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Abstract

These notes accompany a course taught at the ESI-EMS-IAMP Sum-
mer school on Mathematical Relativity, Vienna, July 28th-August 1st.

1 Structure

• Lecture 1-1.5: Motivation. Wave equation on Minkowski space; en-
ergy momentum tensor, decay estimates from vectorfield multipliers
and commutators

• Lecture 1.5-3: Boundedness of solutions to the wave equation on
Schwarzschild; the red shift effect

• Lecture 4: Decay for solutions to the wave equation on Schwarzschild
(statement, some ideas of the proof, the trapping phenomenon)

• Lecture 5: Outlook: The Kerr case (statement + difficulties), the
wave equation on Schwarzschild (anti-) de Sitter space, progress on
the stability problem

2 Motivation and Reminder

In the L5 course you noticed that the Einstein vacuum equations

Rµν [g] = 0 (1)

are hyperbolic and can, in so-called harmonic gauge, be thought of as a
system of quasi-linear wave equations. You also learned that this (con-
strained) system is locally well-posed.

A natural follow-up question is to ask about the global behaviour of
solutions arising from the Cauchy problem. That is, for general initial
data satisfying the constraint equations we may (for example) ask whether
trapped surfaces, black holes and/ or singularities form in evolution.

This general question turns out to be very hard due to the non-linear
nature of the Einstein vacuum equations (1). Instead it may be more
reasonable to ask

1. Can we understand the evolution near “known” stationary solutions
of the Einstein equations: Minkowski space, Schwarzschild or Kerr
(Stability)

2. Can we construct (hopefully large classes of) special data for which
we can guarantee the formation of trapped surfaces/ black holes?
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We will focus here on the first question. As it turns out, even to
show the stability of the trivial solution, Minkowski space, is a very hard
problem and required a 500 page book (Christodoulou-Klainerman, 1989)
to get resolved. The stability of the Kerr family of black holes, on the
other hand, is an open problem.

A natural strategy to address a non-linear stability problem is

1. Linearize! Understand the linear problem very well, i.e. show that
solutions decay

2. Understand the non-linear problem; this usually requires to identify
some structure in the non-linearity

Naively linearising the Einstein equations near Minkowski space yields
(decoupled!) wave equations, so this part is easy! For any other back-
ground, in particular black hole solutions, the metric is not flat and even
the linearisation is non-trivial! Nevertheless, for most of the course we
shall be concerned with the problem of understanding solutions ψ to the
covariant wave equation

�gψ := gµν∇µ∇νψ =
1√
g
∂µ (

√
ggµν∂νψ) = 0

for g a black hole spacetime (which will be Schwarzschild for us).
Related problems concern Maxwell’s equations on black hole back-

grounds and the full system of gravitational perturbations.

3 The wave equation in Minkowski space

It is fruitful to develop and illustrate the techniques we will need in the
black hole case first for the simpler case of Minkowski space, for which we
have better geometric intuition. We have

�ηψ := ηµν∂µ∂νψ = −∂2
t ψ +∆ψ = 0 . (2)

As you know, the wave equation is well-posed after specifying appropriate
initial data, for instance ψ (0,x) = f (x) and ∂tψ (0,x) = g (x) (suit-
ably smooth1) along the initial hypersurface t = 0. Moreover, because
Minkowski space is so symmetric (Lorentz invariance – make sure you
understand what is meant by the Lorentz invariance of the wave operator
(2)), one can – and you probably have in a PDE course – write down an
explicit solution formula (known as Kirchhoff’s formula) for the solution
in terms of the data f and g. We have

ψ (x, t) =
1

4πt2

∫

|y−x|=t

(

tg (y) + f (y) +
∑

i

fyi (yi − xi)

)

dSy . (3)

Proposition 3.1. Any C2 solution of the initial value problem for the
wave equation is given by the above formula. Conversely given f ∈ C3

and g ∈ C2 the above defines a C2 solution of the wave equation assuming
the prescribed initial data at t = 0.

Many features of the wave equation can be read off from this repre-
sentation

• domain of dependence, domain of influence, Huygens principle, finite
speed of propagation

1I avoid making precise statements in Sobolev spaces at this point.
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• regularity loss at the Ck level

• decay of solutions (at least 1/t for solutions of compact support).

When we consider more complicated backgrounds, like Schwarzschild
or Kerr (or perturbations thereof!), the nice and explicit representation
formula above breaks down. We would like to develop methods which
capture the above features in a more robust fashion than reading them
off from a representation formula.

