russell CD, Shaw CA, Sheikh A, Solomon T, Sudlow C, Swann O, Turtle LCW, Openshaw PJM, Baillie JK, Docherty A, Semple MG, Noursadeghi M, Harrison EMet al., 2021, Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol, Thorax, Vol: 77, Pages: 1-10, ISSN: 0040-6376

Purpose To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19.Methods Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups.Results 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, –0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions.Conclusion Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making.Trial registration number ISRCTN66726260.

Journal article

de Silva TI, Liu G, Lindsey BB, Dong D, Moore SC, Hsu NS, Shah D, Wellington D, Mentzer AJ, Angyal A, Brown R, Parker MD, Ying Z, Yao X, Turtle L, Dunachie S, COVID-19 Genomics UK COG-UK Consortium, Maini MK, Ogg G, Knight JC, ISARIC4C Investigators, Peng Y, Rowland-Jones SL, Dong Tet al., 2021, The impact of viral mutations on recognition by SARS-CoV-2 specific T cells., iScience, Vol: 24, Pages: 103353-103353, ISSN: 2589-0042

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

Journal article

Chadeau-Hyam M, Eales O, Bodinier B, Wang H, Haw D, Whitaker M, Walters C, Jonnerby J, Atchison C, Diggle P, Page A, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Donnelly C, Elliott Pet al., 2021, REACT-1 round 15 final report: Increased breakthrough SARS-CoV-2 infections among adults who had received two doses of vaccine, but booster doses and first doses in children are providing important protection

Background: It has been nearly a year since the first vaccinations against SARS-CoV-2were delivered in England. The third wave of COVID-19 in England began in May 2021 asthe Delta variant began to outcompete and largely replace other strains. The REal-timeAssessment of Community Transmission-1 (REACT-1) series of community surveys forSARS-CoV-2 infection has provided insights into transmission dynamics since May 2020.Round 15 of the REACT-1 study was carried out from 19 October to 5 November 2021.Methods: We estimated prevalence of SARS-CoV2 infection and used multiple logisticregression to analyse associations between SARS-CoV-2 infection in England anddemographic and other risk factors, based on RT-PCR results from self-administered throatand nose swabs in over 100,000 participants. We estimated (single-dose) vaccineeffectiveness among children aged 12 to 17 years, and among adults comparedswab-positivity in people who had received a third (booster) dose with those who hadreceived two vaccine doses. We used splines to analyse time trends in swab-positivity.Results: During mid-October to early-November 2021, weighted prevalence was 1.57%(1.48%, 1.66%) compared to 0.83% (0.76%, 0.89%) in September 2021 (round 14).Weighted prevalence increased between rounds 14 and 15 across most age groups(including older ages, 65 years and over) and regions, with average reproduction numberacross rounds of R=1.09 (1.08, 1.11). During round 15, there was a fall in prevalence from amaximum around 20-21 October, with an R of 0.76 (0.70, 0.83), reflecting falls in prevalenceat ages 17 years and below and 18 to 54 years. School-aged children had the highestweighted prevalence of infection: 4.95% (4.39%, 5.58%) in those aged 5 to 12 years and5.21% (4.61%, 5.87%) in those aged 13 to 17 years. In multiple logistic regression, age, sex,key worker status and presence of one or more children in the home were associated withswab positivity. There was evidence of heterogeneity between rounds in

Working paper

Chadeau-Hyam M, Eales O, Bodinier B, Wang H, Haw D, Whitaker M, Walters C, Atchison C, Diggle P, Page A, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Donnelly C, Elliott Pet al., 2021, REACT-1 round 15 interim report: Exponential rise in prevalence of SARS-CoV-2 infection in England from end September 2021 followed by dip during October 2021

Background: The third wave of COVID-19 in England coincided with the rapid spread of theDelta variant of SARS-CoV-2 from the end of May 2021. Case incidence data from thenational testing programme (Pillar 2) in England may be affected by changes in testingbehaviour and other biases. Community surveys may provide important contextualinformation to inform policy and the public health response.Methods: We estimated patterns of community prevalence of SARS-CoV-2 infection inEngland using RT-PCR swab-positivity, demographic and other risk factor data from round15 (interim) of the REal-time Assessment of Community Transmission-1 (REACT-1) study(round 15a, carried out from 19 to 29 October 2021). We compared these findings with thosefrom round 14 (9 to 27 September 2021).Results: During mid- to late-October 2021 (round 15a) weighted prevalence was 1.72%(1.61%, 1.84%) compared to 0.83% (0.76%, 0.89%) in September 2021 (round 14). Theoverall reproduction number (R) from round 14 to round 15a was 1.12 (1.11, 1.14) withincreases in prevalence over this period (September to October) across age groups andregions except Yorkshire and The Humber. However, within round 15a (mid- to late-October)there was evidence of a fall in prevalence with R of 0.76 (0.65, 0.88). The highest weightedprevalence was observed among children aged 5 to 12 years at 5.85% (5.10%, 6.70%) and13 to 17 years at 5.75% (5.02%, 6.57%). At regional level, there was an almost four-foldincrease in weighted prevalence in South West from round 14 at 0.59% (0.43%,0.80%) toround 15a at 2.18% (1.84%, 2.58%), with highest smoothed prevalence at subregional levelalso found in South West in round 15a. Age, sex, key worker status, and presence ofchildren in the home jointly contributed to the risk of swab-positivity. Among the 126sequenced positive swabs obtained up until 23 October, all were Delta variant; 13 (10.3%)were identified as the AY.4.2 sub-lineage.Discussion: We observed the highest overall prevalence of swab-p

