Measure and Integration: Example Sheet 1

Fall 2016 [G. Holzegel]

October 12, 2016

1 The Cantor Set

It is easy to see that C_{n} consists of 2^{n} disjoint closed intervals of length 3^{-n}.
a) Prove that \mathfrak{C} is compact and non-empty.

Since all the C_{n} are closed sets, and since an arbitrary intersection of closed sets is also closed. the set \mathfrak{C} is closed. As it is a subset of $[0,1]$ it is also bounded, hence compact. To see non-emptyness, note that clearly $0 \in \mathfrak{C}$. In fact, it is easy to see that the endpoints of every closed interval $C_{n, k}$ in the disjoint union $C_{n}=C_{n, 1} \cup C_{n, 2} \cup \ldots \cup C_{n, 2^{n}}$ belong to \mathfrak{C}.
b) Prove that \mathfrak{C} is totally disconnected, i.e. given x and y in \mathfrak{C} with $x \neq y$ there is a $x<z<y$ with $z \notin \mathfrak{C}$.

Given $x<y$ we have $|x-y|=\delta>0$. Choose n such that $3^{-n}<\delta$. Clearly x and y both have to be in C_{n}. The length of each of the disjoint closed intervals in C_{n} is 3^{-n}, so x and y have to lie in different connected components of $C_{n}=C_{n, 1} \cup C_{n, 2} \cup \ldots \cup C_{n, 2^{n}}$ (from left to right). If x lies in $C_{n, k}$ then necessarily $k<2^{n}$ and the open interval between $C_{n, k}$ and $C_{n, k+1}$ contains only points from \mathfrak{C}^{c}.
c) Prove that \mathfrak{C} does not have isolated points.

We need to show that any δ-neighbourhood of an arbitrary $x \in \mathfrak{C}$ contains a point from \mathfrak{C}. Let hence $x \in \mathfrak{C}$ be given and $\delta>0$ prescribed. Let n be such that $3^{-n}<\delta$. Clearly $x \in C_{n}$, so x sits in one of the connected components of $C_{n}=C_{n, 1} \cup C_{n, 2} \cup \ldots \cup C_{n, 2^{n}}$, say $C_{n, k}$. But since the left and right endpoints of the $C_{n, k}$ are in \mathfrak{C} and since $C_{n, k}$ has length 3^{-n} we can find at least one point $y \in \mathfrak{C} \cap C_{n, k}$ such that $|x-y|<3^{-n}<\delta$.
d) Prove that $m_{\star}(\mathfrak{C})=0$.

Note that $\mathfrak{C} \subset C_{n}$ for any n. By the monotonicity property of the exterior measure, we have $m_{\star}(\mathfrak{C}) \leq$ $m_{\star}\left(C_{n}\right)$. Now since C_{n} is a disjoint union of 2^{n} compact intervals of length 3^{-n}, we have $m_{\star}\left(C_{n}\right)=$ $(2 / 3)^{n}$. We conclude that $m_{\star}(\mathfrak{C})<\epsilon$ for any $\epsilon>0$ and hence $m_{\star}(\mathfrak{C})=0$.
e) Show that we can write C_{n} as

$$
C_{n}=\bigcup_{a_{1}, \ldots, a_{n} \in\{0,2\}}\left[\sum_{k=1}^{n} a_{k} 3^{-k}, \sum_{k=1}^{n} a_{k} 3^{-k}+\frac{1}{3^{n}}\right]
$$

We mentioned several times that C_{n} contains 2^{n} intervals of length 3^{-n}. To show the claim of the hint, we first note that the left endpoint of C_{0} is 0 consistent with the formula. Assume now that for $n=N$ the 2^{N} left endpoints of the closed disjoint intervals in C_{N} are indeed given by the 2^{N} numbers arising as $\sum_{k=1}^{N} a_{k} 3^{-k}$ by different choices of $a_{k} \in\{0,2\}$. We now look at C_{N+1}, which arises from C_{N} by deleting the mid-third intervals. Therefore, any of the 2^{N} connected component of C_{N} (which each had 1 left
endpoint, say p_{i}) is decomposed into two different disjoint intervals with endpoints p_{i} and $p_{i}+2 \dot{3}^{-N-1}$. Therefore, the left endpoints of C_{N+1} are

$$
\sum_{k=1}^{N} a_{k} 3^{-k}+0 \quad \text { with } a_{k} \in\{0,2\} \quad \text { and } \quad \sum_{k=1}^{N} a_{k} 3^{-k}+2 \cdot 3^{-N-1} \text { with } a_{k} \in\{0,2\}
$$

