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1 Equivalence of Carathéodory and Lebesgue measurable

If E is Lebesgue measurable and A is any set, we use the property of the exterior measure (Property 3 in
Proposition 2.1 of the notes) that we can find for 1

n an open set Un with A ⊂ Un and

m? (Un) ≥ m? (A) ≥ m? (Un)− 1

n

The set G :=
⋂
n Un is then a Gδ-set, hence measurable and A ⊂ G. Moreover, the above inequality implies

m?(G)− 1

n
≤ m? (Un)− 1

n
≤ m? (A) ≤ m? (G)

for any n and hence m?(G) = m?(A). Since G is Lebesgue measurable and the Lebesgue measure is countably
additive

m?(A) = m?(G) = m (G) = m (E ∩G)+m (Ec ∩G) = m? (E ∩G)+m? (Ec ∩G) ≥ m? (E ∩A)+m? (Ec ∩A)

for any set A, which proves Carathéodory measurability of E after recalling that the ≤-direction is trivial
from subadditivity of the exterior measure.

For the reverse direction, let E be Carathéodory measurable and first assume m?(E) <∞. Then we use
again the property of the exterior measure to find a sequence of Un with E ⊂ Un and m? (Un) ≥ m? (E) ≥
m? (Un)− 1

n . Applying the Carathéodory condition with A = Un we have for any n

m?(Un) = m? (Un ∩ E) +m? (Un ∩ Ec)

or

m? (Un \ E) = m?(Un)−m? (Un ∩ E) = m?(Un)−m? (E) ≤ 1

n
.

Hence for any ε > 0 there is a Un open such that m? (Un \ E) < ε which proves E is Lebesgue measurable.
We finally lift the assumption that m? (E) < ∞. For arbitrary E we define En = E ∩ Bn with Bn

being the open ball around the origin of radius n. Since Bn is Lebesgue measurable, by the first part of the
question it is Carathéodory measurable and since Carathéodory measurable sets form a σ-algebra, the sets
En are all Carathéodory measurable if E is, and satisfy m? (En) <∞. By what we have already shown the
En are Lebesgue measurable and since E =

⋃
nEn and the Lebesgue measurable sets form a σ-algebra we

conclude E is Lebesgue measurable.
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2 Completion of a measure space (Exercise 1 in [SS])

a) We only need to showM is a σ-algebra asM clearly containsM and all subsets of sets of measure zero
(and the smallest such σ-algebra certainly needs to contain unions of such sets).

• The empty set is in M as ∅ = ∅ ∪ ∅ and ∅ ⊂ ∅ has µ (∅) = 0.

• Countable Unions: For (An) ∈ M with An = En ∪ Zn and En ∈ M, Zn ⊂ Fn with Fn ∈ M and
µ(Fn) = 0 we have

∞⋃
n=1

An =

∞⋃
n=1

(En ∪ Zn) =

∞⋃
n=1

En ∪
∞⋃
n=1

Zn (1)

Since
⋃
Zn ⊂

⋃
Fn and µ (

⋃
Fn) = 0 (a countable union of measure zero sets has measure zero) the

set
⋃
Zn is a subset of a measure zero set. Since also

⋃
nEn is in M, the right hand side of (1) is

in M and we have shown that the union of countably many sets in M is again in M.

• Complements: For A = E ∪ Z ∈ M with Z ⊂ F and µ(F ) = 0 we write the complement as (use
F c ⊂ Zc)

Ac = Ec∩Zc = ((Ec∩F c)∪(Ec∩F ))∩Zc = (Ec∩F c∩Zc)∪(Ec∩F ∩Zc) = (E∪F )c∪(Ec∩F ∩Zc)

Clearly (E ∩ F )c ∈M and Ec ∩ F ∩ Zc ⊂ F is a subset of a measure zero set, hence Ac ∈M.
Remark: If one assumes in addition that the sets E and F above are disjoint one can remove the
Ec from the second bracket (as claimed in an earlier version of this file). Note that one can assume
this without loss of generality, since if A = E′ ∪ Z ′ with Z ′ ⊂ F ′ and µ (F ′) = 0 does not satisfy
this, one writes A = E′ ∪ (Z ′ ∩ (E′)c) with Z ′ ∩ (E′)c ⊂ F ′ ∩ (E′)c a subset of a measure zero set.

