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1 Tonelli’s Theorem for sequences

We first establish supF
∑
F xm,n ≤

∑∞
m=1

∑∞
n=1 xm,n. We can assume that the right hand side is finite since

if it is +∞ the inequality holds trivially. We first verify the hint by noting that

∑
F

xm,n ≤
M∑
m=1

N∑
n=1

xm,n ≤
M∑
m=1

∞∑
n=1

xm,n ≤
∞∑
m=1

∞∑
n=1

xm,n

since the elements of any fixed finite subset F satisfy (m ≤M,n ≤ N) for some M and N . Taking the sup
over all F immediately yields one of the desired directions.

We now show
∑∞
m=1

∑∞
n=1 xm,n ≤ supF

∑
F xm,n. We can assume that the right hand side is finite as

otherwise the inequality is trivial. We start from the fact that

M∑
m=1

N∑
n=1

xm,n ≤ sup
F

∑
F

xm,n (1)

holds for any fixed M and N . Fixing M , we can take the limit as N → ∞ (of the increasing sequence on
the left) to obtain

M∑
m=1

∞∑
n=1

xm,n ≤ sup
F

∑
F

xm,n (2)

for any M . Taking the limit M →∞ we obtain the desired result.

2 Distances between sets

a) One example is given by the following subsets of R: Set

E = N = {1, 2, 3, ....} and F = {1 +
1

2
, 2 +

1

4
, ..., n+

1

2n
, ....}

E and F are both closed and disjoint from one another with the distance being equal to zero.

b) Let now E be compact and F closed. For each point x in E we can define its distance d (x, F ) = δx.

Since E is compact, the cover of E by balls E ⊂
⋃
xB δx

2
(x) has a finite subcover, say

⋃N
n=1B δxn

2

(xn).

Now an arbitrary point x ∈ E sits in (at least) one B δxn
2

(xn), hence d (x, xn) ≤ δxn
2 . Therefore for this x

d (F, x) ≥ d (F, xn)− d (xn, x) ≤ δxn −
δxn
2

=
δxn
2
≥ 1

2
min (δx1 , ..., δxN )

Since x was arbitrary, we have shown that d (F,E) ≥ 1
2 min (δx1

, ..., δxN ) > 0.
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3 Approximation of measurable sets

a) We proved on Sheet 1 that the Fat Cantor set Ĉ does not have any interior points. It follows that there

are no open (in R) subsets of Ĉ except for the empty set. But since m
(
Ĉ \ ∅

)
= m

(
Ĉ
)

= 1/2, we see

that the property cannot hold for ε < 1
2 .

b) Given ε > 0 we first find a closed set F with m (E \ F ) < ε
2 (as proven in lectures). We then define the

sequence of compact sets
Kn = F ∩Qn ⊂ F

where Qn is a closed cube of side length n centred at the origin (note that Kn is closed and bounded). The
sequenceKn increases to F and the regularity properties of the measure imply thatm (Kn)+m (F \Kn) =
m (F ) = limn→∞m (Kn). In particular, there exists an N such that m (F \KN ) < ε

2 .

m (E \KN ) = m (E \ F ∪ (F \KN )) ≤ (E \ F ) +m (F \KN ) <
ε

2
+
ε

2
= ε .

Hence KN is the desired compact set.

c) We know that there exists a countable union of closed cubes F with E ⊂ F :=
⋃∞
n=1Qn and

m? (E) > m? (F )− ε

2
(3)

Note we can replace m? by m because both E and F are clearly measurable. The sequence Fn =
⋃n
i=1Qn

increases to F and by the regularity properties of the measure m (Fn)→ m (F ) <∞. In particular, there
exists an N such that m (F \ FN ) < ε

2 . Then

m (E∆FN ) = m (E \ FN ) +m (FN \ E) ≤ m (F \ FN ) +m (F \ E) <
ε

2
+m (F )−m (E) < ε,

where (3) has been used in the last step.

