Measure and Integration: Example Sheet 2

Fall 2016 [G. Holzegel]

November 13, 2016

1 Tonelli's Theorem for sequences

We first establish $\sup _{F} \sum_{F} x_{m, n} \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{m, n}$. We can assume that the right hand side is finite since if it is $+\infty$ the inequality holds trivially. We first verify the hint by noting that

$$
\sum_{F} x_{m, n} \leq \sum_{m=1}^{M} \sum_{n=1}^{N} x_{m, n} \leq \sum_{m=1}^{M} \sum_{n=1}^{\infty} x_{m, n} \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{m, n}
$$

since the elements of any fixed finite subset F satisfy $(m \leq M, n \leq N)$ for some M and N. Taking the sup over all F immediately yields one of the desired directions.

We now show $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{m, n} \leq \sup _{F} \sum_{F} x_{m, n}$. We can assume that the right hand side is finite as otherwise the inequality is trivial. We start from the fact that

$$
\begin{equation*}
\sum_{m=1}^{M} \sum_{n=1}^{N} x_{m, n} \leq \sup _{F} \sum_{F} x_{m, n} \tag{1}
\end{equation*}
$$

holds for any fixed M and N. Fixing M, we can take the limit as $N \rightarrow \infty$ (of the increasing sequence on the left) to obtain

$$
\begin{equation*}
\sum_{m=1}^{M} \sum_{n=1}^{\infty} x_{m, n} \leq \sup _{F} \sum_{F} x_{m, n} \tag{2}
\end{equation*}
$$

for any M. Taking the limit $M \rightarrow \infty$ we obtain the desired result.

2 Distances between sets

a) One example is given by the following subsets of \mathbb{R} : Set

$$
E=\mathbb{N}=\{1,2,3, \ldots\} \text { and } F=\left\{1+\frac{1}{2}, 2+\frac{1}{4}, \ldots, n+\frac{1}{2 n}, \ldots\right\}
$$

E and F are both closed and disjoint from one another with the distance being equal to zero.
b) Let now E be compact and F closed. For each point x in E we can define its distance $d(x, F)=\delta_{x}$. Since E is compact, the cover of E by balls $E \subset \bigcup_{x} B_{\frac{\delta_{x}}{2}}(x)$ has a finite subcover, say $\bigcup_{n=1}^{N} B_{\frac{\delta_{x_{n}}}{2}}\left(x_{n}\right)$. Now an arbitrary point $x \in E$ sits in (at least) one $B_{\frac{\delta_{x_{n}}}{2}}\left(x_{n}\right)$, hence $d\left(x, x_{n}\right) \leq \frac{\delta_{x_{n}}}{2}$. Therefore for this x

$$
d(F, x) \geq d\left(F, x_{n}\right)-d\left(x_{n}, x\right) \leq \delta_{x_{n}}-\frac{\delta_{x_{n}}}{2}=\frac{\delta_{x_{n}}}{2} \geq \frac{1}{2} \min \left(\delta_{x_{1}}, \ldots, \delta_{x_{N}}\right)
$$

Since x was arbitrary, we have shown that $d(F, E) \geq \frac{1}{2} \min \left(\delta_{x_{1}}, \ldots, \delta_{x_{N}}\right)>0$.

3 Approximation of measurable sets

a) We proved on Sheet 1 that the Fat Cantor set $\hat{\mathfrak{C}}$ does not have any interior points. It follows that there are no open (in \mathbb{R}) subsets of $\hat{\mathfrak{C}}$ except for the empty set. But since $m(\hat{\mathfrak{C}} \backslash \emptyset)=m(\hat{\mathfrak{C}})=1 / 2$, we see that the property cannot hold for $\epsilon<\frac{1}{2}$.
b) Given $\epsilon>0$ we first find a closed set F with $m(E \backslash F)<\frac{\epsilon}{2}$ (as proven in lectures). We then define the sequence of compact sets

$$
K_{n}=F \cap Q_{n} \subset F
$$

where Q_{n} is a closed cube of side length n centred at the origin (note that K_{n} is closed and bounded). The sequence K_{n} increases to F and the regularity properties of the measure imply that $m\left(K_{n}\right)+m\left(F \backslash K_{n}\right)=$ $m(F)=\lim _{n \rightarrow \infty} m\left(K_{n}\right)$. In particular, there exists an N such that $m\left(F \backslash K_{N}\right)<\frac{\epsilon}{2}$.

$$
m\left(E \backslash K_{N}\right)=m\left(E \backslash F \cup\left(F \backslash K_{N}\right)\right) \leq(E \backslash F)+m\left(F \backslash K_{N}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Hence K_{N} is the desired compact set.
c) We know that there exists a countable union of closed cubes F with $E \subset F:=\bigcup_{n=1}^{\infty} Q_{n}$ and

$$
\begin{equation*}
m_{\star}(E)>m_{\star}(F)-\frac{\epsilon}{2} \tag{3}
\end{equation*}
$$

Note we can replace m_{\star} by m because both E and F are clearly measurable. The sequence $F_{n}=\bigcup_{i=1}^{n} Q_{n}$ increases to F and by the regularity properties of the measure $m\left(F_{n}\right) \rightarrow m(F)<\infty$. In particular, there exists an N such that $m\left(F \backslash F_{N}\right)<\frac{\epsilon}{2}$. Then

$$
m\left(E \Delta F_{N}\right)=m\left(E \backslash F_{N}\right)+m\left(F_{N} \backslash E\right) \leq m\left(F \backslash F_{N}\right)+m(F \backslash E)<\frac{\epsilon}{2}+m(F)-m(E)<\epsilon,
$$

where (3) has been used in the last step.

