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1 Equivalence of Carathéodory and Lebesgue measurable (Exer-
cise 3 in [SS])

Recall the exterior Lebesgue measure m? defined at the beginning of the course. Prove that a set E ⊂ Rd is
Carathéodory measurable if and only if it is Lebesgue measurable.
HINT: If E is Lebesgue measurable and A is any set, choose a Gδ set G with A ⊂ G and m? (A) = m (G).
Conversely, if E is Carathéodory measurable and m? (E) < ∞, choose a Gδ set with E ⊂ G and m? (E) =
m? (G). Then G− E has exterior measure zero.

2 Completion of a measure space (Exercise 1 in [SS])

Let (X,M, µ) be a measure space. One can define the completion of this space as follows. Let M be the
collection of sets of the form E ∪ Z where E ∈ M and Z ⊂ F with F ∈ M and µ (F ) = 0 (so we are
adjoining subsets of sets of measure zero). Also, define µ (E ∪ Z) = µ (E).

a) M is the smallest σ-algebra containing M and all subsets of elements of M of measure zero.

b) The function µ is a measure on M and this measure is complete.

3 Elementary Families

Here is a small technical result that is useful when checking whether a given collection of subsets is an
algebra.

We define an elementary family to be a collection E of subsets of X such that

• ∅ ∈ E ,

• if E,F ∈ E , then E ∩ F ∈ E ,

• if E ∈ E then Ec is a finite disjoint union of members of E .

Prove that if E is an elementary family, then the collection A of finite disjoint unions of members of E
forms an algebra. Deduce that finite disjoint unions of the following subsets of the real line form an algebra:
∅, (a,∞) , (a, b] with −∞ ≤ a < b <∞. The latter was claimed in class.
HINT: First show A,B ∈ E implies A \ B ∈ A and A ∪ B = A \ B ∪ B ∈ A. Now use induction to deduce
that finite unions (not necessarily disjoint) of sets in E are in A. Finally, show that A is closed under
complements. Conclude.
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4 Uniqueness of the extension of a premeasure

Let X be a non-empty set, A an algebra of subsets on X and µ0 : A → [0,∞] a premeasure. Recall that
Theorem 5.2 in the notes (Hahn-extension) shows the existence of a measure µ : M (A) → [0,∞] extend-
ing µ0. In general, µ is not unique. However if µ0 is σ-finite, i.e. if one can express X =

⋃∞
n=1En for a

countable collection of sets (En) in A with µ0 (En) < ∞ for all n, then µ is unique in the following sense:
If ν : M (A) → [0,∞] is another extension of µ0, then µ (E) = ν (E) holds for all E ∈ M (A). Prove this
assertion. HINT: First show this on sets of finite measure, then use σ-finiteness.

REMARK: As we observed in the proof of Theorem 5.2, there may be larger σ-algebras M̃ to which one
can extend µ0, so the σ-algebra one extends to is generally not unique (even in the σ-finite case). Uniqueness
holds once one fixes the σ-algebra one extends to, i.e. if µ : M̃ → [0,∞] and ν : M̃ → [0,∞] both extend
µ0, then µ and ν agree on the σ-algebra M̃. Your proof above hopefully gives you this statement as well.

5 Hausdorff measure

a) Prove that the Hausdorff exterior measure defined in class is indeed an exterior measure.
HINT: For the subadditivity property first fix δ > 0 and use the standard ε

2j -trick.

b) Prove that the Hausdorff exterior measure is finitely additive on sets of positive distance, i.e. d (A,B) > 0
implies that m?

α (A ∪B) = m?
α (A) +m?

α (B).

c) Suppose one defined a one-dimensional “exterior measure” m̃1 as

m̃1 (E) = inf
{ ∞∑
k=1

diam Fk | E ⊂
∞⋃
k=1

Fk

}
.

Note this is similar to the 1-dimensional Hausdorff measure but without any restriction on the size of the
diameters of the covering. Show that m̃1 fails to be finitely additive in the sense of b).
HINT: Consider two horizontal unit intervals in R2 with distance ε.

REMARK: The finite additivity property in b) makes the m?
α a so-called metric exterior measure. (Recall

this property was also key for us in the Lebesgue case!) This property ensures that applying Carathéodory’s
theorem, the Borel sets of Rd are measurable (see Section 1.2 of Chapter 6 in Stein-Shakarchi).

6 An example of the general Fubini-Tonelli-theorem

Let xm,n be a doubly infinite sequence of non-negative real numbers. On Example Sheet 2 you proved the
formula

∞∑
m,n=1

xm,n =

∞∑
m=1

∞∑
n=1

xm,n =

∞∑
n=1

∞∑
m=1

xm,n

Prove this formula using the general Tonelli theorem.

HINT: Defining the correct set-up where the theorem applies is part of the solution. You may want to
start by defining a measure space setting X = N,M = P (X) and µ : P (X)→ [0,∞] the counting measure.
How is integration of a function on (X,M, µ) defined? Now define the product measure and apply the
general Tonelli to conclude the result.
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