• Closure under intersections now follows from de Morgan’s laws (and using closure under countable
unions and complements).

b) We first check that µ is well-defined (i.e. that different representation of an element in M give the
same measure. Indeed if E1 ∪ Z1 = E2 ∪ Z2 with Zi ⊂ Fi and Fi ∈ M with µ(Fi) = 0, then we have
E1 ⊂ E1∪Z1 = E2∪Z2 ⊂ E2∪F2 and hence µ(E1) ≤ µ(E2). Similarly E2 ⊂ E1∪F1 and µ(E2) ≤ µ(E1).
Therefore µ (E1 ∪ Z1) = µ(E1) = µ(E2) = µ (E2 ∪ Z2).

It remains to show µ is a measure. (It has to be complete since if A = E ∪ Z ∈ M (with Z ⊂ F ∈ M
having µ(F ) = 0) has µ (A) = µ(E) = 0, then, given a subset B ⊂ A, we have B ⊂ A = E ∪ Z ⊂ E ∪ F ,
and hence B is a subset of the measure zero set E ∪ F , hence included in M.)

We check countable additivity. Let (An = En ∪ Zn)∞n=1 be a countable collection of disjoint sets in M.
We then have, since the En are necessarily disjoint

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

En ∪ Zn

)
= µ

( ∞⋃
n=1

En ∪
∞⋃
n=1

Zn

)
= µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ (En) =

∞∑
n=1

µ (An) .

3 Elementary Families

We first note that it is sufficient to show that A is closed under finite unions and complements. The closure
under finite intersections is then a simple consequence of de Morgan’s laws. Since the union of finitely many
elements in A is a finite union of elements in E , to show closure of A under finite unions it suffices to show
that an arbitrary finite union of elements in E is in A. To show the latter we proceed according to the hint:

• A,B ∈ E =⇒ A \B ∈ A. Indeed,

A \B = A ∩Bc = A ∩
(
∪Nn=1B̃n

)
= ∪Nn=1

(
A ∩ B̃n

)
with the B̃n ∈ E disjoint. Since the right hand side is a disjoint union of sets in E (by the intersection
property of the elementary family) we conclude A \B ∈ A as desired.
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• A,B ∈ E =⇒ A ∪B ∈ A. Indeed, using the previous item,

A ∪B = (A \B) ∪B =
(
∪Nn=1Cn

)
∪B

with the Cn disjoint and their union disjoint from B. The right hand side is hence a disjoint union of
sets in E and therefore in A.

• A1, ..., AN ∈ E =⇒
⋃N
n=1An ∈ A.

We prove this by induction. The base case N = 2 was shown above so let us assume the statement is
true for N − 1 and consider

N⋃
n=1

An =

(
N−1⋃
n=1

An

)
∪AN =

(
M⋃
m=1

Ãm

)
∪AN =

(
M⋃
m=1

(
Ãm \AN

))
∪AN

where the Ãm are disjoint by the induction assumption. The last expression is a (finite) disjoint union
of sets in A, which by definition can be written as a (finite and still) disjoint union of sets in E and
hence lies in A.

It remains to show that A is closed under complements. We let A =
⋃N
n=1An ∈ A with the An ∈ E

disjoint and consider

Ac =

N⋂
n=1

(An)c =

N⋂
n=1

Nm⋃
m=1

Ãnm with all Ãnm ∈ E

where the last identity follows from the fact that the complement of a set in E can be written as a disjoint
union of sets in E . We now observe the set theoretic identity

N⋂
n=1

Mm⋃
m=1

Ãnm =

M1⋃
m1=1

M2⋃
m2=1

. . .

MN⋃
mN=1

(
N⋂
n=1

Ãnmj

)
(2)

which finishes the proof since the intersection of a finite number of sets in E is in E and we’ve shown that
any finite union of sets in E is in A. To verify the identity (2) observe that

x ∈
N⋂
n=1

Mm⋃
m=1

Ãnm ⇐⇒ for any n there exists an m′n ∈ {1, 2, ...,Mn} such that x ∈ Ãnm′
n

x ∈
M1⋃
m1=1

M2⋃
m2=1

. . .

