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1 The Cantor Set

It is easy to see that Cn consists of 2n disjoint closed intervals of length 3−n.

a) Prove that C is compact and non-empty.

Since all the Cn are closed sets, and since an arbitrary intersection of closed sets is also closed. the set C
is closed. As it is a subset of [0, 1] it is also bounded, hence compact. To see non-emptyness, note that
clearly 0 ∈ C. In fact, it is easy to see that the endpoints of every closed interval Cn,k in the disjoint
union Cn = Cn,1 ∪ Cn,2 ∪ ... ∪ Cn,2n belong to C.

b) Prove that C is totally disconnected, i.e. given x and y in C with x 6= y there is a x < z < y with z /∈ C.

Given x < y we have |x − y| = δ > 0. Choose n such that 3−n < δ. Clearly x and y both have to
be in Cn. The length of each of the disjoint closed intervals in Cn is 3−n, so x and y have to lie in
different connected components of Cn = Cn,1 ∪Cn,2 ∪ ...∪Cn,2n (from left to right). If x lies in Cn,k then
necessarily k < 2n and the open interval between Cn,k and Cn,k+1 contains only points from Cc.

c) Prove that C does not have isolated points.

We need to show that any δ-neighbourhood of an arbitrary x ∈ C contains a point from C. Let hence
x ∈ C be given and δ > 0 prescribed. Let n be such that 3−n < δ. Clearly x ∈ Cn, so x sits in one of the
connected components of Cn = Cn,1 ∪Cn,2 ∪ ... ∪Cn,2n , say Cn,k. But since the left and right endpoints
of the Cn,k are in C and since Cn,k has length 3−n we can find at least one point y ∈ C ∩ Cn,k such that
|x− y| < 3−n < δ.

d) Prove that m? (C) = 0.

Note that C ⊂ Cn for any n. By the monotonicity property of the exterior measure, we have m? (C) ≤
m? (Cn). Now since Cn is a disjoint union of 2n compact intervals of length 3−n, we have m? (Cn) =
(2/3)

n
. We conclude that m? (C) < ε for any ε > 0 and hence m? (C) = 0.

e) Show that we can write Cn as

Cn =
⋃

a1,...,an∈{0,2}

[
n∑

k=1

ak3−k,

n∑
k=1

ak3−k +
1

3n

]
.

We mentioned several times that Cn contains 2n intervals of length 3−n. To show the claim of the hint,
we first note that the left endpoint of C0 is 0 consistent with the formula. Assume now that for n = N
the 2N left endpoints of the closed disjoint intervals in CN are indeed given by the 2N numbers arising as∑N

k=1 ak3−k by different choices of ak ∈ {0, 2}. We now look at CN+1, which arises from CN by deleting
the mid-third intervals. Therefore, any of the 2N connected component of CN (which each had 1 left
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endpoint, say pi) is decomposed into two different disjoint intervals with endpoints pi and pi + 23̇−N−1.
Therefore, the left endpoints of CN+1 are

N∑
k=1

ak3−k + 0 with ak ∈ {0, 2} and

N∑
k=1

ak3−k + 2 · 3−N−1with ak ∈ {0, 2}

But the collection of these points can be written as
∑N+1

k=1 ak3−k with ak ∈ {0, 2} and the proof by
induction is completed. The overall claim then follows by noting that the intervals in Cn have length
3−n.

f) Show that x =
∑∞

k=1 ak3−k with ak ∈ {0, 2} ⇔ x ∈ C.

Let x =
∑∞

k=1 ak3−k for some fixed collection of (ak). We need to show that x ∈ Cn for any n. But for
any n we have

n∑
k=1

ak3−k ≤ x ≤
n∑

k=1

ak3−k +

∞∑
k=n+1

2 · 3−k =

n∑
k=1

ak3−k +
1

3n

which is precisely the statement that x is contained in one of the intervals of Cn.