3.1 The energy estimate

Let us assume that we have a classical C2 solution of �ψ = 0 on [0, T ]×R
d

with “data” ψ (0, x) = u0 (x) and ∂tψ (0, x) = u1 (x). Multiplying the
wave equation by −∂tψ yields

0 = −�ψ · ∂tψ =
1

2
∂t (∂tψ)

2 −∇x (∂tψ∇xψ) +∇x∂tψ · ∇xψ = 0

or

0 =
1

2
∂t
[

(∂tψ)
2 + |∇xψ|2

]

−∇x (∂tψ∇xψ) . (4)

If we integrate this over the spacetime slab [0, T ]×R
d, then assuming that

u decays sufficiently rapidly near infinity (more on this below!) we would
obtain the energy conservation law

∫

t=T

ddx
[

(∂tψ)
2 + |∇xψ|2

]

=

∫

t=0

ddx
[

(∂tψ)
2 + |∇xψ|2

]

As this works for any τ ≤ T we obtain

‖∂tψ (τ, ·) ‖L2
x
+ ‖ψ (τ, ·) ‖H̊1

x
= ‖u1‖L2 + ‖u0‖H̊1 . (5)

In order to derive this identity we have assumed that u is C2 and that
it vanishes sufficiently rapidly near spatial infinity in order to make the
boundary term arising from ∇x (∂tψ∇xψ) vanish. We will now see that
we can do much better if we suitably localize the estimate.

Fix T > 0, R > 0 and consider a region

K =
⋃

τ∈[0,T ]

{τ} ×BR+T−τ (6)

where BR+T−τ is the ball of radius R+ T − τ centered at the origin.

BT+R

BT+R−τ

τ = 0

τ = T

You may think of this region as a cut-off (at t = 0 and t = T ) past light

cone with tip at
(

T +R,~0
)

. We will denote the boundary of BR+T−τ in

R
3 by SR+T−τ and the unit outward normal to this boundary by N .
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Integrating (4) over the region K then yields

1

2

∫

{t=T}×BR

ddx
[

(∂tψ)
2 + |∇xψ|2

]

+

∫ T

0

dt

∫

{τ}×SR+T−τ

[

1

2
(∂tψ)

2 +
1

2
|∇xψ|2 − ∂tψ ·Nψ

]

dσSR+T−τ

=
1

2

∫

{t=0}×BR+T

ddx
[

(∂tψ)
2 + |∇xψ|2

]

(7)

It is not hard to see using Cauchy-Schwarz that the integrand in the
second line is non-negative. We can actually obtain something more quan-
titative. Let us denote the induced gradient on the spheres SR+T−τ by /∇
(i.e. the derivatives tangent to these d− 2 dimensional spheres). We may
decompose

∂t = N + V

where V is a derivative tangent to the wall of the cone2 Then, from the
easily verified identities

−∂tuNu = − (Nu)2 −Nu · V u
1

2
∂tu∂tu =

1

2
(Nu)2 +Nu · V u+

1

2
(V u)2

1

2
|∇xu|2 =

1

2
(Nu)2 +

1

2
| /∇u|2

we see that (7) becomes

1

2

∫

{t=T}×BR

ddx
[

(∂tψ)
2 + |∇xψ|2

]

+

∫ T

0

dt

∫

{τ}×SR+T−τ

[

1

2
(V ψ)2 +

1

2
| /∇ψ|2

]

dσSR+T−τ

=
1

2

∫

{t=0}×BR+T

ddx
[

(∂tψ)
2 + |∇xψ|2

]

(8)

This identity is truly remarkable and illustrates the domain of depen-
dence property of the wave equation. Indeed, we certainly have

∫

{t=T}×BR

ddx
[

(∂tψ)
2 + |∇xψ|2

]

≤
∫

{t=0}×BR+T

ddx
[

(∂tψ)
2 + |∇xψ|2

]

(9)

and hence

Corollary 3.1. Suppose ψ = 0 in {t = 0} ×BR+T . Then ψ = 0 in
⋃

τ∈[0,T ]{τ} ×BR+T−τ .

Corollary 3.2. Two C2 solutions u and v in K =
⋃

τ∈[0,T ]{τ}×BR+T−τ

that satisfy u = v and ∂tu = ∂tv on {t = 0} ×BR+T have to agree in all
of K.

Exercise 3.1. Can you generalize this domain of dependence/ uniqueness
properties to more general wave equations? Hint: Gronwall’s inequality.

2In polar coordinates ∂t = ∂r + (∂t − ∂r) since the wall of the cone is given by zero set of

H (t, x1, . . . , xd) = t+
√

x21 + . . . x2d −R− T = t− T + r−R, so that indeed (∂t − ∂r)H = 0.
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Let us understand a bit better the underlying geometry of this com-
putation. The expression (4) is apparently a boundary term and it will
induce different expressions dependent on the geometry of the boundary
hypersurfaces. What is useful in the estimates is if the expressions induced
are non-negative, as it was the case for the hypersurfaces of constant t and
the characteristic hypersurfaces discussed above.

Exercise 3.2. Obtain the energy estimate for two homologous spacelike
hypersurfaces S1 and S2, i.e. spacelike hypersurfaces with common bound-
ary ∂S1 = ∂S2 bounding a region.

3.2 The energy momentum tensor

We now turn to a more systematic and geometric interpretation of the
above computation, which will also pave the way for further insights about
the wave equation.

We define the energy momentum tensor3

Tµν [ψ] = ∂µψ∂νψ − 1

2
ηµν (∂ψ)

2 .

