Measure and Integration: Example Sheet 3

Fall 2016 [G. Holzegel]

November 22, 2016

1 Properties of limsup and liminf

a) Take the sequence $\left(a_{n}\right)$ with $a_{1}=2, a_{2}=-2$ and $a_{n}=1$ if $n \geq 3$ is odd and $a_{n}=-1$ if $n \geq 4$ is even. The $\sup _{n \geq 1} a_{n}=2, \inf _{n \geq 1}=-2, \lim \sup _{n \rightarrow \infty} a_{n}=1$ and $\lim \sup _{n \rightarrow \infty} a_{n}=-1$.
b) We consider the cases $A=+\infty, A=-\infty$ and A a real number separately.

In the first case, we must have $\sup _{k \geq n} a_{k}=\infty$ for all n. We define a subsequence converging to $+\infty$ denoted $\left(a_{n(k)}\right)$ as follows. We choose $n(1)=1$ and generally $n(k)>n(k-1)$ to be such that $a_{n(k)} \geq k$. In the second case, we have that $b_{n}=\sup _{k \geq n} a_{k} \geq a_{n}$ goes to $-\infty$ hence so does $\left(a_{n}\right)$.
In the third case, we have $\inf _{n \geq 1} \sup _{k \geq n} a_{k}=\lim _{n \rightarrow \infty} \sup _{k \geq n} a_{k}=A$. Let $b_{n}=\sup _{k \geq n} a_{k}$. We define a subsequence $b_{n(j)}$ and a corresponding subsequence $a_{m(j)}$ as follows. We let $n(1)=1$. Given $b_{n(j-1)}$, by the definition of the sup we can find an $m(j-1) \geq n(j-1)$ such that

$$
\begin{equation*}
0 \leq b_{n(j-1)}-a_{m(j-1)} \leq \frac{1}{j} \tag{1}
\end{equation*}
$$

We then let $n(j)=\max (n(j-1)+1, m(j-1))$. This defines two subsequences $b_{n(j)}$ and $a_{m(j)}$. Since $b_{n(j)}$ is a subsequence of the sequence $\left(b_{n}\right)$ which converges to A, it is also converging to A. But then (1) implies that the subsequence $a_{m(j)}$ also converges to A.

For the second part let $\left(a_{n(j)}\right)$ be a subsequence of $\left(a_{n}\right)$ converging to \tilde{A}. Then $b_{n(j)}=\sup _{k \geq n(j)} a_{k} \geq a_{n(j)}$ and taking the limit as $j \rightarrow \infty$ yields $A \geq \tilde{A}$.
c) The first claim follows from $\sup _{k \geq n}\left(-a_{k}\right)=-\inf _{k \geq n} a_{k}$ for any n and taking the limit.

For the second claim, we distinguish two cases:
(1) One of the terms $\sup _{k \geq n} a_{k}$ and $\sup _{k \geq n} b_{k}$ is $-\infty$ for some $n=N$. Wlog let it be $\sup _{k \geq N} a_{k}=-\infty$. It follows that $a_{n}=-\infty$ for all $n \geq N$ and $\lim \sup a_{n}=-\infty$. We now distinguish two subcases:
(A) If $\sup _{k \geq M} b_{k}<\infty$ for some M then $b_{n} \leq C$ for all $n \geq M$ and some constant C, since $\sup _{k \geq n} b_{k}$ decreases in n. It follows that for $n \geq \max (M, N)$ we have $a_{n}+b_{n} \leq-\infty+C \leq-\infty$. Therefore $a_{n}+b_{n}=-\infty$ for large enough n. Since also $\lim \sup b_{n}<+\infty$ and $\lim \sup a_{n}=-\infty$ we verify the desired estimate.
(B) If $\sup _{k \geq n} b_{k}=+\infty$ for all n, then its limit is $+\infty$ and this is excluded by the assumptions that $\lim \sup a_{n}+\limsup b_{n}$ should not be $-\infty+\infty$.
(2) For any n, none of the summands in $\sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}$ is $-\infty$.