Conversely, let x ∈ C, so x is in any Cn. We construct a (unique) sequence (ak) (consisting of 0’s and 2)
such that we have

n∑
k=1

ak3−k ≤ x ≤
n∑

k=1

ak3−k +
1

3n
. (1)

for any n as follows. Clearly for any fixed N there are unique ak with k = 1, ..., N satisfying (1) with
n = N as x lies in exactly one of the disjoint intervals of CN . Similarly, since x ∈ CN+1, there are unique
ãk with k = 1, ..., N + 1 satisfying (1) with n = N + 1. We now show that ak = ãk for k = 1, ..., n, which
(by induction) shows that the the coefficients ak in (1) do not depend on n. To see this, note that if
x ∈ Cn, then the interval of Cn+1 of which x is an element can only be the left third or the right third
of the interval of Cn of which x is an element of. So either

N∑
k=1

ak3−k +
0

3N+1
≤ x ≤

N∑
k=1

ak3−k +
1

3N+1
or

N∑
k=1

ak3−k +
2

3N+1
≤ x ≤

N∑
k=1

ak3−k +
3

3N+1
.

In the first case,
N+1∑
k=1

ak3−k ≤ x ≤
N+1∑
k=1

ak3−k +
1

3N+1

holds with ak+1 = 0 while in the second the above holds with ak+1 = 2. This show ins particular, ak = ãk
for k = 1, ..., n as desired.

With (1) established for all n we observe that the sum on the left converges and that in fact the left hand
side and the right hand side converge to the same value, giving x =

∑∞
k=1 ak3−k as claimed.

g) Define the Cantor-Lebesgue function F : C→ [0, 1] as

F (x) =

∞∑
k=1

bk
2k

for x =

∞∑
k=1

ak3−k, where bk =
ak
2
.

Show that F is well-defined and in fact continuous on C. Show also that F is surjective. Conclude that
C is uncountable.

To show that F is well defined we need to show that the (ak) in the expansion x =
∑∞

k=1 ak3−k are
unique. This is easy to see because suppose there were two sequences (ak) and (ãk) giving rise to the
same x and differing at position N where aN = 0 and ãN = 2 (or the other way round). Then we must
have

0 +

∞∑
N+1

ak3−k =
2

3N
+

∞∑
N+1

ãk3−k
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and in particular

0 +

∞∑
N+1

2 · 3−k ≥ 2

3N
which implies

1

3N
≥ 2

3N
, a contradiction.

Surjectivity follows from the fact that every real number has a (non-unique) dyadic expansion. Surjectivity
implies that the cardinality of C is at least that of [0, 1] but since the latter is a subset of the former, they
must have the same cardinality.

To show continuity at x ∈ C, we let (xn) be an arbitrary sequence in C with xn → x. We need to show
that given ε > 0 we can find N such that for all n ≥ N we have |F (x)− F (xn) | < ε.

We fix a K large such that
∑∞

k=K+1
1
2k

< ε. We let xn =
∑∞

k=1(an)k3−k and x =
∑∞

k=1 ak3−k. (We
already know that the (an)k and ak are unique.) Since we have xn → x we can choose an N such that
we have |x− xn| < 1

3K+1 for all n ≥ N . It is easy to see that this implies (an)k = ak for all k = 1, ...,K
and n ≥ N (get a contradiction using geometric series). With these choices, we have for all n ≥ N

|F (xn)− F (x) | =
∣∣∣ ∞∑
k=1

(an)k − ak
2

1

2k

∣∣∣ =
∣∣∣ ∞∑
K+1

(an)k − ak
2

1

2k

∣∣∣ ≤ ∞∑
K+1

1

2k
< ε

as desired. Remark: F can actually be extended to a continuous function on all of [0, 1].

2 Fat Cantor Sets

a) Show that m?

(
Ĉ
)

= 1
2 and conclude that Ĉ is uncountable.

Note that Ĉ is measurable and m(Ĉ) = m?(Ĉ). It is also clear that Ĉk is measurable and we compute the
measure of its complement in [0, 1] (the intervals we remove) for k ≥ 1 to be

1

4
+

1

8
+

1

16
+ ...+

1

2

1

2k
=

1

2

k∑
j=1

1

2j
=

1

2
− 1

2k+1
.