Working paper

Elliott P, Haw D, Wang H, Eales O, Walters C, Ainslie K, Atchison C, Fronterre C, Diggle P, Page A, Trotter A, Prosolek S, The COVID-19 Genomics UK Consortium COG-UK, Ashby D, Donnelly C, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley Set al., 2021, Exponential growth, high prevalence of SARS-CoV-2 and vaccine effectiveness associated with Delta variant, Science, Vol: 374, Pages: 1-11, ISSN: 0036-8075

SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination.

Journal article

Li HK, Kaforou M, Rodriguez-Manzano J, Channon-Wells S, Monir A, Habgood-Coote D, Gupta RK, Mills EA, Lin J, Chiu Y-H, Pennisi I, Miglietta L, Mehta R, Obaray N, Herberg JA, Wright VJ, Georgiou P, Shallcross LJ, Mentzer AJ, Levin M, Cooke GS, Noursadeghi M, Sriskandan Set al., 2021, Discovery and validation of a 3-gene signature to distinguish COVID-19 and other viral infections in emergency infectious disease presentations; a case-control then observational cohort study, The Lancet Microbe, Vol: 2, Pages: 594-603, ISSN: 2666-5247

Background: Emergency admissions for infection often lack initial diagnostic certainty. COVID-19 has highlighted a need for novel diagnostic approaches to indicate likelihood of viral infection in a pandemic setting. We sought to derive and validate a blood transcriptional signature to detect viral infections including COVID-19 among adults with suspected infection presenting to the Emergency Department (ED).Methods: Blood RNA sequencing was performed on a discovery cohort of adults attending the ED with suspected infection who had subsequently-confirmed viral, bacterial, or no infection diagnoses. Differentially expressed host genes were subjected to feature selection to derive the most parsimonious discriminating signature. RT-qPCR validation of the signature was then performed in a prospective cohort of ED patients presenting with undifferentiated fever, and a second case-control cohort of ED patients with COVID-19 or bacterial infection. Signature performance was assessed by calculating area under receiver-operating characteristic curves (AUC-ROCs), sensitivities, and specificities.Findings: A 3-gene transcript signature was derived from the discovery cohort of 56 bacterial and 27 viral infection cases. In the validation cohort of 200 cases, the signature differentiated bacterial from viral infections with an AUC-ROC of 0.976 (95% CI: 0.919-1.000), sensitivity 97.3% and specificity of 100%. The AUC-ROC for C-reactive protein (CRP) and leucocyte count (WCC) was 0.833 (95% CI: 0.694-0.944) and 0.938 (95% CI: 0.840-0.986) respectively. The signature achieved higher net benefit in decision curve analysis than either CRP or WCC for discriminating viral infections from all other cases. In the second validation analysis the signature discriminated 35 bacterial infections from 34 SARS-CoV-2 positive COVID-19 infections with AUC-ROC of 0.953 (95% CI: 0.893-0.992), sensitivity 88.6% and specificity of 94.1%.Interpretation: This novel 3-gene signature discriminates viral i

Journal article

Durkin S, Britton C, Cooke G, Mehta Ret al., 2021, A case of invasive meningococcal disease presenting as myopericarditis, Clinical Infection in Practice, Vol: 12, ISSN: 2590-1702

BackgroundNeisseria meningitidis is a universally-feared Gram negative diplococcus, and infection confers high rates of morbidity and mortality despite effective antimicrobial therapy. Invasive meningococcal disease most commonly presents with meningococcaemia or meningococcal meningitis.Case report72-year-old female, previously fit and well, was admitted with chest pain, and associated breathlessness and diarrhoea. The clinical picture was of a myopericarditis.ResultsInitial electrocardiogram (ECG) changes and elevated troponin were consistent with myopericarditis. Neisseria meningitidis W135 was cultured from blood, and subsequently from cerebrospinal fluid (CSF). Leptomeningeal meningitis and ventriculitis was evident on magnetic resonance imaging (MRI) of the brain. Treatment was commenced with intravenous ceftriaxone. The clinical course was complicated by pneumonia, influenza A infection, and fatal pulmonary embolism.ConclusionsThis case demonstrates the range of clinical features of invasive meningococcal disease, highlighting in particular that meningococcal bacteraemia can present clinically as myopericarditis, which may be present in a substantial proportion of cases. Prompt antimicrobial therapy, as well as an awareness of potential complications, are paramount in the clinical management of meningococcal myopericarditis.