If ψ solves the wave equation �ηψ = 0, then

∂µT
µν = 0 ,

i.e. the energy momentum tensor is divergence-free. Consequently, if X is
a spacetime vectorfield, we have

∂µ (TµνX
ν) =

1

2
Tµν (∂

µXν + ∂νXµ) = Tµν
(X)πµν , (10)

thereby defining the deformation tensor associated with the vectorfield X

2(X)πµν = ∂µXν + ∂νXµ .

Note that this is precisely the Lie-derivative of the metric η! In particular,

If X is a Killing field, then (X)πµν = 0.

Exercise 3.3. Can you understand the Poincare group of special relativity
in this context?

Using the definitions

J(X)
µ [ψ] = Tµν [ψ]X

ν and KX [ψ] = Tµν [ψ]
(X)πµν ,

we can now revisit our above computation with X = ∂t and integrate
over a spacetime region using Stokes theorem. Note in particular Ttt =
1
2
|Dψ|2 := 1

2
(∂tψ)

2 + 1
2
| /∇xψ|2. This is a manifestation of a much more

general property of the energy momentum tensor:

Proposition 3.2. (Positivity property)

TµνX
µY ν ≥ 0 for X, Y both future directed causal (positivity property)

As the proof shows we actually have

TµνX
µY µ ≥ b|Dψ|2 for X,Y future directed timelike.

3One can motivate this from the Lagrangian formulation....
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Exercise 3.4. Proof the above property. Outline: Let X,Y future directed
causal. If they are collinear the result is a really simple exercise, so let’s
assume they are not. Use the following two hints.

Hint 1: If L and L are two future directed non-collinear null-vectors,
normalised such that g (L,L) = −2, then we have

T (L,L) = (Lψ)2 , T (L,L) = [e1 (ψ)]
2+[e2 (ψ)]

2 , T (L,L) = (Lψ)2

where e1, e2 are two spacelike unit-vectors making (L,L, e1, e2) a null-
frame.

Hint 2: We can write X and Y as linear combinations of two future
directed causal null vectors L and L with positive coefficients.

Remark 3.1. It is of course a natural question to ask what happens for
other vectorfields (or, in terms of the “old” language, what happens for
multiplying the wave equation with other objects and integrating by parts).
We see that

• all Killing fields are nice candidates and lead to conservations laws
but only the timelike ones have the positivity property when integrat-
ing (10) between spacelike slices.

• conformal Killing fields K = u2∂u+v
2∂v is timelike, satisfies (K)π ∼

g and leads to something useful (more later)

3.3 The wave equation on a general (M, g)

Let (M, g) be a Lorentzian manifold. We define

�gψ := gµν∇µ∇νψ =
1√
g
∂µ (

√
ggµν∂νψ) = 0 ,

which can be derived from the action

S [ψ] =

∫

M

gµν∇µψ∇νψdµg .

The energy momentum tensor is defined as

Tµν := ∇µψ∇νψ − 1

2
gµν

(

gαβ∇αψ∇βψ
)

and satisfies the energy identity

∇µ (TµνX
µ) = (X)πµνT

µν (11)

for the deformation tensor

2(X)πµν = ∇µXν +∇νXµ .

Again we will use the notation

J(X)
µ [ψ] = Tµν [ψ]X

ν and KX [ψ] = Tµν [ψ]
(X)πµν

and the main identity

∇µJ(X)
µ [ψ] = KX [ψ] (12)

Exercise 3.5. Repeat the proof of the all important positivity property,
Proposition 3.2.

6



Integrating the identity over a spacetime region R we obtain

∫

R

J(X)
µ [ψ]nµ

∂R =

∫

R

K(X) [ψ] (13)

where the normal vector to the boundary is defined by the following figure

3.4 An integrated decay estimate

Another fundamental idea is to exploit the identity (10) in a different way.
Note that after integration both sides just depend on ONE derivative of
ψ. Hence we can also try to estimate the right hand side from the left.

Our goal is to construct a multiplier which yields

Proposition 3.3. Any C2 solution of the wave equation �ηψ = 0 satisfies
the estimate
∫ ∞

t=0

dt

∫

Σt

1

r
| /∇ψ|2 ≤ CE0 [ψ] := C

[∫

Σ0

|∂tψ|2 + |∂xψ|2 + |∂yψ|2 + |∂zψ|2
]

.

for a uniform constant C.

Note that the above estimate already captures in some sense that the
angular derivatives of ψ have to decay in time. Similar estimates can then
be derived for the other derivatives of ψ and the decay statements can
then be improved further.

Proof. [Morawetz] Note first that we have on Σt by a Hardy inequality
and energy conservation (ψ of compact support)

∫ ∞

0

∫

S2

ψ2drdω ≤ C

∫ ∞

0

∫

S2

r2 (∂rψ)
2 drdω ≤ CE0 [ψ] . (14)

We choose
X = ∂r

and apply the energy identity (10) in a region

M = M (0, T ) \ {(0, t)×Bǫ} .