But the collection of these points can be written as $\sum_{k=1}^{N+1} a_{k} 3^{-k}$ with $a_{k} \in\{0,2\}$ and the proof by induction is completed. The overall claim then follows by noting that the intervals in C_{n} have length 3^{-n}.
f) Show that $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ with $a_{k} \in\{0,2\} \Leftrightarrow x \in \mathfrak{C}$.

Let $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ for some fixed collection of $\left(a_{k}\right)$. We need to show that $x \in C_{n}$ for any n. But for any n we have

$$
\sum_{k=1}^{n} a_{k} 3^{-k} \leq x \leq \sum_{k=1}^{n} a_{k} 3^{-k}+\sum_{k=n+1}^{\infty} 2 \cdot 3^{-k}=\sum_{k=1}^{n} a_{k} 3^{-k}+\frac{1}{3^{n}}
$$

which is precisely the statement that x is contained in one of the intervals of C_{n}.
Conversely, let $x \in \mathfrak{C}$, so x is in any C_{n}. We construct a (unique) sequence (a_{k}) (consisting of 0 's and 2) such that we have

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} 3^{-k} \leq x \leq \sum_{k=1}^{n} a_{k} 3^{-k}+\frac{1}{3^{n}} \tag{1}
\end{equation*}
$$

for any n as follows. Clearly for any fixed N there are unique a_{k} with $k=1, \ldots, N$ satisfying (1) with $n=N$ as x lies in exactly one of the disjoint intervals of C_{N}. Similarly, since $x \in C_{N+1}$, there are unique \tilde{a}_{k} with $k=1, \ldots, N+1$ satisfying (1) with $n=N+1$. We now show that $a_{k}=\tilde{a}_{k}$ for $k=1, \ldots, n$, which (by induction) shows that the the coefficients a_{k} in (1) do not depend on n. To see this, note that if $x \in C_{n}$, then the interval of C_{n+1} of which x is an element can only be the left third or the right third of the interval of C_{n} of which x is an element of. So either

$$
\sum_{k=1}^{N} a_{k} 3^{-k}+\frac{0}{3^{N+1}} \leq x \leq \sum_{k=1}^{N} a_{k} 3^{-k}+\frac{1}{3^{N+1}} \quad \text { or } \quad \sum_{k=1}^{N} a_{k} 3^{-k}+\frac{2}{3^{N+1}} \leq x \leq \sum_{k=1}^{N} a_{k} 3^{-k}+\frac{3}{3^{N+1}}
$$

In the first case,

$$
\sum_{k=1}^{N+1} a_{k} 3^{-k} \leq x \leq \sum_{k=1}^{N+1} a_{k} 3^{-k}+\frac{1}{3^{N+1}}
$$

holds with $a_{k+1}=0$ while in the second the above holds with $a_{k+1}=2$. This show ins particular, $a_{k}=\tilde{a}_{k}$ for $k=1, \ldots, n$ as desired.
With (1) established for all n we observe that the sum on the left converges and that in fact the left hand side and the right hand side converge to the same value, giving $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ as claimed.
g) Define the Cantor-Lebesgue function $F: \mathfrak{C} \rightarrow[0,1]$ as

$$
F(x)=\sum_{k=1}^{\infty} \frac{b_{k}}{2^{k}} \quad \text { for } x=\sum_{k=1}^{\infty} a_{k} 3^{-k}, \text { where } b_{k}=\frac{a_{k}}{2} .
$$

Show that F is well-defined and in fact continuous on \mathfrak{C}. Show also that F is surjective. Conclude that \mathfrak{C} is uncountable.

