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Definition. Let V be an (n+ 1)-dimensional vectorspace. A

Lorentzian inner product m is a map m : V × V → R which is

• bilinear

• non-degenerate ( m(V,W ) = 0 for all W implies V = 0 )

• symmetric

• maximal dimension of any subspace W such that m|W is

positive definite is n.

Recall that by the classification theory of bilinear forms we can

always find a basis e0, e1, ..., en such that

• m (e0, e0) = −1

• m (e0, ei) = 0 for i = 1, 2, ..., n.

• m (ei, ej) = δij for i, j = 1, 2, ..., n.
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We want to study Lorentzian manifolds.

These are manifolds equippend with an extra structure, a

Lorentzian metric.
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Definition. Let M be a smooth manifold. A Lorentzian metric on

M is an assignment to each point p of a Lorentzian inner product,

i.e. a map

gp : TpM× TpM→ R

such that gp depends smoothly on p.

Pedestrian way to understand smooth dependence: Choose local

coordinates near p, say x0, x1, ..., xn. Then[
∂

∂x0

]
p̃

, ... ,

[
∂

∂xn

]
p̃

is a (coordinate) basis for each Tp̃M for p̃ ∈ U ⊂M. The metric is

determined by its values on this basis, the components

gαβ (p̃) = gp̃

([
∂

∂xα

]
p̃

,

[
∂

∂xβ

]
p̃

)
Smooth dependence: gαβ (p̃) are smooth as functions of p̃ in U .
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Given the local coordinate basis[
∂

∂x0

]
p̃

, ... ,

[
∂

∂xn

]
p̃

from the last slide, we can introduce a dual basis of one form dxα

on the dual (cotangent space) T ?pM via the defining relation

dxα
([

∂

∂xβ

])
= δαβ .

We can then write our Lorentzian metric as

gp =
∑
α,β

gαβ (p) dxα ⊗ dxβ (1)

By the Einstein summation convention, the sum is often omitted.
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Example 1: Minkowski space. M = R1+n equipped with

η = −dt⊗ dt+ dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn

= −dt2 + (dx1)2 + ...+ (dxn)2 (2)

Changing to polar coordinates, say n = 3

η = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
Changing also to null-coordinates t = u+ v and r = v − u

η = −4dudv + r2 (u, v)
(
dθ2 + sin2 θdφ2

)
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Example 2: Schwarzschild spacetime.

The manifold is

M = (−∞,∞)× (−∞,∞)× S2

Fix M > 0. We define

g = −16M2 2M

r(U, V )
e−

r(U,V )
2M dUdV + r2 (U, V )

(
dθ2 + sin2 θdφ2

)
with r = r (U, V ) given implicitly by

−UV =
1− 2M

r
2M
r e

−r/2M = (r − 2M)
1

2M
e
r

2M .

We shall obtain a simpler form and understand the geometry and

the physics of this metric very soon!
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Given a Lorentzian manifold (M, g) we have a notion of

timelike/ spacelike/ null vectors in each tangent space

and also of

timelike/ spacelike/ null curves.

Timelike curves corresponds to massive particles, null curves to

massless particles.

If γ is a causal (timelike or null) curve we define its length as

L (γ) =

∫ √
−g (γ̇, γ̇)dt

This is the proper time felt by a local observer w.r.t. his own clock.
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A smooth hypersurface F ⊂M is

• timelike if its normal is spacelike

• spacelike if its normal is timelike

• null if its normal is null

Examples (Minkowski):

• t = 0 is spacelike (normal is ∂t)

• u = 0 is null: Normal is n = ∇u = (du)
[ ∼ ∂v ( n = ηαβ∂αu∂β)
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Isometries of Lorentzian manifolds

Recall that if φ is a diffeomorphism

φ : (M, g)→
(
M̃, g̃

)
such that φ?g̃ = g, then φ is an isometry. The pull back condition:

gp (v, w) = g̃φ(p) ((dφ)pv, (dφ)pw)

for all v, w ∈ TpM .

We’ll be interested in the set of isometries from (M, g) to itself.

This set forms a Lie group which is can be generated by the Lie

algebra of so-called Killing fields.
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Definition. A Killing field W on (M, g) is a vectorfield on M
such that

LW g = 0

or in arbitrary coordinates

(LW g)µν = Wα∂agµν + ∂µW
αgαν + ∂νW

αgµα

Given a Killing field W we can look at its integral curves

(γ̇ = W (γ(s))). They generate a one parameter group of

diffeomorphisms φs which are isometries.
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Illustrate this with an example: Minkowski space in 1 + 3

dimensions, coordinates
(
t, x1, x2, x3

)
.

