1 The Cantor Set

It is easy to see that \(C_n \) consists of \(2^n \) disjoint closed intervals of length \(3^{-n} \).

a) Prove that \(\mathcal{C} \) is compact and non-empty.

Since all the \(C_n \) are closed sets, and since an arbitrary intersection of closed sets is also closed, the set \(\mathcal{C} \) is closed. As it is a subset of \([0, 1]\) it is also bounded, hence compact. To see non-emptyness, note that clearly \(0 \in \mathcal{C} \). In fact, it is easy to see that the endpoints of every closed interval \(C_{n,k} \) in the disjoint union \(C_n = C_{n,1} \cup C_{n,2} \cup \ldots \cup C_{n,2^n} \) belong to \(\mathcal{C} \).

b) Prove that \(\mathcal{C} \) is totally disconnected, i.e. given \(x \) and \(y \) in \(\mathcal{C} \) with \(x \neq y \) there is a \(x < z < y \) with \(z \notin \mathcal{C} \).

Given \(x < y \) we have \(|x - y| = \delta > 0 \). Choose \(n \) such that \(3^{-n} < \delta \). Clearly \(x \) and \(y \) both have to be in \(C_n \). The length of each of the disjoint closed intervals in \(C_n \) is \(3^{-n} \), so \(x \) and \(y \) have to lie in different connected components of \(C_n = C_{n,1} \cup C_{n,2} \cup \ldots \cup C_{n,2^n} \) (from left to right). If \(x \) lies in \(C_{n,k} \) then necessarily \(k < 2^n \) and the open interval between \(C_{n,k} \) and \(C_{n,k+1} \) contains only points from \(\mathcal{C} \).

c) Prove that \(\mathcal{C} \) does not have isolated points.

We need to show that any \(\delta \)-neighbourhood of an arbitrary \(x \in \mathcal{C} \) contains a point from \(\mathcal{C} \). Let hence \(x \in \mathcal{C} \) be given and \(\delta > 0 \) prescribed. Let \(n \) be such that \(3^{-n} < \delta \). Clearly \(x \in C_n \), so \(x \) sits in one of the connected components of \(C_n = C_{n,1} \cup C_{n,2} \cup \ldots \cup C_{n,2^n} \), say \(C_{n,k} \). But since the left and right endpoints of the \(C_{n,k} \) are in \(\mathcal{C} \) and since \(C_{n,k} \) has length \(3^{-n} \) we can find at least one point \(y \in \mathcal{C} \cap C_{n,k} \) such that \(|x - y| < 3^{-n} < \delta \).

d) Prove that \(m_*(\mathcal{C}) = 0 \).

Note that \(\mathcal{C} \subset C_n \) for any \(n \). By the monotonicity property of the exterior measure, we have \(m_*(\mathcal{C}) \leq m_*(C_n) \). Now since \(C_n \) is a disjoint union of \(2^n \) compact intervals of length \(3^{-n} \), we have \(m_*(C_n) = (2/3)^n \). We conclude that \(m_*(\mathcal{C}) < \epsilon \) for any \(\epsilon > 0 \) and hence \(m_*(\mathcal{C}) = 0 \).

e) Show that we can write \(C_n \) as

\[
C_n = \bigcup_{a_1, \ldots, a_n \in \{0, 2\}} \left[\sum_{k=1}^{n} a_k 3^{-k}, \sum_{k=1}^{n} a_k 3^{-k} + \frac{1}{3^n} \right].
\]