Journal article

Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Maranhao Costa FT, Santana MF, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, Filho JLDS, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJet al., 2021, A prenylated dsRNA sensor protects against severe COVID-19, Science, Vol: 374, Pages: 1-18, ISSN: 0036-8075

Journal article

Smith DA, Magri A, Bowden R, Chaturvedi N, Fellay J, McLauchlan J, Foster GR, Irving WL, Simmonds P, Pedergnana V, Barnes E, Ansari MA, Fernandez-Antunez C, Ramirez S, Bukh Jet al., 2021, Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure, NATURE COMMUNICATIONS, Vol: 12

Journal article

Chadeau-Hyam M, Wang H, Eales O, Haw D, Bodinier B, Whitaker M, Walters C, Ainslie K, Atchison C, Fronterre C, Diggle P, Page A, Trotter A, COG-UK TCGUKC, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Donnelly C, Elliott Pet al., 2021, REACT-1 study round 14: High and increasing prevalence of SARS-CoV-2 infection among school-aged children during September 2021 and vaccine effectiveness against infection in England

Background: England experienced a third wave of the COVID-19 epidemic from end May2021 coinciding with the rapid spread of Delta variant. Since then, the population eligible forvaccination against COVID-19 has been extended to include all 12-15-year-olds, and abooster programme has been initiated among adults aged 50 years and over, health careand care home workers, and immunocompromised people. Meanwhile, schoolchildren havereturned to school often with few COVID-19-related precautions in place.Methods: In the REal-time Assessment of Community Transmission-1 (REACT-1) study,throat and nose swabs were sent to non-overlapping random samples of the populationaged 5 years and over in England. We analysed prevalence of SARS-CoV-2 using reversetranscription-polymerase chain reaction (RT-PCR) swab-positivity data from REACT-1 round14 (between 9 and 27 September 2021). We combined results for round 14 with round 13(between 24 June and 12 July 2021) and estimated vaccine effectiveness and prevalence ofswab-positivity among double-vaccinated individuals. Unlike all previous rounds, in round 14,we switched from dry swabs transported by courier on a cold chain to wet swabs usingsaline. Also, at random, 50% of swabs (not chilled until they reached the depot) weretransported by courier and 50% were sent through the priority COVID-19 postal service.Results: We observed stable or rising prevalence (with an R of 1.03 (0.94, 1.14) overall)during round 14 with a weighted prevalence of 0.83% (0.76%, 0.89%). The highest weightedprevalence was found in children aged 5 to 12 years at 2.32% (1.96%, 2.73%) and 13 to 17years at 2.55% (2.11%, 3.08%). All positive virus samples analysed correspond to the Deltavariant or sub-lineages of Delta with one instance of the E484K escape mutation detected.The epidemic was growing in those aged 17 years and under with an R of 1.18 (1.03, 1.34),but decreasing in those aged 18 to 54 years with an R of 0.81 (0.68, 0.97). For allparticipants and all vaccin

Working paper

Davies B, Araghi M, Moshe M, Gao H, Bennet K, Jenkins J, Atchison C, Darzi A, Ashby D, Riley S, Barclay W, Elliott P, Ward H, Cooke Get al., 2021, Acceptability, usability and performance of lateral flow immunoassay tests for SARS-CoV-2 antibodies: REACT-2 study of self-testing in non-healthcare key workers, Open Forum Infectious Diseases, Vol: 8, ISSN: 2328-8957