Draw picture, identify normals... We compute

KX [ψ] =

(

1

r

)

(∂tψ)
2 +

(

−1

r

)

(∂rψ)
2 (15)

and

J(X)
µ (∂t)

µ = T [ψ] (∂r, ∂t) = ∂tψ∂rψ ≤ (∂tψ)
2 + (∂rψ)

2 + | /∇ψ|2

J(X)
µ (∂r)

µ = T [ψ] (∂r, ∂r) =
1

2
(∂tψ)

2 − 1

2
| /∇ψ|2 + 1

2
|∂rψ|2
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For a smooth function h depending on r we have the identity (dvol =
dtdr sin θdθdφ)

∫

M

dvol∂µ

(

hψ∂µψ − 1

2

(

ψ2∂µh
)

)

=

∫

M

dvol

[

h
(

(−∂tψ)2 + (∂rψ)
2 + | /∇ψ|2

)

− 1

2
ψ2 · �ηh

]

(16)

Choosing h = 1
r
and adding the two identities yields

∫

M

dvol
1

r
| /∇ψ|2 +

∫ T

0

dt

∫

S2

dωψ2 (r = 0) ≤ CE0 [ψ] . (17)

after realising that

• The boundary terms on constant t can be estimated by E0 [ψ], in
particular the term

∫

Σt

1
r
ψ∂tψ coming from (16) can be handled

using Cauchy Schwarz and (14).

• The boundary term at infinity vanish. The one on the cylinder has
unit normal −∂r leading to a positive term and terms that vanish in
the limit ǫ→ 0.

4 The wave equation on Schwarzschild

4.1 Schwarzschild: basic geometry

Recall the Penrose diagram of Schwarzschild that you have seen in the
introductory lecture. The crucial new feature here is the presence of the
horizon H+, a null-hypersurface. We write the Schwarzschild metric in
(t⋆, r, θ, φ) coordinates

gS = −
(

1− 2M

r

)

(dt⋆)2 +
4M

r
dt⋆dr +

(

1 +
2M

r

)

dr2 + r2dσ2

covering the exterior region.

Exercise 4.1. Restricting to the region r > 2M , show that the Schwarz-
schild metric takes its “familiar” form after doing the coordinate trans-
formation

t⋆ = t+ 2M log (r − 2M) .

The components of the inverse metric of gS are

gt
⋆t⋆ = −

(

1 + 2M
r

)

, gt
⋆r = 2M

r
,

grr = 1− 2M
r
, gAB = /g

AB .
(18)

The volume element is
dη = r2dt⋆drdω,

where dω is the volume element on the unit 2-sphere.
Let Σt⋆ denote the hypersurface of constant t. It has unit normal

given by

n =
√

−gt⋆t⋆ ∂
∂t⋆

− gt
⋆r√

−gt
⋆t⋆

∂
∂r
,

n♭ = − 1√
−gt

⋆t⋆
dt⋆,

(19)
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and an induced volume element

dSΣt =
√

−gt⋆t⋆r2drdω ∼ r2drdω. (20)

Note that Σt⋆ is a regular spacelike hypersurface, even as it approaches
the horizon.

Exercise 4.2. Show that the hypersurface r = 2M is null. What is its
normal?

4.2 The energy estimate

The vectorfield T = ∂t⋆ is Killing. Therefore

K(T ) [ψ] = 0

and

J(T )
µ [ψ]nµ = T [ψ]

(

∂t⋆ ,
√

−gt⋆t⋆∂t⋆ − gt
⋆r

√−gt⋆t⋆ ∂r
)

=
1

2

(

−gt
⋆t⋆ (∂t⋆ψ)

2 + grr (∂rψ)
2 + | /∇ψ|2

)

r2drdω (21)

J(T )
µ [ψ]T µ

∣

∣

∣

H+
= (∂t⋆ψ)

2 . (22)

Our main identity (12) hence provides the energy identity

∫

Σt⋆
2

((

1 +
2M

r

)

(∂t⋆ψ)
2 +

(

1− 2M

r

)

(∂rψ)
2 + | /∇ψ|2

)

r2drdω

+2

∫

H+(t⋆1 ,t⋆2)
(∂t⋆ψ)

2 dt⋆dω

=

∫

Σt⋆
1

((

1 +
2M

r

)

(∂t⋆ψ)
2 +

(

1− 2M

r

)

(∂rψ)
2 + | /∇ψ|2

)

r2drdω .

The following can be immediately observed

• Away from the horizon we control all derivatives, however the control
degenerates near the horizon (for the transversal derivative)

• On the horizon itself, we only control the ∂t⋆ derivative.

• energy on spacelike slices non-increasing (energy leaves through the
horizon)

Note that the above identity is consistent with ψ blowing up along the
event horizon in evolution!