We mentioned several times that \(C_n \) contains \(2^n \) intervals of length \(3^{-n} \). To show the claim of the hint, we first note that the left endpoint of \(C_n \) is 0 consistent with the formula. Assume now that for \(n = N \) the \(2^N \) left endpoints of the closed disjoint intervals in \(C_N \) are indeed given by the \(2^N \) numbers arising as \(\sum_{k=1}^{N} a_k 3^{-k} \) by different choices of \(a_k \in \{0, 2\} \). We now look at \(C_{N+1} \), which arises from \(C_N \) by deleting the mid-third intervals. Therefore, any of the \(2^{2N} \) connected component of \(C_N \) (which each had 1 left
endpoints, say p_i) is decomposed into two different disjoint intervals with endpoints p_i and $p_i + 23^{-N-1}$. Therefore, the left endpoints of C_{N+1} are

$$\sum_{k=1}^{N} a_k 3^{-k} + 0 \quad \text{with} \quad a_k \in \{0, 2\} \quad \text{and} \quad \sum_{k=1}^{N} a_k 3^{-k} + 2 \cdot 3^{-N-1} \text{with} \quad a_k \in \{0, 2\}$$

But the collection of these points can be written as $\sum_{k=1}^{N+1} a_k 3^{-k}$ with $a_k \in \{0, 2\}$ and the proof by induction is completed. The overall claim then follows by noting that the intervals in C_n have length 3^{-n}.

f) Show that $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \in \{0, 2\} \Leftrightarrow x \in \mathcal{C}$.

Let $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ for some fixed collection of (a_k). We need to show that $x \in C_n$ for any n. But for any n we have

$$\sum_{k=1}^{n} a_k 3^{-k} \leq x \leq \sum_{k=1}^{n} a_k 3^{-k} + \sum_{k=1}^{\infty} 2 \cdot 3^{-k} = \sum_{k=1}^{n} a_k 3^{-k} + \frac{1}{3^n}$$

which is precisely the statement that x is contained in one of the intervals of C_n.

Conversely, let $x \in \mathcal{C}$, so x is in any C_n. We construct a (unique) sequence (a_k) (consisting of 0’s and 2) such that we have

$$\sum_{k=1}^{n} a_k 3^{-k} \leq x \leq \sum_{k=1}^{n} a_k 3^{-k} + \frac{1}{3^n}. \quad (1)$$

for any n as follows. Clearly for any fixed N there are unique a_k with $k = 1, \ldots, N$ satisfying (1) with $n = N$ as x lies in exactly one of the disjoint intervals of C_N. Similarly, since $x \in C_{N+1}$, there are unique \tilde{a}_k with $k = 1, \ldots, N + 1$ satisfying (1) with $n = N + 1$. We now show that $a_k = \tilde{a}_k$ for $k = 1, \ldots, n$, which (by induction) shows that the the coefficients a_k in (1) do not depend on n. To see this, note that if $x \in C_n$, then the interval of C_{n+1} of which x is an element can only be the left third or the right third of the interval of C_n of which x is an element of. So either

$$\sum_{k=1}^{N} a_k 3^{-k} + \frac{0}{3^{N+1}} \leq x \leq \sum_{k=1}^{N} a_k 3^{-k} + \frac{1}{3^{N+1}} \quad \text{or} \quad \sum_{k=1}^{N} a_k 3^{-k} + \frac{2}{3^{N+1}} \leq x \leq \sum_{k=1}^{N} a_k 3^{-k} + \frac{3}{3^{N+1}}.$$

In the first case,

$$\sum_{k=1}^{N+1} a_k 3^{-k} \leq x \leq \sum_{k=1}^{N+1} a_k 3^{-k} + \frac{1}{3^{N+1}}$$

holds with $a_{k+1} = 0$ while in the second the above holds with $a_{k+1} = 2$. This shows in particular, $a_k = \tilde{a}_k$ for $k = 1, \ldots, n$ as desired.

With (1) established for all n we observe that the sum on the left converges and that in fact the left hand side and the right hand side converge to the same value, giving $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ as claimed.

g) Define the Cantor-Lebesgue function $F : \mathcal{C} \to [0, 1]$ as

$$F(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k} \quad \text{for} \quad x = \sum_{k=1}^{\infty} a_k 3^{-k}, \text{where} \quad b_k = \frac{a_k}{2}.$$

Show that F is well-defined and in fact continuous on \mathcal{C}. Show also that F is surjective. Conclude that \mathcal{C} is uncountable.