To show that F is well defined we need to show that the $\left(a_{k}\right)$ in the expansion $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ are unique. This is easy to see because suppose there were two sequences (a_{k}) and (\tilde{a}_{k}) giving rise to the same x and differing at position N where $a_{N}=0$ and $\tilde{a}_{N}=2$ (or the other way round). Then we must have

$$
0+\sum_{N+1}^{\infty} a_{k} 3^{-k}=\frac{2}{3^{N}}+\sum_{N+1}^{\infty} \tilde{a}_{k} 3^{-k}
$$

and in particular

$$
0+\sum_{N+1}^{\infty} 2 \cdot 3^{-k} \geq \frac{2}{3^{N}} \text { which implies } \frac{1}{3^{N}} \geq \frac{2}{3^{N}}, \quad \text { a contradiction. }
$$

Surjectivity follows from the fact that every real number has a (non-unique) dyadic expansion. Surjectivity implies that the cardinality of \mathfrak{C} is at least that of $[0,1]$ but since the latter is a subset of the former, they must have the same cardinality.
To show continuity at $x \in \mathfrak{C}$, we let $\left(x_{n}\right)$ be an arbitrary sequence in \mathfrak{C} with $x_{n} \rightarrow x$. We need to show that given $\epsilon>0$ we can find N such that for all $n \geq N$ we have $\left|F(x)-F\left(x_{n}\right)\right|<\epsilon$.
We fix a K large such that $\sum_{k=K+1}^{\infty} \frac{1}{2^{k}}<\epsilon$. We let $x_{n}=\sum_{k=1}^{\infty}\left(a_{n}\right)_{k} 3^{-k}$ and $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$. (We already know that the $\left(a_{n}\right)_{k}$ and a_{k} are unique.) Since we have $x_{n} \rightarrow x$ we can choose an N such that we have $\left|x-x_{n}\right|<\frac{1}{3^{K+1}}$ for all $n \geq N$. It is easy to see that this implies $\left(a_{n}\right)_{k}=a_{k}$ for all $k=1, \ldots, K$ and $n \geq N$ (get a contradiction using geometric series). With these choices, we have for all $n \geq N$

$$
\left|F\left(x_{n}\right)-F(x)\right|=\left|\sum_{k=1}^{\infty} \frac{\left(a_{n}\right)_{k}-a_{k}}{2} \frac{1}{2^{k}}\right|=\left|\sum_{K+1}^{\infty} \frac{\left(a_{n}\right)_{k}-a_{k}}{2} \frac{1}{2^{k}}\right| \leq \sum_{K+1}^{\infty} \frac{1}{2^{k}}<\epsilon
$$

as desired. Remark: F can actually be extended to a continuous function on all of $[0,1]$.

2 Fat Cantor Sets

a) Show that $m_{\star}(\hat{\mathfrak{C}})=\frac{1}{2}$ and conclude that $\hat{\mathfrak{C}}$ is uncountable.

Note that $\hat{\mathfrak{C}}$ is measurable and $m(\hat{\mathfrak{C}})=m_{\star}(\hat{\mathfrak{C}})$. It is also clear that \hat{C}_{k} is measurable and we compute the measure of its complement in $[0,1]$ (the intervals we remove) for $k \geq 1$ to be

$$
\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots+\frac{1}{2} \frac{1}{2^{k}}=\frac{1}{2} \sum_{j=1}^{k} \frac{1}{2^{j}}=\frac{1}{2}-\frac{1}{2^{k+1}}
$$

Hence $m\left(\hat{C}_{k}\right)=\frac{1}{2}+\frac{1}{2^{k+1}}$. We have $\hat{C}_{k} \supset \hat{C}_{k+1}$ and $m\left(\hat{C}_{1}\right)=1$ and hence by a result from lectures $m\left(\cap_{k=1}^{\infty} \hat{C}_{k}\right)=\lim _{k \rightarrow \infty} m\left(\hat{C}_{k}\right)=\frac{1}{2}$. If $\hat{\mathfrak{C}}$ was countable we would necessarily have $m_{\star}(\mathfrak{C})=0$.
b) Show that $\hat{\mathfrak{C}}$ is again compact, totally disconnected and has no isolated points.

The proof is very similar to the first question and will not be repeated.

3 * Characterisation of Riemann integrable functions

Prove that a bounded function on an interval $[a, b]$ is Riemann integrable if and only if its set of discontinuities has measure zero.