It follows that

$$
\begin{equation*}
a_{j}+b_{j} \leq \sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k} \quad \text { for all } j \geq n \tag{2}
\end{equation*}
$$

with the left hand side being defined since it is never $+\infty-\infty$ by assumption on the sheet and the right hand side being defined for any n since none of the summands can be $-\infty$. We take the sup over all $j \geq n$ and obtain

$$
\sup _{j \geq n}\left(a_{j}+b_{j}\right) \leq \sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}
$$

as the left hand side does not depend on j. Now the right hand side and the left hand side are both decreasing in n. Taking the limit $n \rightarrow \infty$ yields

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \lim _{n \rightarrow \infty}\left(\sup _{k \geq n} a_{k}+\sup _{k \geq n} b_{k}\right)=\limsup _{n \rightarrow \infty} a_{k}+\limsup _{n \rightarrow \infty} b_{k}
$$

The last equality follows since the sequences in the bracket in the middle are both decreasing individually hence their limits exist individually. A quick check of the possible cases then establishes the last inequality noting that we are explicitly excluding the case that the invidual limits are $+\infty$ and $-\infty$ respectively.

$2 G_{\delta}$ and F_{σ} sets

a) We first claim that if F is closed, then $F=\bigcap_{n=1}^{\infty} U_{n}$ with $U_{n}=\left\{x \left\lvert\, d(x, F)<\frac{1}{n}\right.\right\}$. Since U_{n} is open (why?) this shows that F is a G_{δ}-set. To prove the claim we note that if $x \in F$, then $d(x, F)=0<\frac{1}{n}$ for all n, hence $x \in U_{n}$ for all n, hence $x \in \bigcap_{n=1}^{\infty} U_{n}$. Conversely, if $x \notin F$, then then since the set F is closed and $\{x\}$ is compact and since $\{x\}$ and F are disjoint, we must have $d(x, F)>\delta$ for some $\delta>0$ by Question 2 from Example Sheet 2. Hence $x \notin U_{n}$ for some n, hence $x \notin \bigcap_{n=1}^{\infty} U_{n}$. This shows $F=\bigcap_{n=1}^{\infty} U_{n}$.
Given the above if U is an open set, then U^{c} is closed, hence an G_{δ}. Since the complement of a G_{δ} is an F_{σ}, we have shown that U is an F_{σ}.
b) Suppose the rationals were a G_{δ}, so $\mathbb{Q}=\bigcap_{n=1}^{\infty} U_{n}$ for U_{n} open. Then, since \mathbb{Q} is dense in \mathbb{R}, every U_{n} must also be dense in \mathbb{R}. So we have writte \mathbb{Q} as a countable intersection of dense open sets. The complement \mathbb{Q}^{c} is therefore a countable union of closed nowhere dense (i.e. sets without interior points) sets. But since \mathbb{Q} can itself be written as a countable union of closed nowhere dense sets we conclude that $\mathbb{R}=\mathbb{Q} \cup \mathbb{Q}^{c}$ can be written as a countable union of nowhere dense sets. This contradicts the Baire Category theorem as \mathbb{R} is a complete metric space.
c) Note that a slight modification of the argument in part b) also shows that the positive rationals $\mathbb{Q} \cap\{x \geq 0\}$ and also $\mathbb{Q} \cap\{x>0\}$ cannot be a G_{δ}. Consider then the set

$$
E=(\mathbb{Q} \cap\{x \geq 0\}) \bigcup\left(\mathbb{Q}^{c} \cap\{x<0\}\right)
$$

i.e. the union of the non-negative rationals with the negative irrationals. Note that the complement is given by the union positive irrational numbers with negative rational ones.
If E was a G_{δ}, then so would be $E \cap\{x>0\}$ in contradiction with the remark above. If E was an F_{σ}, then E^{c} would be a G_{δ}, hence the negative rational numbers $E^{c} \cap\{x<0\}$ would be, which is a contradiction.