To show that F is well defined we need to show that the (a_k) in the expansion $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ are unique. This is easy to see because suppose there were two sequences (a_k) and (\tilde{a}_k) giving rise to the same x and differing at position N where $a_N = 0$ and $\tilde{a}_N = 2$ (or the other way round). Then we must have

$$0 + \sum_{N+1}^{\infty} a_k 3^{-k} = \frac{2}{3^N} + \sum_{N+1}^{\infty} \tilde{a}_k 3^{-k}$$
and in particular
\[0 + \sum_{N+1}^{\infty} 2 \cdot 3^{-k} \geq \frac{2}{3^N} \] which implies \(\frac{1}{3^N} \geq \frac{2}{3^N} \), a contradiction.

Surjectivity follows from the fact that every real number has a (non-unique) dyadic expansion. Surjectivity implies that the cardinality of \(C \) is at least that of \([0,1]\) but since the latter is a subset of the former, they must have the same cardinality.

To show continuity at \(x \in C \), we let \((x_n)\) be an arbitrary sequence in \(C \) with \(x_n \to x \). We need to show that given \(\epsilon > 0 \) we can find \(N \) such that for all \(n \geq N \) we have \(|F(x) - F(x_n)| < \epsilon \).

We fix a \(K \) large such that \(\sum_{k=K+1}^{\infty} \frac{1}{2^k} < \epsilon \). We let \(x_n = \sum_{k=1}^{\infty} (a_n)_k 3^{-k} \) and \(x = \sum_{k=1}^{\infty} a_k 3^{-k} \). (We already know that the \((a_n)_k \) and \(a_k \) are unique.) Since we have \(x_n \to x \) we can choose an \(N \) such that we have \(|x - x_n| < \frac{1}{2^{K+1}} \) for all \(n \geq N \). It is easy to see that this implies \((a_n)_k = a_k \) for all \(k = 1, \ldots, K \) and \(n \geq N \) (get a contradiction using geometric series). With these choices, we have for all \(n \geq N \)
\[|F(x_n) - F(x)| = \left| \sum_{k=1}^{\infty} \frac{(a_n)_k - a_k}{2} \right| = \left| \sum_{K+1}^{\infty} \frac{(a_n)_k - a_k}{2} \right| \leq \sum_{K+1}^{\infty} \frac{1}{2^k} < \epsilon \]
as desired. Remark: \(F \) can actually be extended to a continuous function on all of \([0,1]\).

2 Fat Cantor Sets

a) Show that \(m_*(\hat{C}) = \frac{1}{2} \) and conclude that \(\hat{C} \) is uncountable.

Note that \(\hat{C} \) is measurable and \(m(\hat{C}) = m_*(\hat{C}) \). It is also clear that \(\hat{C}_k \) is measurable and we compute the measure of its complement in \([0,1]\) (the intervals we remove) for \(k \geq 1 \) to be
\[\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots + \frac{1}{2^{2j}} = \frac{1}{2} \sum_{j=1}^{k} \frac{1}{2^j} = \frac{1}{2} - \frac{1}{2^{k+1}} \cdot \]

Hence \(m(\hat{C}_k) = \frac{1}{2} + \frac{1}{2^{k+1}} \). We have \(\hat{C}_k \supseteq \hat{C}_{k+1} \) and \(m(\hat{C}_1) = 1 \) and hence by a result from lectures \(m(\bigcap_{k=1}^{\infty} \hat{C}_k) = \lim_{k \to \infty} m(\hat{C}_k) = \frac{1}{2} \). If \(\hat{C} \) was countable we would necessarily have \(m_*(C) = 0 \).

b) Show that \(\hat{C} \) is again compact, totally disconnected and has no isolated points.

The proof is very similar to the first question and will not be repeated.

3 *Characterisation of Riemann integrable functions

Prove that a bounded function on an interval \([a,b]\) is Riemann integrable if and only if its set of discontinuities has measure zero.

This is a hard problem. You should look up the outline of the proof in Stein-Shakarchi (p.47) or elsewhere in the literature. You can use the result at the end of Exercise 4.