4 The Borel-Cantelli Lemma

We first establish the hint. Suppose x ∈ E =
⋂∞
n=1

⋃
k≥nEk. Then x is in

⋃
k≥nEk for ANY n ≥ 1. This

clearly implies that x must lie in infinitely many Ek as if x were only in finitely many Ek, the last one being
EK say, this would contradict that x ∈

⋃
k≥K+1Ek. Conversely, if x /∈

⋂∞
n=1

⋃
k≥nEk, then there must exist

an N such that x /∈
⋃
k≥N Ek. But this implies that x can only lies in finitely many Ek (the largest being

EN−1).
The fact that E is measurable now follows immediately from the hint as Ek is measurable and countable

unions and intersections of measurable sets are measurable.
To establish that m (E) = 0 we look at the sequence of measurable sets FN =

⋂N
n=1

⋃
k≥nEk which

decreases to E and m (F1) ≤
∑∞
k=1m (Ek) < ∞ by assumption. Consequently, the regularity property of

the measure implies that m (E) = limN→∞m (FN ). But m (FN ) ≤
∑∞
k=N m (Ek) and the right hand side

goes to zero as it is the tail end of a converging sum.

5 Failure of additivity on all sets for the exterior measure

a) Let E be a measurable subset of the non-measurable subset N . As suggested by the hint, we consider
the translated sets Ek = E + rk ⊂ Nk (this is clear from the definition of Nk = N + rk given in the
construction of N in class). We have ⋃

k

Ek ⊂
⋃
k

Nk ⊂ [−1, 2]

2



the last inclusion having been shown in lectures. Moreover, since the Nk are pairwise disjoint, so must
be the Ek. But then by countable additivity and monotonicity (note Ek and

⋃
k Ek are measurable)

∞∑
k=1

m (Ek) ≤ 3 .

Using m (Ek) = m (E) by translation invariance of the Lebesgue measure we conclude m (E) = 0.

b) Suppose for contradiction that m? (I \ N ) = 1− δ for some 0 < δ ≤ 1. Then there exists an open set U
with I \N ⊂ U and m? (U) < 1− δ

2 (Property 3 of the exterior measure). It follows that Uc ∩ I ⊂ N and
by part a) that m (Uc ∩ I) = 0. Hence

1− δ

2
> m? (U) = m (U) = m (U) +m (Uc ∩ I) ≥ m (U ∪ (Uc ∩ I)) = m (I ∪ U) ≥ m (I) = 1 ,

a contradiction.

c) Assuming for contradiction equality in the formula, we would have (by part b)) that

m? (N ) + 1 = m? (I) = 1

and hence m? (N ) = 0. But this is a contradiction with N being non-measurable as sets of exterior
measure zero are measurable and have measure zero.

6 Fun-Stuff

We define a sequence of decreasing measurable sets An ⊂ [0, 1) (decreasing to the desired subset A) induc-
tively as follows.

To define A1, we remove from [0, 1) one interval of length 1/10, namely [0.4, 0.5). This removes all
numbers which have a four as the first digit in their decimal expansion.

Now A1 can be thought of as a union of nine intervals of length 1/10, namely
⋃
n [0.n, 0.n) where the union

is over n = 0, 1, 2, 3, 5, 6, 7, 8, 9. To obtain A2 from A1 we repeat the procedure for each of these intervals.
Namely, we remove from each of these intervals one interval of length 1/100 namely the numbers which have
a four as the second digit of their decimal expansion (i.e. from [0.n, 0.n) above we remove [0.n4, 0, n5) etc).
Clearly, then

m (A1) = 90
(

1− 1

10

)
m (A2) = 9

(
1

10
− 1

100

)
m (A3) = 9 · 9

(
1

100
− 1

1000

)
m (An) = (9/10)

n

Since An is a decreasing sequence decreasing to the desired set, we conclude m (A) = 0.
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