3 Measurable functions

a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be monotone increasing. The decreasing case is similar or follows directly by considering $-f$ and noting that f is measurable iff $-f$ is.
It suffices to show that the sets $E_{\alpha}=\{x \mid f(x)>\alpha\}$ are Borel sets. We claim that E_{α} is either empty (hence Borel) or an interval of the forms $\left[x_{\alpha}, \infty\right),\left(x_{\alpha}, \infty\right)$ or $(-\infty, \infty)$ which are also all Borel sets. Indeed, assuming E_{α} is non-empty, $x \in E_{\alpha}$ implies $[x, \infty) \subset E_{\alpha}$ since f is monotone. Consequently, defining $x_{\alpha}=\inf _{x}\{x \mid f(x)>\alpha\}$ we have one of the three aforementioned possibilities depending on whether $x_{\alpha}=-\infty$ or, in case x_{α} is finite, whether $x_{\alpha} \in E_{\alpha}$ or not.
b) We only need to show that $\{x \mid f(x) \geq q\}$ is measurable for every irrational q as then we have shown $\{x \mid f(x) \geq \alpha\}$ is measurable for any $\alpha \in \mathbb{R}$ which implies measurability of f.
Given an irrational q we can construct a monotone increasing sequence of rationals r_{n} with $r_{n} \nearrow q$ (this can be done for instance by cutting off the decimal expansions for q). But then

$$
\{x \mid f(x) \geq q\}=\bigcap_{n=1}^{\infty}\left\{x \mid f(x) \geq r_{n}\right\}
$$

and since the right hand side is measurable (being a countable intersection of sets which are measurable by assumption) so is the left hand side.
c) Let $g(x)=\limsup \operatorname{sum}_{n \rightarrow \infty} f_{n}$ and $h(x)=\liminf _{n \rightarrow \infty} f_{n}$. We know that the sets $\left\{x \mid \limsup _{n \rightarrow \infty} f_{n}=+\infty\right\}$, $\left\{x \mid \limsup _{n \rightarrow \infty} f_{n}=-\infty\right\},\left\{x \mid \liminf _{n \rightarrow \infty} f_{n}=+\infty\right\},\left\{x \mid \liminf _{n \rightarrow \infty} f_{n}=-\infty\right\}$ are all measurable. Let us denote by E the (measurable) set obtained from \mathbb{R} by removing these sets. We then have two finite valued measurable functions $\tilde{g}: E \rightarrow \mathbb{R}, \tilde{g}(x)=\left.g\right|_{E}(x)$ and $\tilde{h}: E \rightarrow \mathbb{R}, \tilde{h}(x)=\left.h\right|_{E}(x)$. We know that the difference of two finite valued measurable functions is measurable (shown in lectures) and hence in particular the set

$$
\{x \in E \mid \tilde{g}(x)-\tilde{h}(x)=0\}=\{x \in E \mid \tilde{g}(x)-\tilde{h}(x) \geq 0\} \bigcap\{x \in E \mid \tilde{g}(x)-\tilde{h}(x) \leq 0\}
$$

is measurable. But this is precisely the set for which limsup and liminf are finite and agree.

4 Approximating measurable functions by continuous ones

Claim: Given a step function φ and $\epsilon>0$ we can approximate φ by a continuous function of compact support g such that $m(\{x \mid \varphi(x) \neq g(x)\})<\epsilon$.

Proof of Claim: We note that it suffices to prove this claim for the step function $\varphi=\chi_{R}$ of a single rectangle R, since a general φ consists of a finite linear combination of such step functions. To prove it for χ_{R} we let $R=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{d}, b_{d}\right]$ where we can assume $a_{i}<b_{i}$ as otherwise R has measure 0 and χ_{R} will be approximated by the zero function up to a set of measure zero. [Note also that the boundary of R is a set of measure zero and hence that the following argument would work equally well if R is open.] For each i we define a continuous gluing function $g_{i, \ell_{i}}$ as follows. We let $0<\ell_{i}<\frac{b_{i}-a_{i}}{2}$ and (draw a picture!)

$$
g_{i, \ell_{i}}(x)=\left\{\begin{array}{cl}
1 & \text { if } x \in\left[a_{i}+\ell_{i}, b_{i}-\ell_{i}\right] \\
0 & \text { if } x \in\left[a_{i}, b_{i}\right]^{c} \\
\frac{x-a_{i}}{\ell_{i}} & \text { if } x \in\left[a_{i}, a_{i}+\ell_{i}\right) \\
\frac{b_{i}-x}{\ell_{i}} & \text { if } x \in\left(b_{i}-\ell_{i}, b_{i}\right]
\end{array}\right.
$$