4 Limits of continuous functions \(f : [0,1] \to \mathbb{R} \) (Exercise 10 of \([SS]\))

In this exercise we construct the sequence of continuous functions promised in the first lecture.

Let \(\hat{C} \) denote the Fat Cantor Set constructed in Exercise 2. We define the function \(F_1 \) to be a piecewise linear continuous function which is equal to 1 on the complement of the first interval \(I_1 = [3/8, 5/8] \) removed
from \([0,1]\) in the construction of \(\hat{C}\) and zero at the point at the centre of \(I_1\). Similarly we construct \(F_2\) to be a piecewise linear continuous function which is equal to 1 on the complement of the open intervals removed at the second stage and zero at the centre of these intervals. Continuing in this way we can define \(F_n\) for all \(n\) and finally

\[f_n = F_1 \cdot F_2 \cdots F_n \]

a) Show that for all \(n \geq 1\) and all \(x \in [0,1]\) one has \(0 \leq f_n(x) \leq 1\) and \(f_n(x) \geq f_{n+1}(x)\). We conclude that \(f_n(x)\) converges to a limit which we denote by \(f(x)\).

All easy to see.

b) Show that the function \(f\) is discontinuous at every point of \(\hat{C}\). Conclude that \(f\) is not Riemann integrable (despite the sequence \(s_n = \int f_n\) converging).

Hint: Note that \(f(x) = 1\) if \(x \in \hat{C}\) and find a sequence of points \(\{x_n\}\) so that \(x_n \to x\) and \(f(x_n) = 0\).

The last conclusion follows from Exercise 3 so we will focus on establishing discontinuity at the points \(x \in \hat{C}\). We first define a sequence \(x_n\) with \(|x_n - x| < 2^{-n}\) as follows. We know that each \(\hat{C}_k\) consists of \(2^k\) disjoint intervals of length \(L_k\) necessarily smaller than \(2^{-k}\) (the actual length can be computed to be \(L_k = 2^k + 1\)). Therefore, given \(n\) we know that \(x\) is contained in one of the intervals of \(\hat{C}_n\) of length \(L_n\). At the next stage, \(L_n\) is tri-sected and an interval of length \(4^n + 1\) is removed from the middle. We choose \(x_n\) to be the point in the middle of that interval. Clearly \(|x - x_n| < L_n < 2^{-n}\) by construction. Moreover, since \(x_n\) sits at the middle point of an interval that gets removed, we have \(F_{n+1}(x_n) = 0\) for all \(n\) and hence \(\lim_{k \to \infty} f_k(x_n) = f(x_n) = 0\) for any \(n\). This is the desired sequence which clearly proves that \(f\) is not continuous at \(x\).

5 The outer Jordan content of a set (Exercise 14 of [SS])

The outer Jordan content \(J_\star(E)\) of a bounded set \(E\) in \(\mathbb{R}\) is defined by

\[J_\star(E) = \inf \sum_{j=1}^{N} |I_j| \]

where the infimum is taken over all finite coverings \(E \subset \bigcup_{j=1}^{N} I_j\) by intervals \(I_j\).

a) Prove that \(J_\star(E) = J_\star(\overline{E})\) for every set \(E\). Here \(\overline{E}\) denotes the closure of \(E\).

Wlog we can assume that the intervals \(I_j\) of the finite covering are closed (why?).

But then, if \(E\) is covered by finitely many closed intervals \(I_i\) its closure \(\overline{E}\) is also covered by those intervals because the closure is the smallest closed set containg \(E\) and the union of the finitely many closed intervals is a closed set containing \(E\). It follows that \(J_\star(E) \geq J_\star(\overline{E})\). Since the other direction is clear by monotonicity, the claim follows.

b) Exhibit a countable subset \(E \subset [0,1]\) such that \(J_\star(E) = 1\) while \(m_\star(E) = 0\).

Take \(E = \mathbb{Q} \cap [0,1] \subset [0,1]\). Since the rationals are dense in \([0,1]\), their closure is all of \([0,1]\) which has outer Jordan content 1. But \(E\) is countable, so \(m_\star(E) = 0\).