Can we improve this estimate? Our goal will be to prove the following

Proposition 4.1. For any sufficiently smooth solution of the wave equa-
tion on Schwarzschild, we have the estimate

∫

Σt⋆

r2drdω
[

(∂t⋆ψ)
2 + (∂rψ)

2 + | /∇ψ|2
]

≤ C

∫

Σt⋆=0

r2drdω
[

(∂t⋆ψ)
2 + (∂rψ)

2 + | /∇ψ|2
]

(23)

for any t⋆ ≥ 0.
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4.3 The redshift

4.3.1 The heuristics

Consider two stationary observers A and B following sitting at fixed rA >
2M and rB > rA > 2M respectively (i.e. following the orbits of the
timelike Killing field ∂t⋆). If A sends two signals at coordinate time t⋆1
and t⋆2 then since γA (t⋆) = (t⋆, rA, θ, φ) the proper time elapsed between

the two signals is sA =
∫ t⋆2
t⋆
1

dt⋆
√

−g (γ̇, γ̇) =
√

1− 2M
rA

(t⋆2 − t⋆1). Similarly,

for B, the proper time elapsed between receiving the two signals is sB =
√

1− 2M
rB

(t⋆2 − t⋆1). Interpreting this result in terms of waves and the two

signals as measuring the time between two wave crests, we see that light is
redshifted (i.e. the frequency energy decreases) as it travels away from the
horizon. If we are willing to invoke that quantum mechanically E = ~ω
we conclude that the energy decreases (which is also clear from the photon
needing energy to escape from the gravitational field).

4.3.2 The redshift multiplier

Consider the vectorfield

N = g (r)T − f (r) ∂r

for functions g and f to be determined. The idea will be to choose g
and f very carefully near the horizon so that the following Proposition is
true, which is taken due to Dafermos-Rodnianski. The formulation of the
Proposition and the proof is taken from the Zurich Nachdiplom lecture
notes of Dafermos:

Proposition 4.2. There exists a vectorfield N such that

1. (φτ )⋆N = N (the vectorfield is t⋆-time-independent)

2. N is future directed timelike

3. N = T in Σ0 \ B where B is compact

4. There exists an r0 > 2M such that on Σt⋆ ∩ {r ≤ r0} we have

KN [ψ] ≥ bJ(N)
µ Nµ (24)

Proof. It suffices to construct a timelike vectorfield N0 along Σ0 which
satisfies property 4 on Σ0 ∩ {r ≤ r1} for some r1 > 2M . This is because
given such N0 we define

r0 = 2M +
r1 − 2M

2
< r1

and a cut-off function χ which is 1 for 2M < r < r0 and zero for r > r1.
The vectorfield

Ñ0 = χN0 + (1− χ)T

is then future directed timelike (why?) and satisfies property 4 for r ≤ r0,
as well as property 3. Pushing Ñ0 forward along the integral curves of ∂t⋆

hence yields the desired N .
Actually, by continuity it suffices to ensure that (24) holds on the

horizon sphere S0 = Σt⋆=0 ∩ {r = 2M} (why?).
Note that the vectorfield −2∂r + 2∂t⋆ is null on H+ (as grr − 2grt⋆ +

gt⋆t⋆ = 2 − 2 + 0 = 0 on H+) and satisfies g (−2∂r + 2∂t⋆ , T ) = −2.
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We would like to extend the vectorfield −2∂r + 2∂t⋆ off the horizon to a
vectorfield Y satisfying that

∇Y Y = −σ (Y + T ) holds on S0

for a large positive constant σ. To do this, take

Y =

[

−2 + k1

(

1− 2M

r

)]

∂r +

[

2 + k2

(

1− 2M

r

)]

∂t⋆

and choose the constants k1 and k2 appropriately. We claim that N0 =
Y + T satisfies (24) near S0 on Σ0.

To show this last part, we perform computations in a null-frame (T, Y,E1, E2)
at a point on the sphere S0. We compute at p

∇TY = −κY + a1E1 + a2E2

∇Y Y = −σT − σY

∇E1
Y = h1

1E1 + h2
1E2 −

1

2
a1Y

∇E2
Y = h1

2E1 + h2
2E1 − 1

2
a2Y

These formulae are easily verified: The second holds by definition, for
the third and fourth we only observe g (∇E1

Y, Y ) = 0, for the first
g (∇TY, Y ) = 0. (Why does the same a1, a2 appear in the first and third
and fourth?). The κ appearing in the first equation is the surface grav-
ity of the Schwarzschild horizon, κ = 1

4M
, which was defined in previous

lectures (∇TT = κT ). We now compute

2(Y +T )π (V,W ) = 2(Y )π (V,W ) = g (∇WY, V ) + g (∇V Y,W )

KN = KY =
1

2
[T (Y, Y )κ+ T (T, Y ) σ + T (T, T )σ]

− 1

2

(

T (E1, Y )a1 + T (E2, Y )a2
)

+ T (E1, E2)h
1
1 + T (E2, E2)h

1
2 + T (E1, E2)

(

h2
1 + h1

2

)

(25)

The terms in the first line are all good and control all derivatives, in fact
we have σ as a largeness parameter at our disposal. The only derivative
not controlled with a σ largeness is |Y ψ|2. The terms in lines two and
three will be absorbed by the terms in the first line. For this to be possible,
note that no |Y ψ|2-terms appear at all in the second and third line! This is
because (T (V,W ) = V ψWψ − 1

2
g (V,W )

[

−Y ψTψ + | /∇ψ|2
]

). We hence
see that

KN ≥ b
(

|Y ψ|2 + |Tψ|2 + | /∇ψ|2
)

≥ bJ(N)
µ Nµ .