Background Seroprevalence studies are essential to understand the epidemiology of SARS-CoV-2. Various technologies, including laboratory assays and point-of-care self-tests, are available for antibody testing. The interpretation of seroprevalence studies requires comparative data on the performance of antibody tests. Methods In June 2020, current and former members of the UK Police forces and Fire service performed a self-test lateral flow immunoassay (LFIA), had a nurse-performed LFIA and provided a venous blood sample for ELISA . We present the prevalence of antibodies to SARS-CoV-2; the acceptability and usability of self-test LFIAs; and determine the sensitivity and specificity of LFIAs compared to laboratory ELISA. Results In this cohort of 5189 current and former members of the Police service and 263 members of the Fire service, 7.4% (396/5,348; 95% CI, 6.7-8.1) were antibody positive. Seroprevalence was 8.9% (6.9-11.4) in those under 40 years, 11.5% (8.8-15.0) in those of non-white ethnicity and 7.8% (7.1-8.7) in those currently working. Self-test LFIA had an acceptability of 97.7% and a usability of 90.0%. There was substantial agreement between within-participant LFIA results (kappa 0.80; 0.77-0.83). The LFIAs had a similar performance: compared to ELISA, sensitivity was 82.1% (77.7-86.0) self-test and 76.4% (71.9-80.5) nurse-performed with specificity of 97.8% (97.3-98.2) and 98.5% (98.1-98.8) respectively. Conclusion A greater proportion of this non-healthcare key worker cohort showed evidence of previous infection with SARS-CoV-2 than the general population at 6.0% (5.8-6.1) following the first wave in England. The high acceptability and usability reported by participants and similar performance of self-test and nurse-performed LFIAs indicate that the self-test LFIA is fit for purpose for home-testing in occupational and community prevalence studies.

Journal article

Ingiliz P, Maurice J, Shimakawa Y, Grunwald S, Tsochatzis E, Bhagani S, Boesecke C, Rockstroh JK, Anyanechi M, Kidd O, Garvey L, Khamri W, Goldin R, Forlano R, Thursz M, Cooke GS, Nelson M, Lemoine Met al., 2021, Impact of an add-on strategy of the C-C chemokine receptor 5 (CCR5) antagonist maraviroc on hepatic inflammation in HIV-infected individuals with non-alcoholic steatohepatitis: a paired-liver biopsy proof-of-concept study, 18th European AIDS Conference (EACS 2021), Publisher: Wiley, Pages: 191-191, ISSN: 1464-2662

Introduction. Non-alcoholic steatohepatitis (NASH) is of concern in an agingand antiretroviral therapy (ART)-pretreated HIV-infected population. Notherapeutic agent has yet been licensed for the treatment of NASH in orderto reduce hepatic inflammation, steatosis, or liver fibrosis. The CCR5receptor antagonist maraviroc is an approved HIV drug, but hepatic CCR5inhibition has also been suggested to reduce hepatic inflammation andfibrogenesis in animal models. This study aimed to investigate the impact ofa maraviroc add-on strategy on hepatic inflammation in ART-treated HIVmono-infected individuals with NASH.Methods. The MASH study (Maraviroc-Add on for Steatohepatitis in HIVinfected patients) was a single-arm, open-label trial conducted across 5sites in Germany and the United Kingdom. HIV-infected individuals withbiopsy proven NASH were invited to add maraviroc BID to their existing,suppressive ART regimen for 48 weeks, and undergo a second liver biopsythereafter. Patients had immunologic, cytokine, metabolic, and histologicassessment at baseline and end of treatment (EOT).Results. Overall, 24 subjects were screened, and 13 completed the study and were analyzed. All participants were male,median age 50.5 years [45.5-55.5], baseline BMI 30.66 kg/m2 [27.92-33.63]; 83.3% (10/12) had insulin resistance. Atbaseline, 11/13 patients (85%) had fibrosis >1 (Metavir). At EOT no significant changes in the hepatic immune cell infiltrate(CD4/CD8/CD68) were observed, however, the NAS score decreased non significantly from 4.077 ± 0.76 at baseline to 3.64 ±0.51 at EOT (p = 0.125). At week 48, 7/11 patients (63%) showed significant fibrosis> stage 1, EOT BMI was similar comparedto baseline. Add-on MVC had no significant impact on inflammatory markers or lipid metabolism.

Conference paper

Hurst EA, Mellanby RJ, Handel I, Griffith DM, Rossi AG, Walsh TS, Shankar-Hari M, Dunning J, Homer NZ, Denham SG, Devine K, Holloway PA, Moore SC, Thwaites RS, Samanta RJ, Summers C, Hardwick HE, Oosthuyzen W, Turtle L, Semple MG, Openshaw PJM, Baillie JK, Russell CDet al., 2021, Vitamin D insufficiency in COVID-19 and influenza A, and critical illness survivors: a cross-sectional study, BMJ Open, Vol: 11, Pages: 1-11, ISSN: 2044-6055