The product function $g(x)=\prod_{i=1}^{d} g_{i, \ell_{i}}$ is then a continuous function which is identically 1 on the smaller rectangle $\tilde{R}=\left[a_{1}+\ell_{1}, b_{1}-\ell_{1}\right] \times \ldots \times\left[a_{d}+\ell_{d}, b_{d}-\ell_{d}\right] \subset R$ and zero outside R. Moreover it is immediate that given any $\epsilon>0$ we can choose the ℓ_{i} sufficiently small such that $m(R \backslash \tilde{R})=m(\underset{\tilde{R}}{R})-m(\tilde{R})<\epsilon$. But this shows the result because the set where g and χ_{R} do not agree is contained in $R \backslash \tilde{R}$.

Having established the claim, we can now finish the proof. In lectures, we showed that given a measurable function f, we can find a sequence of step functions $\left(\varphi_{n}\right)$ such that $\varphi_{n} \rightarrow f$ holds for almost every x. By the claim we can find for any φ_{n} a function of compact support g_{n} such that $m\left(\left\{x \mid \varphi_{n}(x) \neq g_{n}(x)\right\}\right)<\frac{1}{2^{n}}$. Now we apply the Borel-Cantelli Lemma to the sequence of measurable sets $E_{n}:=\left\{x \mid \varphi_{n}(x) \neq g_{n}(x)\right\}$. Indeed, since $\sum_{n} m\left(E_{n}\right)<\infty$ we know that the set of x which belong to infinitely many E_{n} has measure zero. If we call this set \mathcal{N}, then all $x \in \mathcal{N}^{c}$ belong to finitely many E_{n} and hence we must have, for all such $x \in \mathcal{N}^{c}$, that $\varphi_{n}(x)=g_{n}(x)$ holds for all $n \geq N_{x}$ for some N_{x}. Therefore, if we denote the measure zero set of x for which we do not have $\varphi_{n}(x) \rightarrow f(x)$ by $\tilde{\mathcal{N}}$ we we must have $\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} \varphi_{n}(x)=f(x)$ for all $x \in \mathcal{N}^{c} \cap \tilde{\mathcal{N}}^{c}$.

5 The Cantor function revisited

a) We indeed note that if $x \in \mathbb{C}^{c}=\bigcup_{n} U_{n}$ (the complement in $\left.[0,1]\right)$ then $x \in U_{n}$ for some n. The open interval U_{n} was removed from one of the 2^{n} disjoint intervals of C_{n} as the middle third in the construction of \mathfrak{C}. Since any interval of C_{n} can be parametrised as

$$
\left[\sum_{k=1}^{n} a_{k} \frac{1}{3^{k}}, \sum_{k=1}^{n} a_{k} \frac{1}{3^{k}}+\frac{1}{3^{n}}\right]
$$

for some sequence $\left(a_{k}\right)_{k=1}^{N}$ with $a_{k} \in\{0,2\}$, the middle third U_{n} is parametrised as

$$
\left(a=\sum_{k=1}^{n} a_{k} \frac{1}{3^{k}}+\frac{1}{3^{n+1}}, b=\sum_{k=1}^{n} a_{k} \frac{1}{3^{k}}+\frac{2}{3^{n+1}}\right)
$$

In order to evaluate the function F on the point a and b (which belong to the Cantor set) we write a and b in their expansions (cf. Example Sheet 1, Part 1f))

$$
a=\sum_{k=1}^{n} a_{k} \frac{1}{3^{k}}+\sum_{k=n+2}^{\infty} \frac{2}{3^{k}} \quad \text { and } \quad b=\sum_{k=1}^{n} a_{k} \frac{1}{3^{k}}+\frac{2}{3^{n+1}}
$$

so that we can compute

$$
F(a)=\sum_{k=1}^{n} b_{k} \frac{1}{2^{k}}+\sum_{k=n+2}^{\infty} \frac{1}{2^{k}} \quad, \quad F(b)=\sum_{k=1}^{n} b_{k} \frac{1}{2^{k}}+\frac{1}{2^{n+1}} .
$$