MN⋃
mN=1

(
N⋂
n=1

Ãnmj

)
⇐⇒ there exists a tuple (m′1,m

′
2, ...m

′
n) such that x ∈ Ãnm′

j
for all n

from which the identity of the two sets is easily seen.
For the second part of the problem, we only need to show that the given subsets of the real line form an

elementary family. By the first part of we can then conclude that finite disjoint unions of such sets form an
algebra. We clearly have ∅ ∈ E and

• ∅ ∩ (a,∞) = ∅, ∅ ∩ (a, b] = ∅,

• (a,∞) ∩ (a′, b′] = ∅ if b′ ≤ a and (a,∞) ∩ (a′, b′] = (max(a′, a), b′] ∈ E for b′ > a.

For the complement we check

• (∅)c = (−∞,∞) ∈ E ,

• (a,∞)
c

= ∅ ∈ E if a = −∞ and (a,∞)
c

= (−∞, a] ∈ E if a > −∞,

• (a, b]
c

= (b,∞) ∈ E if a = −∞ and (a, b]
c

= (−∞, a] ∪ (b,∞) if a > −∞, the latter being a union of
two elements in E .
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4 Uniqueness of the extension of a premeasure

We start with the following observation: If E =
⋃∞
n=1En with En ∈ A then by the regularity properties of

the measure (the proof is the same for general measures!) and the fact that the two measures agree on A

ν (E) = lim
n→∞

ν

 n⋃
j=1

Ej

 = lim
n→∞

µ

 n⋃
j=1

Ej

 = µ (E) .

Hence µ and ν agree on countable unions of sets in A.
We now use the hint and first assume F ∈M (A) has finite measure.
We take any covering F ⊂

⋃∞
n=1En with En ∈ A from which we deduce

ν (F ) ≤
∞∑
n=1

µ (En) =

∞∑
n=1

µ0 (En)

and after taking the inf over all such coverings ν (F ) ≤ µ (F ) by the definition of µ in Theorem 5.2.
To prove the reverse we fix ε > 0 and take a covering F ⊂ E =

⋃∞
n=1En with µ (F ) ≥ µ (E) − ε. Since

µ (E) <∞ we have µ (E \ F ) ≤ ε and hence

µ (F ) ≤ µ (E) = ν (E) = ν (F ) + ν (E \ F ) ≤ ν (F ) + µ (E \ F ) ≤ ν (F ) + ε ,

where we used the observation made at the beginning and the fact that we already showed the other direction
for any set of finite measure. Since ε > 0 was arbitrary we are done.

We finally use the assumption of σ-finiteness. We have X =
⋃∞
n=1En with ∞ > µ (En) = ν (En). We

can wlog assume that the En are disjoint.1 Let F be an arbitrary element of M (A). We then have

µ (F ) = µ

( ∞⋃
n=1

(F ∩ En)

)
=

∞∑
n=1

µ (F ∩ En) =

∞∑
n=1

ν (F ∩ En) = ν (F ) .

Note that this proof also works in the situation discussed in the Remark.

5 Hausdorff measure

Recall that for any E ⊂ Rd we defined the exterior α-dimensional Hausdorff-measure of E as

m?
α (E) := lim

δ→0
Hδα (E)

where

Hδα (E) = inf
{∑

k

(diamFk)
α | E ⊂

∞⋃
k=1

Fk , diamFk ≤ δ for all k.
}

a) We have Hδα(∅) = 0 for any δ and hence m?
α(∅) = 0. We also have Hδα(E1) ≤ Hδα(E2) for E1 ⊂ E2 and

any δ (as any covering of E2 is also one of E1 and hence for E1 we are taking the inf over set at least as
large). The limit must therefore satisfy m?

α (E1) ≤ m?
α (E2). To show subadditivity we let (En)∞n=1 be a

countable family of sets. We fix δ > 0.

For every En we choose a countable covering Fnk with∑
k

(diam(Fnk))α ≥ Hδα(En) ≥
∑
k

(diam(Fnk))α − ε

2n
(3)

1If they are not disjoint, define Ẽn = En \
⋃n−1

i=1 Ei. Then the Ẽn are disjoint, have finite measure and their union is again
X.
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The union
⋃
n,k Fnk then covers

⋃∞
n=1En and hence

Hδα

( ∞⋃
n=1

En

)
≤
∑
k,n

(diam(Fnk))α =

∞∑
n=1

∞∑
k=1

(diam(Fnk))α ≤
∞∑
n=1

Hδα(En) + ε

with the first inequality holding by the definition of the inf, the second by the fact that the sum is
independent of the rearrangement (cf. Example Sheet 2 and Exercise 6 below!) and the third by inserting
(3). Since this holds for any ε > 0 we have, for any δ > 0

Hδα

( ∞⋃
n=1

En

)
≤
∞∑
n=1

Hδα(En) .