Objectives The steroid hormone vitamin D has roles in immunomodulation and bone health. Insufficiency is associated with susceptibility to respiratory infections. We report 25-hydroxy vitamin D (25(OH)D) measurements in hospitalised people with COVID-19 and influenza A and in survivors of critical illness to test the hypotheses that vitamin D insufficiency scales with illness severity and persists in survivors.Design Cross-sectional study.Setting and participants Plasma was obtained from 295 hospitalised people with COVID-19 (International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)/WHO Clinical Characterization Protocol for Severe Emerging Infections UK study), 93 with influenza A (Mechanisms of Severe Acute Influenza Consortium (MOSAIC) study, during the 2009–2010 H1N1 pandemic) and 139 survivors of non-selected critical illness (prior to the COVID-19 pandemic). Total 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. Free 25(OH)D was measured by ELISA in COVID-19 samples.Outcome measures Receipt of invasive mechanical ventilation (IMV) and in-hospital mortality.Results Vitamin D insufficiency (total 25(OH)D 25–50 nmol/L) and deficiency (<25 nmol/L) were prevalent in COVID-19 (29.3% and 44.4%, respectively), influenza A (47.3% and 37.6%) and critical illness survivors (30.2% and 56.8%). In COVID-19 and influenza A, total 25(OH)D measured early in illness was lower in patients who received IMV (19.6 vs 31.9 nmol/L (p<0.0001) and 22.9 vs 31.1 nmol/L (p=0.0009), respectively). In COVID-19, biologically active free 25(OH)D correlated with total 25(OH)D and was lower in patients who received IMV, but was not associated with selected circulating inflammatory mediators.Conclusions Vitamin D deficiency/insufficiency was present in majority of hospitalised patients with COVID-19 or influenza A and correlated with severity and persisted in critical illness survivors at

Journal article

Pett S, McCabe L, Latifoltojar A, Post F, Fox J, Burns J, Pool E, Waters A, Santana B, Garvey L, Johnson M, McGuinness I, Chouhan M, Edwards J, Goodman A, Cooke G, Ryder S, Sandford C, Baker J, Angus B, Boesecke C, Orkin C, Murphy C, Collaco-Moraes Y, Webb H, Gregory A, Mohamed F, Rauchenberger M, Punwani S, Clark A, Dunn Det al., 2021, Results of MAVMET, a multi-centre, open-label, 48-week randomised controlled trial of maraviroc with or without metformin for the treatment of non-alcoholic fatty liver disease in HIV-positive virologically suppressed adults, Publisher: WILEY, Pages: 43-45, ISSN: 1464-2662

Conference paper

Cooke GS, Pett S, McCabe L, Jones C, Gilson R, Verma S, Ryder SD, Collier JD, Barclay ST, Ala A, Bhagani S, Nelson M, ChNg CL, Stone B, Wiselka M, Forton D, McPherson S, Halford R, Nguyen D, Smith D, Ansari MA, Ainscough H, Dennis E, Hudson F, Barnes EJ, Walker ASet al., 2021, Variable short duration treatment versus standard treatment, with and without adjunctive ribavirin, for chronic hepatitis C: the STOP-HCV-1 non-inferiority, factorial RCT, Efficacy and Mechanism Evaluation, Vol: 8, Pages: 1-90, ISSN: 2050-4365

<jats:sec id="abs1-1"> <jats:title>Background</jats:title> <jats:p>High cure rates with licensed durations of therapy for chronic hepatitis C virus suggest that many patients are overtreated. New strategies in individuals who find it challenging to adhere to standard treatment courses could significantly contribute to the elimination agenda.</jats:p> </jats:sec> <jats:sec id="abs1-2"> <jats:title>Objectives</jats:title> <jats:p>To compare cure rates using variable ultrashort first-line treatment stratified by baseline viral load followed by retreatment, with a fixed 8-week first-line treatment with retreatment with or without adjunctive ribavirin.</jats:p> </jats:sec> <jats:sec id="abs1-3"> <jats:title>Design</jats:title> <jats:p>An open-label, multicentre, factorial randomised controlled trial.</jats:p> </jats:sec> <jats:sec id="abs1-4"> <jats:title>Randomisation</jats:title> <jats:p>Randomisation was computer generated, with patients allocated in a 1 : 1 ratio using a factorial design to each of biomarker-stratified variable ultrashort strategy or fixed duration and adjunctive ribavirin (or not), using a minimisation algorithm with a probabilistic element.</jats:p> </jats:sec> <jats:sec id="abs1-5"> <jats:title>Setting</jats:title> <jats:p>NHS.</jats:p> </jats:sec> <jats:sec id="abs1-6"> <jats:title>Participants</jats:title> <jats:p>A total of 202 adults

Journal article

Elliott J, Whitaker M, Bodinier B, Eales O, Riley S, Ward H, Cooke G, Darzi A, Chadeau M, Elliott Pet al., 2021, Predictive symptoms for COVID-19 in the community: REACT-1 study of over one million people, PLoS Medicine, Vol: 18, Pages: 1-14, ISSN: 1549-1277