This is a hard problem. You should look up the outline of the proof in Stein-Shakarchi (p.47) or elsewhere in the literature. You can use the result at the end of Exercise 4.

4 Limits of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ (Exercise 10 of [SS])

In this exercise we construct the sequence of continuous functions promised in the first lecture.
Let $\hat{\mathfrak{C}}$ denote the Fat Cantor Set constructed in Exercise 2. We define the function F_{1} to be a piecewise linear continuous function which is equal to 1 on the complement of the first interval $I_{1}=[3 / 8,5 / 8]$ removed
from $[0,1]$ in the construction of $\hat{\mathfrak{C}}$ and zero at the point at the centre of I_{1}. Similarly we construct F_{2} to be a piecewise linear continuous function which is equal to 1 on the complement of the open intervals removed at the second stage and zero at the centre of these intervals. Continuing in this way we can define F_{n} for all n and finally

$$
f_{n}=F_{1} \cdot F_{2} \cdot \ldots \cdot F_{n}
$$

a) Show that for all $n \geq 1$ and all $x \in[0,1]$ one has $0 \leq f_{n}(x) \leq 1$ and $f_{n}(x) \geq f_{n+1}(x)$. We conclude that $f_{n}(x)$ converges to a limit which we denote by $f(x)$.

All easy to see.
b) Show that the function f is discontinuous at every point of $\hat{\mathfrak{C}}$. Conclude that f is not Riemann integrable (despite the sequence $s_{n}=\int f_{n}$ converging).
Hint: Note that $f(x)=1$ if $x \in \hat{\mathfrak{C}}$ and find a sequence of points $\left\{x_{n}\right\}$ so that $x_{n} \rightarrow x$ and $f\left(x_{n}\right)=0$.

The last conclusion follows from Exercise 3 so we will focus on establishing discontinuity at the points $x \in \hat{\mathfrak{C}}$. We first define a sequence x_{n} with $\left|x_{n}-x\right|<\frac{1}{2^{n}}$ as follows. We know that each \hat{C}_{k} consists of 2^{k} disjoint intervals of length L_{k} necessarily smaller than 2^{-k} (the actual length can be computed to be $\left.L_{k}=\frac{2^{k}+1}{2 \cdot 4^{k}}\right)$. Therefore, given n we know that x is contained in one of the intervals of \hat{C}_{n} of length L_{n}. At the next stage, L_{n} is tri-sected and an interval of length 4^{n+1} is removed from the middle. We choose x_{n} to be the point in the middle of that interval. Clearly $\left|x-x_{n}\right|<L_{n}<2^{-n}$ by construction. Moreover, since x_{n} sits at the middle point of an interval that gets removed, we have $F_{n+1}\left(x_{n}\right)=0$ for all n and hence $\lim _{k \rightarrow \infty} f_{k}\left(x_{n}\right)=f\left(x_{n}\right)=0$ for any n. This is the desired sequence which clearly proves that f is not continuous at x.

5 The outer Jordan content of a set (Exercise 14 of [SS])

The outer Jordan content $J_{\star}(E)$ of a bounded set E in \mathbb{R} is defined by

$$
J_{\star}(E)=\inf \sum_{j=1}^{N}\left|I_{j}\right|
$$

where the infimum is taken over all finite coverings $E \subset \bigcup_{j=1}^{N} I_{j}$ by intervals I_{j}.
a) Prove that $J_{\star}(E)=J_{\star}(\bar{E})$ for every set E. Here \bar{E} denotes the closure of E.

Wlog we can assume that the intervals I_{j} of the finite covering are closed (why?).
But then, if E is covered by finitely many closed intervals I_{i} its closure \bar{E} is also covered by those intervals because the closure is the smallest closed set containg E and the union of the finitely many closed intervals is a closed set containing E. It follows that $J_{\star}(E) \geq J_{\star}(\bar{E})$. Since the other direction is clear by monotonicity, the claim follows.
b) Exhibit a countable subset $E \subset[0,1]$ such that $J_{\star}(E)=1$ while $m_{\star}(E)=0$.

Take $E=\mathbb{Q} \cap[0,1] \subset[0,1]$. Since the rationals are dense in $[0,1]$, their closure is all of $[0,1]$ which has outer Jordan content 1. But E is countable, so $m_{\star}(E)=0$.