Both sides are increasing in δ we can take the limit to obtain m?
α (
⋃∞
n=1En) ≤

∑∞
n=1m

?
α(En) as desired.

b) The ≤ direction holds by subadditivity proven in a), so we only need to show ≥. Since A and B have
positive distance, we fix any δ < 1

2d (A,B) and consider a covering of A ∪ B by sets En with diameter
smaller than δ. We then define

Ẽn = En ∩A and E′n = En ∩B

By the choice of δ, En can only intersect either A or B (or none). In particular, the collection of sets
(Ẽn) and (E′n) are necessarily disjoint with (Ẽn) covering A and (E′n) covering B and also Ẽn∪E′n ⊂ En.
It follows that

Hδα (A) +Hδα(B) ≤
∑
n

(diam(Ẽn))α +
∑
n

(diam(E′n))α ≤
∑
n

(diam(En))α .

Taking the inf over all coverings En of A ∪B we obtain, for any fixed δ < 1
2d(A,B) the inequality

Hδα (A) +Hδα(B) ≤ Hδα (A ∪B) ≤ m?
α (A ∪B) .

Taking the limit as δ → 0 produces m?
α (A) +m?

α (B) ≤ m?
α (A ∪B) as desired.

c) Consider the line segments A = [−1, 1] × {ε} and B = [−1, 1] × {−ε} in R2 for 0 < ε < 1/2. We have
d (A,B) = ε. Both A and B are contained in a ball of radius 1 + ε, which implies

m̃1 (A ∪B) ≤ 1 + ε .

On the other hand, we have

m̃1 (A) = 1 and m̃1 (B) = 1 . (4)

Since 1+1 ≥ 1+ε the equality in b) is indeed violated. [To establish (4), note that the ≤ direction follows
by choosing small almost disjoint balls covering A. To get the lower bound, assume m̃1(A) ≤ 1 − η for
some η > 0. Then there exists a δ > 0 and a covering of A by sets Fn of diameter smaller than δ with∑

n

diam(Fn) < 1− η

2
.

If we denote the diameter of the sets Fn by δn, then
∑
n δn < 1− η

2 . But a set of diameter δn can cover
at most a closed interval of length δn of [0, 1]. Since

∑
n δn < 1 − η

2 , the Fn cannot cover an interval of
length 1, which is in contradiction with the Fn covering [0, 1]. Hence m̃1(A) ≥ 1.]

5



6 An example of the general Fubini-Tonelli-theorem

As suggested in the hint we define the measure space (X = N,M = P(X), µ) with µ : P(X) → [0,∞] the
counting measure, i.e. if U = {x1, x2, ..., xn} is any finite subset of N, then µ (U) = n, the number of elements
in U while if U has infinitely many elements, then µ(U) = +∞. The measure µ is clearly σ-finite. Given a
(trivially measurable as all subsets of X are measurable) extended valued, non-negative function f : N→ R,
we define its integral to be ∫

N
fdµ := sup

F

∑
n∈F⊂N

f(n) =

∞∑
n=1

f(n)

with the sup taken over all finite subsets of N.2 A general function f : N → R is called integrable if∑∞
n=1 |f(n)| <∞ is convergent. Of course an integrable function is necessarily finite valued.
Next we define the (unique since µ is σ-finite) product measure µ×µ onM⊗M (which is easily seen to

consist of all subsets of X×Y , since the algebraM�M contains all points (x, y) ∈ X×Y and the σ-algebra
generated from M�M all countable unions of one-point sets) as outlined in the notes. The integral of an
extended valued non-negative function f : X × Y → R is defined as∫

N×N
f d(µ× µ) := sup

F

∑
(m,n)∈F⊂N×N

f(m,n) ,

where the sup is taken over all finite subsets of N × N. The general Tonelli theorem now says that if
f : N× N→ [0,∞] is a non-negative function, then

sup
F

∑
(m,n)∈F⊂N×N

f(m,n) =

∞∑
n=1

( ∞∑
m=1

f(m,n)

)
=

∞∑
m=1

( ∞∑
n=1

f(m,n)

)
(5)

holds in the extended sense. Using the notation f(m,n) = xm,n for the function f we obtain the identity on
the example sheet.

2Note that this is precisely the definition resulting from the four stage procedure for defining the integral as done in class
for the Lebesgue integral.
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