Background:Rapid detection, isolation and contact tracing of community COVID-19 cases are essential measures to limit the community spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to identify a parsimonious set of symptoms that jointly predict COVID-19 and whether predictive symptoms differ between B.1.1.7 (Alpha) lineage (predominating as of April 2021in the USA, UK and elsewhere) and wild type.Methods and Findings:We obtained throat and nose swabs with valid SARS-CoV-2 polymerase chain reaction (PCR) test results from 1,147,370 volunteers aged 5 years and above (6,450 positives) in the REal-time Assessment of Community Transmission-1 (REACT-1) study. This involved repeated community-based random surveys of prevalence in England (study rounds 2 to 8, June 2020 to January 2021, response rates 22%-27%). Participants were asked about symptoms occurring in the week prior to testing. Viral genome sequencing was carried out for PCR positive samples with N-gene cycle threshold value < 34 (N = 1,079) in round 8 (January 2021). In univariate analysis, all 26 surveyed symptoms were associated with PCR positivity compared with non-symptomatic people. Stability selection (1,000 penalized logistic regression models with 50% subsampling) among people reporting at least one symptom identified seven symptoms as jointly and positively predictive of PCR positivity in rounds 2–7 (June to December 2020): loss or change of sense of smell, loss or change of sense of taste, fever, new persistent cough, chills, appetite loss and muscle aches. The resulting model (rounds 2–7) predicted PCR positivity in round 8 with area under the curve (AUC) of 0.77. The same seven symptoms were selected as jointly predictive of B.1.1.7 infection in round 8, although comparing B.1.1.7 with wild type, new persistent cough and sore throat were more predictive of B.1.1.7 infection while loss or change of sense of smell was more predictive of the wild type. Main

Journal article

Vollmer MAC, Radhakrishnan S, Kont MD, Flaxman S, Bhatt SJ, Costelloe C, Honeyford K, Aylin P, Cooke G, Redhead J, Sanders A, Mangan H, White PJ, Ferguson N, Hauck K, Perez Guzman PN, Nayagam Set al., 2021, The impact of the COVID-19 pandemic on patterns of attendance at emergency departments in two large London hospitals: an observational study, BMC Health Services Research, Vol: 21, Pages: 1-9, ISSN: 1472-6963

Background Hospitals in England have undergone considerable change to address the surgein demand imposed by the COVID-19 pandemic. The impact of this on emergencydepartment (ED) attendances is unknown, especially for non-COVID-19 related emergencies.Methods This analysis is an observational study of ED attendances at the Imperial CollegeHealthcare NHS Trust (ICHNT). We calibrated auto-regressive integrated moving averagetime-series models of ED attendances using historic (2015-2019) data. Forecasted trendswere compared to present year ICHNT data for the period between March 12, 2020 (whenEngland implemented the first COVID-19 public health measure) and May 31, 2020. Wecompared ICHTN trends with publicly available regional and national data. Lastly, wecompared hospital admissions made via the ED and in-hospital mortality at ICHNT duringthe present year to the historic 5-year average.Results ED attendances at ICHNT decreased by 35% during the period after the firstlockdown was imposed on March 12, 2020 and before May 31, 2020, reflecting broadertrends seen for ED attendances across all England regions, which fell by approximately 50%for the same time frame. For ICHNT, the decrease in attendances was mainly amongst thoseaged <65 years and those arriving by their own means (e.g. personal or public transport) andnot correlated with any of the spatial dependencies analysed such as increasing distance frompostcode of residence to the hospital. Emergency admissions of patients without COVID-19after March 12, 2020 fell by 48%; we did not observe a significant change to the crudemortality risk in patients without COVID-19 (RR 1.13, 95%CI 0.94-1.37, p=0.19).Conclusions Our study findings reflect broader trends seen across England and give anindication how emergency healthcare seeking has drastically changed. At ICHNT, we findthat a larger proportion arrived by ambulance and that hospitalisation outcomes of patientswithout COVID-19 did not differ from previous years. The ext

Journal article

Neumann I, Schünemann HJ, Bero L, Cooke G, Magrini N, Moja Let al., 2021, Global access to affordable direct oral anticoagulants, Bulletin of the World Health Organization, Vol: 99, Pages: 653-660, ISSN: 0042-9686

Poor control of cardiovascular disease accounts for a substantial proportion of the disease burden in developing countries, but often essential anticoagulant medicines for preventing strokes and embolisms are not widely available. In 2019, direct oral anticoagulants were added to the World Health Organization's WHO Model list of essential medicines. The aims of this paper are to summarize the benefits of direct oral anticoagulants for patients with cardiovascular disease and to discuss ways of increasing their usage internationally. Although the cost of direct oral anticoagulants has provoked debate, the affordability of introducing these drugs into clinical practice could be increased by: price negotiation; pooled procurement; competitive tendering; the use of patent pools; and expanded use of generics. In 2017, only 14 of 137 countries that had adopted national essential medicines lists included a direct oral anticoagulant on their lists. This number could increase rapidly if problems with availability and affordability can be tackled. Once the types of patient likely to benefit from direct oral anticoagulants have been clearly defined in clinical practice guidelines, coverage can be more accurately determined and associated costs can be better managed. Government action is required to ensure that direct oral anticoagulants are covered by national budgets because the absence of reimbursement remains an impediment to achieving universal coverage. Tackling cardiovascular disease with the aid of direct oral anticoagulants is an essential component of efforts to achieve the World Health Organization's target of reducing premature deaths due to noncommunicable disease by 25% by 2025.