4 The Borel-Cantelli Lemma

We first establish the hint. Suppose $x \in E=\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_{k}$. Then x is in $\bigcup_{k \geq n} E_{k}$ for ANY $n \geq 1$. This clearly implies that x must lie in infinitely many E_{k} as if x were only in finitely many E_{k}, the last one being E_{K} say, this would contradict that $x \in \bigcup_{k \geq K+1} E_{k}$. Conversely, if $x \notin \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_{k}$, then there must exist an N such that $x \notin \bigcup_{k \geq N} E_{k}$. But this implies that x can only lies in finitely many E_{k} (the largest being E_{N-1}).

The fact that E is measurable now follows immediately from the hint as E_{k} is measurable and countable unions and intersections of measurable sets are measurable.

To establish that $m(E)=0$ we look at the sequence of measurable sets $F_{N}=\bigcap_{n=1}^{N} \bigcup_{k \geq n} E_{k}$ which decreases to E and $m\left(F_{1}\right) \leq \sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty$ by assumption. Consequently, the regularity property of the measure implies that $m(E)=\lim _{N \rightarrow \infty} m\left(F_{N}\right)$. But $m\left(F_{N}\right) \leq \sum_{k=N}^{\infty} m\left(E_{k}\right)$ and the right hand side goes to zero as it is the tail end of a converging sum.

5 Failure of additivity on all sets for the exterior measure

a) Let E be a measurable subset of the non-measurable subset \mathcal{N}. As suggested by the hint, we consider the translated sets $E_{k}=E+r_{k} \subset \mathcal{N}_{k}$ (this is clear from the definition of $\mathcal{N}_{k}=\mathcal{N}+r_{k}$ given in the construction of \mathcal{N} in class). We have

$$
\bigcup_{k} E_{k} \subset \bigcup_{k} \mathcal{N}_{k} \subset[-1,2]
$$

the last inclusion having been shown in lectures. Moreover, since the \mathcal{N}_{k} are pairwise disjoint, so must be the E_{k}. But then by countable additivity and monotonicity (note E_{k} and $\bigcup_{k} E_{k}$ are measurable)

$$
\sum_{k=1}^{\infty} m\left(E_{k}\right) \leq 3
$$

Using $m\left(E_{k}\right)=m(E)$ by translation invariance of the Lebesgue measure we conclude $m(E)=0$.
b) Suppose for contradiction that $m_{\star}(I \backslash \mathcal{N})=1-\delta$ for some $0<\delta \leq 1$. Then there exists an open set \mathcal{U} with $I \backslash \mathcal{N} \subset \mathcal{U}$ and $m_{\star}(\mathcal{U})<1-\frac{\delta}{2}$ (Property 3 of the exterior measure). It follows that $\mathcal{U}^{c} \cap I \subset \mathcal{N}$ and by part a) that $m\left(\mathcal{U}^{c} \cap I\right)=0$. Hence

$$
1-\frac{\delta}{2}>m_{\star}(\mathcal{U})=m(\mathcal{U})=m(\mathcal{U})+m\left(\mathcal{U}^{c} \cap I\right) \geq m\left(\mathcal{U} \cup\left(\mathcal{U}^{c} \cap I\right)\right)=m(I \cup \mathcal{U}) \geq m(I)=1
$$

a contradiction.
c) Assuming for contradiction equality in the formula, we would have (by part b)) that

$$
m_{\star}(\mathcal{N})+1=m_{\star}(I)=1
$$

and hence $m_{\star}(\mathcal{N})=0$. But this is a contradiction with \mathcal{N} being non-measurable as sets of exterior measure zero are measurable and have measure zero.

6 Fun-Stuff

We define a sequence of decreasing measurable sets $A_{n} \subset[0,1)$ (decreasing to the desired subset A) inductively as follows.

To define A_{1}, we remove from $[0,1)$ one interval of length $1 / 10$, namely $[0.4,0.5)$. This removes all numbers which have a four as the first digit in their decimal expansion.

Now A_{1} can be thought of as a union of nine intervals of length $1 / 10$, namely $\bigcup_{n}[0 . n, 0 . n)$ where the union is over $n=0,1,2,3,5,6,7,8,9$. To obtain A_{2} from A_{1} we repeat the procedure for each of these intervals. Namely, we remove from each of these intervals one interval of length $1 / 100$ namely the numbers which have a four as the second digit of their decimal expansion (i.e. from $[0 . n, 0 . n$) above we remove $[0 . n 4,0, n 5$) etc). Clearly, then

$$
\begin{gathered}
m\left(A_{1}\right)=9^{0}\left(1-\frac{1}{10}\right) \\
m\left(A_{2}\right)=9\left(\frac{1}{10}-\frac{1}{100}\right) \\
m\left(A_{3}\right)=9 \cdot 9\left(\frac{1}{100}-\frac{1}{1000}\right) \\
m\left(A_{n}\right)=(9 / 10)^{n}
\end{gathered}
$$

Since A_{n} is a decreasing sequence decreasing to the desired set, we conclude $m(A)=0$.

