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These notes follow closely the notes of A. Sokal, available under
www.ucl.ac.uk/∼ucahad0/3103 handout 7.pdf.

1 Nowhere dense sets

Definition 1.1. Let X be a metric space. A subset M ⊂ X is called nowhere dense in X
if the closure has empty interior, i.e. int(M) = ∅.

It follows straight from the definition that a subset of nowhere dense set
is nowhere dense, and also that the closure of a nowhere dense set is nowhere
dense. From this observation we immediately conclude

• A subset M ⊂ X is nowhere dense in X if and only if it is contained in a
closed set with empty interior.

• A subset M ⊂ X is nowhere dense in X if and only if its complement
contains an open dense set.

Proposition 1.1. Let X be a metric space. The union of finitely many nowhere
dense sets is still nowhere dense in X.

Proof. It clearly suffices to prove the above statement for two nowhere dense
sets A1 ⊂ X and A2 ⊂ X. We will actually prove “A1, A2 closed and nowhere
dense =⇒ A1 ∪ A2 is closed and nowhere dense”. This implies the general
statement since A1 ∪A2 ⊂ A1 ∪A2 and hence A1 ∪A2 is contained in a closed
nowhere dense set. To prove the statement in quotation marks, we will prove
(the equivalent statement) that the intersection of two dense open sets is open
and sense dense. Let B1 and B2 be open and dense. Clearly B1 ∩ B2 is open.
To show that it is dense we show that any non-empty open set U intersects
B1 ∩ B2. Indeed B1 ∩ U is open and non-empty (since B1 is dense) and also
B2 ∩ (B1 ∩ U) is non-empty (since B2 is dense). Hence (B2 ∩B1) ∩ U 6= ∅.

Note that the above Proposition becomes wrong if finitely many is replaced
by countably many as you can see from looking at Q ⊂ R.

Corollary 1.1. Let X be a metric space. If X contains no isolated points, then
every finite subset is nowhere dense.
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Proof. No isolated points implies that for any x ∈ X the one-point set {x} is
nowhere dense.

Note that if x ∈ X was an isolated point of X, then the closed set {x} is
also open and hence has non-empty interior. Can you give an example?

Exercise 1.1. Explain why the Cantor set is nowhere dense in R.

2 Meager and non-meager sets

Definition 2.1. Let X be a metric space. We say that a subset M ⊂ X is

1. meager (of first category) in X if M can be written as a countable union
of nowhere dense sets

2. non-meager (of second category) in X if it is not meager

3. residual (generic) in X if its complement is meager

For instance, Q ⊂ R is of first category (what about Q as a metric space in
itself?). We will soon see that the complement R \ Q is non-meager! We will
also discuss more examples below.

The basic idea of the above definition is to give a (purely topological) size
to sets. The notion of category of sets and the notion of Lebesgue measure of
sets are actually independent. In particular, as the next example shows, it is
possible to write R as the union of a set of measure zero and a meager set.

Example 2.1. Let

X =

∞⋃
n=1

(
qn −

1

2n
, qn +

1

2n

)
⊂ R

with qn an enumeration of the rational numbers. X is open and dense (why?)
and has finite Lebesgue measure (why?). The complement has therefore infinite
Lebesgue measure in R but is meager (why?). Conversely, the set

Y =

∞⋂
m=1

∞⋃
n=1

(
qn −

1

m · 2n
, qn +

1

m · 2n

)
⊂ R

has zero measure (why?) but is a countable intersection of dense open sets.
Therefore the complement Y c is a countable union of nowhere dense closed sets.

3 The Baire category theorem

Theorem 3.1. Let X be a complete metric space. Then

1. A meager set (still) has empty interior.

2. The complement of a meager set is dense. (Hence a residual set is dense.)

3. The intersection of countably many open dense sets is (still) dense.

In applications we will actually only need the following corollaries
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Corollary 3.1. A non-empty complete metric space is non-meager in itself,
i.e. it cannot be written as a countable union of nowhere dense sets.

Proof. If it was meager the metric space X = int(X) would be empty by 1. of
the Theorem.

Corollary 3.2. If a non-empty complete metric space is written as the countable
union of closed sets, then at least one of the closed sets must contain an open
ball.

To prove the Baire category theorem we will make use of the following
Lemma due to Georg Cantor.

Lemma 3.1. Let X be a complete metric space and ... ⊂ F3 ⊂ F2 ⊂ F1 be
a nested sequence of non-empty closed sets Fn ⊂ X with diam(Fn) → 0 as
n→∞. Then there is a x ∈ X with

⋂∞
n=1 Fn = {x}

Proof. Left as an exercise. Strategy: Pick xn in each set Fn and argue that the
sequence {xn} is Cauchy. Use completeness of X to deduce a limit x ∈ X and
show that x ∈ Fn for any n. To show x is the only point in the intersection
assume the existence of another point y with d (x, y) = δ > 0 and deduce a
contradiction.

Proof of Baire category theorem. Let M = ∪nMn be meager. Step 1: We first
show that 1. and 2. are equivalent. If 1. holds, the complementM c = ∩∞n=1(Mn)c

has to be dense. (If it wasn’t, M would contain a ball that doesn’t intersect M c

which contradicts 1.) Conversely, if 2. holds and hence M c is dense, M cannot
have interior points (otherwise there would be an open ball not intersecting M c

contradicting density).
Step 2: To prove 2., we consider M1,M2, ... a sequence of nowhere dense
sets. Clearly, M1,M2, ... is then a sequence of nowhere dense closed sets and
∪∞n=1Mn ⊂ ∪n=1Mn. Hence it suffices to show that the complement of the
countable union of nowhere dense closed sets is dense. But this is equivalent to
showing that the countable intersection of dense open sets is dense, which is 3.
Step 3: To prove 3. let N1, N2, ... be a sequence of open dense sets. We pick an
arbitrary non-empty open set U ⊂ X and show it intersects ∩nNn. Let (an) be
a sequence of real numbers with an = 1/n.

We start with the observation that U∩N1 is open and non-empty, hence con-
tains a non-empty closed ball B (x1, r1) with 0 < r1 < a1. Then B (x1, r1)∩N2

is open and non-empty, allowing us to pick a non-empty closed ball B (x2, r2) ⊂
B (x1, r1) ∩ N2. Then B (x2, r2) ∩ N3 is open and non-empty, allowing us to
pick a non-empty closed ball etc. Continuing inductively we obtain a sequence
of nested non-empty closed balls with diameter going to zero and B (xn, rn) ⊂
B (xn−1, rn−1) ∩ Nn ⊂ U ∩ Nn. Applying Cantor’s Lemma we conclude that⋂∞

n=1 U ∩Nn is non-empty.

4 Exercises

Exercise 4.1. Show that a closed proper subspace in a normed linear space is
nowhere dense (hence of first category).
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Exercise 4.2. Prove that in a Banach space every non-empty open set is of the
second category.

Exercise 4.3. Is every set of the second category the complement of a set of
the first category?

Exercise 4.4. Is the closure of a set of the first category also of the first cate-
gory?

Exercise 4.5. What is the category of the set of all polynomials in C [0, 1]?
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