Journal article

Eales O, Walters C, Wang H, Haw D, Ainslie K, Atchison C, Page A, Prosolek S, Trotter A, Viet TL, Alikhan N-F, Jackson LM, Ludden C, COG UK TCGUKC, Ashby D, Donnelly C, Cooke G, Barclay W, Ward H, Darzi A, Elliott P, Riley Set al., 2021, Characterising the persistence of RT-PCR positivity and incidence in a community survey of SARS-CoV-2

BackgroundCommunity surveys of SARS-CoV-2 RT-PCR swab-positivity provide prevalence estimates largely unaffected by biases from who presents for routine case testing. The REal-time Assessment of Community Transmission-1 (REACT-1) has estimated swab-positivity approximately monthly since May 2020 in England from RT-PCR testing of self-administeredthroat and nose swabs in random non-overlapping cross-sectional community samples. Estimating infection incidence from swab-positivity requires an understanding of the persistence of RT-PCR swab positivity in the community.MethodsDuring round 8 of REACT-1 from 6 January to 22 January 2021, of the 2,282 participants who tested RT-PCR positive, we recruited 896 (39%) from whom we collected up to two additional swabs for RT-PCR approximately 6 and 9 days after the initial swab. We estimated sensitivity and duration of positivity using an exponential model of positivity decay, for all participants and for subsets by initial N-gene cycle threshold (Ct) value, symptom status, lineage and age. Estimates of infection incidence were obtained for the entire duration of the REACT-1 study using P-splines.ResultsWe estimated the overall sensitivity of REACT-1 to detect virus on a single swab as 0.79 (0.77, 0.81) and median duration of positivity following a positive test as 9.7 (8.9, 10.6) days. We found greater median duration of positivity where there was a low N-gene Ct value, in those exhibiting symptoms, or for infection with the Alpha variant. The estimated proportionof positive individuals detected on first swab, was found to be higher 𝑃 for those with an 0 initially low N-gene Ct value and those who were pre-symptomatic. When compared to swab-positivity, estimates of infection incidence over the duration of REACT-1 included sharper features with evident transient increases around the time of key changes in socialdistancing measures.DiscussionHome self-swabbing for RT-PCR based on a single swab, as implemented in REACT-1, has hig

Working paper

Redd R, Cooper E, Atchison C, Pereira I, Hollings P, Cooper T, Millar C, Ashby D, Riley S, Darzi A, Barclay W, Cooke G, Elliott P, Donnelly C, Ward Het al., 2021, Behavioural responses to SARS-CoV-2 antibody testing in England: REACT-2 study, Wellcome Open Research, Vol: 6, Pages: 1-10, ISSN: 2398-502X

Background: This study assesses the behavioural responses to SARS-CoV-2 antibody test results as part of the REal-time Assessment of Community Transmission-2 (REACT-2) research programme, a large community-based surveillance study of antibody prevalence in England.Methods: A follow-up survey was conducted six weeks after the SARS-CoV-2 antibody test. The follow-up survey included 4500 people with a positive result and 4039 with a negative result. Reported changes in behaviour were assessed using difference-in-differences models. A nested interview study was conducted with 40 people to explore how they thought through their behavioural decisions.Results: While respondents reduced their protective behaviours over the six weeks, we did not find evidence that positive test results changed participant behaviour trajectories in relation to the number of contacts the respondents had, for leaving the house to go to work, or for leaving the house to socialise in a personal place. The qualitative findings supported these results. Most people did not think that they had changed their behaviours because of their test results, however they did allude to some changes in their attitudes and perceptions around risk, susceptibility, and potential severity of symptoms.Conclusions: We found limited evidence that knowing your antibody status leads to behaviour change in the context of a research study. While this finding should not be generalised to widespread self-testing in other contexts, it is reassuring given the importance of large prevalence studies, and the practicalities of doing these at scale using self-testing with lateral flow immunoassay (LFIA).