Computing the geometric series for $F(a)$ we easily see $F(a)=F(b)$.
To show f is continuous we first note that it is clearly continuous at all $x \in \mathfrak{C}^{c}$ as we defined f to be constant on the open intervals U_{n}. We hence let $x \in \mathfrak{C}$ and take a sequence $x_{n} \rightarrow x$ in $[0,1]$.
We define from the sequence $\left(x_{n}\right)$ a sequence $\left(y_{n}\right)$ in the Cantor set as follows.

$$
y_{n}=x_{n} \quad \text { if } x_{n} \in \mathfrak{C} .
$$

If $x_{n} \in C^{c}$ then we let

$$
y_{n}=a_{n} \text { if } x_{n}>x \quad, \quad y_{n}=b_{n} \text { if } x_{n}<x
$$

where (a_{n}, b_{n}) denotes the interval U_{n} in which x_{n} is contained. (Draw a picture to see what's happening here!). With this definition we easily see that

$$
\left|y_{n}-x_{n}\right| \leq\left|x_{n}-x\right|
$$

holds for $\left(y_{n}\right)$. Hence $y_{n} \rightarrow x$. We also know that $f\left(y_{n}\right)=F\left(y_{n}\right)=F(x)=f(x)$ since we have shown that F is continuous on \mathfrak{C} on example Sheet 1. But since $f\left(x_{n}\right)=f\left(y_{n}\right)$ by construction we have that $f\left(x_{n}\right) \rightarrow f(x)$ and hence continuity at $x \in \mathfrak{C}$.
b) Let $\mathcal{N} \subset[0,1]$ be the non-measurable subset constructed in lectures. Note that $f^{-1}(\mathcal{N})$ is a set in $[0,1]$. Since $\left.f\right|_{\mathfrak{C}}=F$ is surjective on $[0,1]$ by Example Sheet 1 and $\mathcal{N} \subset[0,1]$ we conclude that

$$
f\left(f^{-1}(\mathcal{N}) \cap \mathfrak{C}\right)=\mathcal{N} .
$$

Therefore, $f^{-1}(\mathcal{N}) \cap \mathfrak{C}$ is a measurable set (being a subset of a set of measure zero, namely \mathfrak{C}) which gets mapped to a non-measurable set by a continuous function.
c) Let $g:[0,1] \rightarrow[0,1]$ be defined by

$$
g(y)=\inf \{x \in[0,1] \mid f(x)=y\} .
$$

The intuition is that g is a partial inverse of the Cantor-Lebesgue function f. (Draw a picture of the Cantor-Lebesgue function and visualise this inverse by drawing horizontal lines.)

Observation 1: The inf is achieved since f is continuous. Indeed, if $x=g(y)$, then by the definition of the inf there is a sequence x_{n} with $x_{n} \rightarrow x$ and $f\left(x_{n}\right)=y$. Hence $f(x)=y$ by continuity. In particular we have $y=f(g(y))$ for all $y \in[0,1]$.
Observation 2: If $y_{1}<y_{2}$ then $g\left(y_{1}\right)<g\left(y_{2}\right)$. Assume not and $g\left(y_{1}\right) \geq g\left(y_{2}\right)$. Apply f to the last inequality. Since f itself is monotone it preserves the inequality and Observation 1 leads to $y_{1} \geq y_{2}$ which is a contradiction. This shows in particular (strict) monotonicity of g.

Observation 3: If $g\left(y_{1}\right)=g\left(y_{2}\right)$ then $y_{1}=y_{2}$. Assume not and $y_{1}<y_{2}$; then Observation 2 immediately produces a contradiction. Injectivity follows.
Finally, we show that g maps to the Cantor set \mathfrak{C}. Assume there was a $z \in \mathfrak{C}^{c}$ with $g(y)=z$. Then by Observation 1 we have $f(z)=y$ and by the definition of g this z is the smallest number with this property. But we now z is contained in an open set on which f is constant, so there exists a $\tilde{z}<z$ with $f(\tilde{z})=f(z)$ contradicting definition of z as the infimum.