4.4 Proof of boundedness

Given the multiplier N we can complete the proof of boundedness. Write
the N-identity as

∫

Σt⋆
2

J(N)
µ nµ

Σ +

∫

H+(t⋆1 ,t⋆2)
J(N)
µ nµ

H +

∫

M(t⋆1 ,t⋆2)∩{r≤r0}

KN [ψ]

= −
∫

M(t⋆1 ,t⋆2)∩{r0≤r≤r1}

KN [ψ] +

∫

Σt⋆
1

J(N)
µ nµ

Σ .

11



Using the above Proposition (and dropping the second (good) term), we
find

∫

Σt⋆
2

J(N)
µ nµ

Σ + b

∫

M(t⋆1 ,t⋆2)∩{r≤r0}

J(N)
µ nµ

Σ

≤ B

∫

M(t⋆1 ,t⋆2)∩{r0≤r≤r1}

J(N)
µ nµ

Σ +

∫

Σt⋆
1

J(N)
µ nµ

Σ . (26)

To estimate the “bad” term on the right hand side we recall the T identity
∫

Σt⋆

J(T )
µ nµ

Σ +

∫

H+(t⋆0 ,t⋆)
J(T )
µ nµ

Σ =

∫

Σt⋆
0

J(T )
µ nµ

Σ ,

from which we derive

b

∫

Σt⋆∩{r≥r0}

J(N)
µ nµ

Σ ≤
∫

Σt⋆

J(T )
µ nµ

Σ ≤
∫

Σt⋆
0

J(T )
µ nµ

Σ , (27)

for b a constant depending on r0. Integrating the previous estimate in t⋆

b

∫

M(t⋆1 ,t⋆2)∩{r≥r0}

J(N)
µ nµ

Σ ≤ (t⋆2 − t⋆1) ·
∫

Σt⋆
0

J(T )
µ nµ

Σ . (28)

Combining (28) with (26), it follows that for any t⋆2 ≥ t⋆1 ≥ t⋆0 we have
∫

Σt⋆
2

J(N)
µ nµ

Σ + b

∫

M(t⋆1 ,t⋆2)
J(N)
µ nµ

Σ ≤ B (t⋆2 − t⋆1)

∫

Σt⋆
0

J(T )
µ nµ

Σ +

∫

Σt⋆
1

J(N)
µ nµ

Σ .

Writing

f (t⋆) :=

∫

Σt⋆

J(N)
µ nµ

Σ and the data quantity D :=

∫

Σt⋆
0

J(T )
µ nµ

Σ ,

we have

f (t⋆2) + b

∫ t⋆2

t⋆
1

dt⋆f (t⋆) ≤ f (t⋆1) + B̂ ·D (t⋆2 − t⋆1) . (29)

This implies (Exercise4):

f (t⋆) ≤ Bf (t⋆0) . (30)

4.5 Pointwise boundedness

In the previous section we showed that the L2-based energy remains
bounded on spacelike slices. Suppose we wanted to prove that ψ itself
is pointwise uniformly bounded by initial data. The way to do this is via
Sobolev embedding. We just quote two standard results here

Proposition 4.3. Consider the Riemannian manifold
(

S2
t⋆,r, /gAB

)

. For

u (t⋆, r, θ, φ) smooth we have

sup
S2

|u|2 =

∫

S2

sin θdθdφ
[

|r2 /∇ /∇u|2 + |r /∇u|2 + |u|2
]

.

Consider a slice Σt⋆ . For u (t⋆, r, θ, φ) smooth and of compact support in
r we have

sup
Στ

|u| ≤ C
[

‖u‖H̊2(Στ ) + ‖u‖H̊1(Στ )

]

with C independent of the size of the support.

4Hint: Use the fundamental theorem of calculus to derive f ′ (t) + bf (t) ≤ B̂ ·D.
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You can find these results in any textbook on PDEs which has a chap-
ter on Sobolev spaces, e.g. Evans. The results can be interpreted as fol-
lows. Pointwise uniform boundedness follows if we can control higher
derivatives in L2.

To achieve this goal we first note that the wave equation commutes
with Killing fields, i.e. if K is Killing and ψ satisfies �gψ = 0, then

�gKψ = 0 .