Journal article

Elliott P, Haw D, Wang H, Eales O, Walters C, Ainslie K, Atchison C, Fronterre C, Diggle P, Page A, Trotter A, Prosolek S, COG-UK TCGUKC, Ashby D, Donnelly C, Barclay W, Cooke G, Ward H, Darzi A, Riley Set al., 2021, REACT-1 round 13 final report: exponential growth, high prevalence of SARS-CoV-2 and vaccine effectiveness associated with Delta variant in England during May to July 2021

BackgroundThe prevalence of SARS-CoV-2 infection continues to drive rates of illness andhospitalisations despite high levels of vaccination, with the proportion of cases caused by theDelta lineage increasing in many populations. As vaccination programs roll out globally andsocial distancing is relaxed, future SARS-CoV-2 trends are uncertain.MethodsWe analysed prevalence trends and their drivers using reverse transcription-polymerasechain reaction (RT-PCR) swab-positivity data from round 12 (between 20 May and 7 June2021) and round 13 (between 24 June and 12 July 2021) of the REal-time Assessment ofCommunity Transmission-1 (REACT-1) study, with swabs sent to non-overlapping randomsamples of the population ages 5 years and over in England.ResultsWe observed sustained exponential growth with an average doubling time in round 13 of 25days (lower Credible Interval of 15 days) and an increase in average prevalence from 0.15%(0.12%, 0.18%) in round 12 to 0.63% (0.57%, 0.18%) in round 13. The rapid growth acrossand within rounds appears to have been driven by complete replacement of Alpha variant byDelta, and by the high prevalence in younger less-vaccinated age groups, with a nine-foldincrease between rounds 12 and 13 among those aged 13 to 17 years. Prevalence amongthose who reported being unvaccinated was three-fold higher than those who reported beingfully vaccinated. However, in round 13, 44% of infections occurred in fully vaccinatedindividuals, reflecting imperfect vaccine effectiveness against infection despite high overalllevels of vaccination. Using self-reported vaccination status, we estimated adjusted vaccineeffectiveness against infection in round 13 of 49% (22%, 67%) among participants aged 18to 64 years, which rose to 58% (33%, 73%) when considering only strong positives (Cyclethreshold [Ct] values < 27); also, we estimated adjusted vaccine effectiveness againstsymptomatic infection of 59% (23%, 78%), with any one of three common COVID-19symptoms reported

Working paper

Hamady A, Cooke GS, Garvey LJ, 2021, Identification of hepatitis delta superinfection when investigating transaminitis in HIV/hepatitis B virus co-infection, AIDS, Vol: 35, Pages: 1704-1706, ISSN: 0269-9370

Journal article

Simmons B, Ariyoshi K, Ohmagari N, Pulcini C, Huttner B, Gandra S, Satta G, Moja L, Sharland M, Magrini N, Miraldo M, Cooke Get al., 2021, Progress towards antibiotic use targets in eight high-income countries, Bulletin of the World Health Organization, Vol: 99, Pages: 550-561, ISSN: 0042-9686

Objective To compare antibiotic sales in eight high-income countries using the 2019 World Health Organization (WHO) Access, Watch andReserve (AWaRe) classification and the target of 60% consumption of Access category antibiotics.Methods We analysed data from a commercial database of sales of systemic antibiotics in France, Germany, Italy, Japan, Spain, Switzerland,United Kingdom of Great Britain and Northern Ireland, and United States of America over the years 2013–2018. We classified antibioticsaccording to the 2019 AWaRe categories: Access, Watch, Reserve and Not Recommended. We measured antibiotic sales per capita in standardunits (SU) per capita and calculated Access group sales as a percentage of total antibiotic sales.Findings In 2018, per capita antibiotic sales ranged from 7.4 SU (Switzerland) to 20.0 SU (France); median sales of Access group antibioticswere 10.9 SU per capita (range: 3.5–15.0). Per capita sales declined moderately over 2013–2018. The median percentage of Access groupantibiotics was 68% (range: 22–77 %); the Access group proportion increased in most countries between 2013 and 2018. Five countriesexceeded the 60% target; two countries narrowly missed it (>55% in Germany and Italy). Sales of Access antibiotics in Japan were low(22%), driven by relatively high sales of oral cephalosporins and macrolides.Conclusion We have identified changes to prescribing that could allow countries to achieve the WHO target. The 60% Access group targetprovides a framework to inform national antibiotic policies and could be complemented by absolute measures and more ambitious valuesin specific settings.

Journal article

Russell CD, Fairfield CJ, Drake TM, Turtle L, Seaton RA, Wootton DG, Sigfrid L, Harrison EM, Docherty AB, de Silva T, Egan C, Pius R, Hardwick HE, Merson L, Girvan M, Dunning J, Nguyen-Van-Tam JS, Openshaw PJM, Baillie JK, Semple MG, Ho Aet al., 2021, Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study, The Lancet Microbe, Vol: 2, Pages: E354-E365, ISSN: 2666-5247

BackgroundMicrobiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19.MethodsThe International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded.FindingsWe analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli a

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00420047&limit=30&person=true&page=4&respub-action=search.html