• Clearly, ∂t is a Killing field. It generates the one-parameter

group of isometries

φs :
(
t, x1, x2, x3

)
7→
(
t+ s, x1, x2, x3

)
(time)-translation invariance.

• Check x1∂t + t∂x1 is a Killing field. It generates

φs :
(
t, x1, x2, x3

)
7→
(
cosh(s) t+ sinh(s) x1, sinh(s) t+ cosh(s) x1, x2, x3

)
Lorentz boosts (hyperbolic rotations)

It total 3 rotations, 3 boosts, 4 translations =⇒ 10-dimensional

Poincare group
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The Connection

The idea: We would like to differentiate vectorfields on a manifold.

Need to compare vectors in different tangent spaces. This is

achieved by the covariant derivative operator ∇. We include the

axiomatic definition of the Levi-Civita connection on the next slide.
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The Connection

If X,Y are vectorfields on (M, g), then ∇XY is a vectorfield on

(M, g) (“the directional derivative of Y in the direction X”)

defined uniquely by

1. ∇XY is linear in Y over the reals

2. ∇XY is linear in X over smooth functions (∇fXY = f∇XY )

3. product rule: ∇X(fY ) = ∇X(f)Y + f∇XY

4. torsion-free (symmetric): ∇XY −∇YX − [X,Y ] = 0

5. metric compatible: For all vectorfields X,Y, Z on (M, g)

X (g(Y,Z)) = g (∇XY, Z) + g (Y,∇XZ) .
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One can compute the connection in a local coordinate chart

∇ ∂
∂xα

∂

∂xβ
= Γγαβ

∂

∂xγ

with

Γγαβ =
1

2
gγδ (∂αgδβ + ∂βgαδ − ∂δgαβ)

the Christoffel symbols. These are not tensors!

In Minkowski, Γ = 0 in Cartesian coordinates
(
t, x1, ..., xn

)
but

already in polar coordinates Γ 6= 0!

So, if I give you a metric in some coordinates, you can compute the

Γ. Note also

∇XY =
(
X (Y µ) + ΓµαβX

αY β
)
∂µ

Note that ∇XY depends only on X at the point p and the values of

Y along the integral curve of X!
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Parallel transport and Geodesics

The vectorfield Y along the curve γ is called parallel if ∇γ̇Y = 0.

By the theory of ODEs we can construct the parallel transport of

Y along γ given Y at a point p. Indeed we just need to solve the

system

d

ds
Y µ (x(s)) + Γµαβ (x(s)) γ̇α(x(s))Y β(x(s)) = 0 .

A curve γ : I →M is a geodesic if ∇γ̇ γ̇ = 0. Again ODE theory:

Proposition 1. Given a point p ∈M and a vector v ∈ TpM there

is a unique maximal geodesic

γ : (T−, T+)→M

such that γ(0) = p, γ̇|p = v where −∞ ≤ T− ≤ ∞.
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Proposition 2. Let γ : I →M be a geodesic such that γ(s0) is

timelike for some s0 ∈ I then γ̇(s) is timelike for all s ∈ I.

Proof.

γ̇ (g (γ̇, γ̇)) = 2g (∇γ̇ γ̇, γ̇) = 0

Hence geodesics preserve their type.

Geodesics correspond to feely falling particles.
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The connection defines a notion of curvature. The formulae are

the same as in the Riemannian case. The curvature measures the

failure of parallel transport to commute. The Riemann curvature

tensor:

R : TpM× TpM× TpM→ TpM

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

In coordinates

Rµρστ = ∂τΓµρσ − ∂σΓµρτ + ΓΓ− ΓΓ

The Ricci curvature tensor arises from contracting indices

Ricστ = Rµσµτ

The Einstein vacuum equations impose Ricστ = 0.
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Summary

1. We started from η appearing in the wave equation.

2. Defined the notion of a Lorentzian inner product (LIP).

3. Lorentzian manifold: LIP in each tangent space

4. Killing fields and isometries (understood Minkowski)

5. Connection, Parallel Transport, Geodesics

6. Curvature, vacuum Einstein equations.
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