In particular, we can repeat our boundedness proof for (∂t⋆)
k (Ωi)

l ψ for
any i (with Ωi denoting a basis of the SO (3) Lie-algebra on the sphere)
and any k and l. It is an easy computation to check that for /g = r2γAB

the round metric on a sphere of radius r

r2/g
AB∂Aψ∂Bψ = r2| /∇ψ|2 ≤ C

3
∑

i=1

|Ωiψ|2 ,

that is all angular derivatives of ψ are controlled once we control Ωiψ for
all i. In particular, in this way we control
∫

Σt⋆

(

r4|∂r /∇ /∇ψ|2 + r2|∂r /∇ψ|2 + |∂rψ|2 + | /∇ψ|2 + r2| /∇ /∇ψ|2
)

r2drdω

≤ C

(

E0 [ψ] +
∑

i

E0 [Ωiψ] +
∑

i,j

E0 [ΩiΩjψ]

)

with E0 denoting the non-degenerate N-energy.
Now observe that on Σt⋆ we have
∫ ∞

R

∫

S2

ψ2drdω +

∫

S2
t⋆,R

ψ2rdω ≤ C

∫ ∞

R

∫

S2

(∂rψ)
2 r2drdω

for every r ≥ 2M and ψ of compact support on Σt⋆ by a simple Hardy
inequality.

Combining the above with the Sobolev inequality on the sphere yields
a pointwise bound on ψ.

What if the background is not spherically symmetric? How
do you obtain bounds for higher order (transversal) derivatives? The key
is to use elliptic estimates away from the horizon and a commutation with
the redshift vectorfield near the horizon.

4.5.1 Elliptic Estimates

Away from the horizon one can do elliptic estimates. Let us write the
wave equation as

1

r2
∂r
(

r2 (1− µ) ∂rψ
)

+ /∆ψ =

(

1 +
2M

r

)

∂2
t⋆ψ − 2M

r
∂t⋆∂rψ − 2M

r2
∂t⋆ψ

Strictly away from the horizon, the left hand side is a uniformly elliptic
operator on Στ and the right hand side in in L2 by previous estimates.
This allows to estimate all spatial derivatives away from the horizon.

‖ψ‖2H̊2(Σt⋆∩{r≥r0})
+ ‖ψ‖2H̊1(Σt⋆∩{r≥r0})

≤ C (E0 [ψ] + E0 [Tψ])

This works whenever ∂t is timelike.
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4.5.2 The redshift commutation

To obtain all derivatives near the horizon (or even higher transversal
derivatives in the Schwarzschild case, which can never be obtained via
commutation by ∂t⋆ or Ωi alone!), one needs to commute with the red-
shift vectorfield. (The underlying general idea is: We can commute by
vectorfields which are not Killing just as we can apply the basic vectorfield
identity (12) for non-Killing fields. We can hope that for geometrically
chosen vectorfields the error made by the commutation is “good” in the
sense that the term will contribute the correct sign in the energy identity.)

Let us define Ŷ = −∂r and recall that this is the missing transversal
derivative on the horizon. We have

Proposition 4.4. Let ψ satisfy �gψ = 0. Then

�g

(

Ŷ ψ
)

=

(

2

r
− 2M

r2

)

Ŷ
(

Ŷ ψ
)

− 4

r

(

Ŷ (Tψ)
)

+ P1ψ ,

where P1ψ = 2
r2

(

Tψ − Ŷ ψ
)

is a first order operator.

Note that the first term has a positive coefficient on (and hence near)
the horizon! If you were doing this computation for a general horizon, you
would see the surface gravity κ appearing here!

Proof. Direct computation.

We now show that one can control second transversal derivatives near
the horizon. By the boundedness statement we have

∫

M(0,τ)∩{r≤r0}

KN [ψ] ≤ BDτ (31)

and commuting the wave equation with T (and repeating the boundedness
proof) we have also

∫

M(0,τ)∩{r≤r0}

(

Ŷ Tψ
)2

≤
∫

M(0,τ)∩{r≤r0}

KN [Tψ] ≤ BDτ , (32)

where D is an initial data quantity (more precisely, E0 [ψ] and E0 [Tψ]).
We now commute the wave equation with Ŷ and apply the N multi-

plier.5 This produces
∫

Στ

JN
µ

[

Ŷ ψ
]

nµ
Σ +

∫

H+(0,τ)

JN
µ

[

Ŷ ψ
]

nµ
H +

∫

M(0,τ)∩{r≤r0}

KN
[

Ŷ ψ
]

=

∫

Σ0

JN
µ

[

Ŷ ψ
]

nµ
Σ +

∫

M(0,τ)∩{r0≤r≤r1}

(

−KN
) [

Ŷ ψ
]

+

∫

M(0,τ)∩{r≤r0}

EN
[

Ŷ ψ
]

+

∫

M(0,τ)∩{r0≤r≤r1}

EN
[

Ŷ ψ
]

,

with

EN
[

Ŷ ψ
]

= −NŶ
[(

2

r
− 2M

r2

)

Ŷ
(

Ŷ ψ
)

− 4

r

(

Ŷ (Tψ)
)

+ P1ψ

]

. (33)

Now recall

N = Y + T = (2 + k1 (1− µ)) Ŷ + (1 + k2 (1− µ))T

5Note that if �gψ = F for some right hand side F, the identity (12) generalises to
∇µ (TµνXν) = FX (ψ) + Tµν

(X)πµν .
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(for k1 and k2 fixed). So the
(

Ŷ Ŷ ψ
)2

has a good sign near the horizon

in the energy identity!
We have for r ≤ r0

EN
[

Ŷ ψ
]