Hence m
(
Ĉk

)
= 1

2 + 1
2k+1 . We have Ĉk ⊃ Ĉk+1 and m

(
Ĉ1

)
= 1 and hence by a result from lectures

m
(
∩∞k=1Ĉk

)
= limk→∞m

(
Ĉk

)
= 1

2 . If Ĉ was countable we would necessarily have m? (C) = 0.

b) Show that Ĉ is again compact, totally disconnected and has no isolated points.

The proof is very similar to the first question and will not be repeated.

3 *Characterisation of Riemann integrable functions

Prove that a bounded function on an interval [a, b] is Riemann integrable if and only if its set of discontinu-
ities has measure zero.

This is a hard problem. You should look up the outline of the proof in Stein-Shakarchi (p.47) or elsewhere
in the literature. You can use the result at the end of Exercise 4.

4 Limits of continuous functions f : [0, 1]→ R (Exercise 10 of [SS])

In this exercise we construct the sequence of continuous functions promised in the first lecture.
Let Ĉ denote the Fat Cantor Set constructed in Exercise 2. We define the function F1 to be a piecewise

linear continuous function which is equal to 1 on the complement of the first interval I1 = [3/8, 5/8] removed
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from [0, 1] in the construction of Ĉ and zero at the point at the centre of I1. Similarly we construct F2 to be
a piecewise linear continuous function which is equal to 1 on the complement of the open intervals removed
at the second stage and zero at the centre of these intervals. Continuing in this way we can define Fn for all
n and finally

fn = F1 · F2 · ... · Fn

a) Show that for all n ≥ 1 and all x ∈ [0, 1] one has 0 ≤ fn (x) ≤ 1 and fn (x) ≥ fn+1 (x). We conclude that
fn (x) converges to a limit which we denote by f (x).

All easy to see.

b) Show that the function f is discontinuous at every point of Ĉ. Conclude that f is not Riemann integrable
(despite the sequence sn =

∫
fn converging).

Hint: Note that f (x) = 1 if x ∈ Ĉ and find a sequence of points {xn} so that xn → x and f (xn) = 0.

The last conclusion follows from Exercise 3 so we will focus on establishing discontinuity at the points
x ∈ Ĉ. We first define a sequence xn with |xn − x| < 1

2n as follows. We know that each Ĉk consists of
2k disjoint intervals of length Lk necessarily smaller than 2−k (the actual length can be computed to be

Lk = 2k+1
2·4k ). Therefore, given n we know that x is contained in one of the intervals of Ĉn of length Ln.

At the next stage, Ln is tri-sected and an interval of length 4n+1 is removed from the middle. We choose
xn to be the point in the middle of that interval. Clearly |x−xn| < Ln < 2−n by construction. Moreover,
since xn sits at the middle point of an interval that gets removed, we have Fn+1 (xn) = 0 for all n and
hence limk→∞ fk (xn) = f (xn) = 0 for any n. This is the desired sequence which clearly proves that f is
not continuous at x.

5 The outer Jordan content of a set (Exercise 14 of [SS])

The outer Jordan content J? (E) of a bounded set E in R is defined by

J? (E) = inf

N∑
j=1

|Ij |

where the infimum is taken over all finite coverings E ⊂
⋃N

j=1 Ij by intervals Ij .

a) Prove that J? (E) = J?
(
E
)

for every set E. Here E denotes the closure of E.

Wlog we can assume that the intervals Ij of the finite covering are closed (why?).

But then, if E is covered by finitely many closed intervals Ii its closure E is also covered by those
intervals because the closure is the smallest closed set containg E and the union of the finitely many
closed intervals is a closed set containing E. It follows that J? (E) ≥ J?

(
E
)
. Since the other direction is

clear by monotonicity, the claim follows.

b) Exhibit a countable subset E ⊂ [0, 1] such that J? (E) = 1 while m? (E) = 0.

Take E = Q ∩ [0, 1] ⊂ [0, 1]. Since the rationals are dense in [0, 1], their closure is all of [0, 1] which has
outer Jordan content 1. But E is countable, so m? (E) = 0.
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