≥ 1

4M
|Ŷ Ŷ ψ|2 −C|Ŷ Tψ||Ŷ Ŷ ψ| − C|Ŷ Tψ|2 − .... (34)

(the point being that all terms following the first involve at least one T
derivative (or are first order) and are hence a-priori controlled by (31) and
(32)!) We finally obtain

∫

Στ

JN
µ

[

Ŷ ψ
]

nµ
Σ +

1

2

∫

M(0,τ)

JN
µ

[

Ŷ ψ
]

nµ
Σ

=

∫

Σ0

JN
µ

[

Ŷ ψ
]

nµ
Σ +BDτ (35)

where we have dropped the horizon term, used the fact that away from
the horizon we already control all derivatives from the initial E0 [ψ] and
E0 [Tψ] energies through elliptic estimates.

Repeating the argument in the boundedness proof yields an L2 bound
on all second derivatives which have at least one Ŷ or one T in them. Now
one can do elliptic estimates on the spheres (write the wave equation so
that only angular derivatives remain on the left and use the L2 control on
the right hand side).

4.6 Decay

For the linear wave equation we saw that waves actually decay in time.
I advertised that the robust way of capturing this (which will also work
for metrics close to Minkowski) is via an integrated decay estimate. Can
we do something similar, i.e find a multiplier which produces a positive
KX [ψ] and whose boundary terms are controlled by the energy? It turns
out there is an important obstruction which goes back to the existence of
trapped null-geodesics on black hole backgrounds.

In order to capture decay, we have to slightly alter our foliation by
spacelike slices

draw picture with old Σt⋆ -foliation and new Σ̃t⋆ foliation (hyper-
boloidal slices ending on null-infinity). We let the Σt⋆ agree with the
Σ̃t⋆ for r = R > 10M for convenience.

Exercise 4.3. Find an explicit parametrisation of the Σ̃t⋆ -slices in the
picture. Does the boundedness proof work for the Σ̃t⋆ -foliation? How does
the energy on Σ̃t⋆ and on null-infinity look like?

4.6.1 The decay statement

Proposition 4.5. Any sufficiently smooth solution of the wave equation
on Schwarzschild satisfies the degenerate estimate
∫

M̃(t⋆1 ,t⋆2)

1

r2

(

1− 3M

r

)2
[

(∂t⋆ψ)
2 + (∂rψ)

2 + | /∇ψ|2
]

≤ C · Ẽ [ψ] (t⋆1)

as well as the non-degenerate estimate
∫

M̃(t⋆1 ,t⋆2)

1

r2
[

(∂t⋆ψ)
2 + (∂rψ)

2 + | /∇ψ|2
]

≤ Ẽ [ψ] (t⋆1) + Ẽ [Tψ] (t⋆1)
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Of course, our main task will be to explain the degeneration at r = 3M !

4.6.2 A few words about the proof

At the technical level the proof proceeds quite similarly to the proof we
have seen for Minkowski space. One may start with a multiplier X =
f (r) ∂r, compute KX [ψ] and add an appropriate h-identity. One will be
forced to let f degenerate at r = 3M in order to make KX [ψ] manifestly
non-negative. Finding f and h from scratch is extremely subtle. (For
large angular momentum ℓ for ψ (using the spherical symmetry of the
background) there is a simple construction described in the Lecture Notes
of Dafermos and Rodnianski).

4.6.3 From integrated decay to pointwise decay

There is a certain black box approach, developed recently by Dafermos and
Rodnianski, which allows us to derive from the integrated decay estimate
of Proposition 4.5 a statement of decay of the energy (and eventually, if
so desired, pointwise bounds).

Theorem 4.1. We have
∫

Σ̃t⋆

JN
µ [ψ]nµ

. (t⋆)
−2

∫

Σ̃0

r2
(

JN
µ [TTψ] + JN

µ [Tψ] + JN
µ [Tψ]

)

nµ

We won’t go into this here but I recommend the very readable 14page
paper of Dafermos and Rodnianski, arXiv: 0910.4957.

4.6.4 Null-geodesics on Schwarzschild

Let γ (s) = (t (s) , r (s) , θ (s) , φ (s)) be a null-gedoesic. We can do the
computation in these coordinates because we are most interested in the
behaviour away from the horizon. We have

− (1− µ) ṫ2 + (1− µ)−1 ṙ2 + r2
(

θ̇2 + sin2 θφ̇2
)

= 0

Since γ is a geodesic and ∂t is Killing, the quantity

gµν γ̇
µ (∂t)

ν = E

is constant along γ (why?). Similarly

gµν γ̇
µ (∂φ)

ν = L

is constant. Finally, we can wlog assume θ = π/2 (why?). This yields

1

2
ṙ2 +

1

2

(

1− 2M

r

)(

L2

r2

)

=
1

2
E2

or
1

2
ṙ2 + V (r) =

1

2
E2 with V =

1

2

(

1− 2M

r

)(

L2

r2

)

a one-dimensional scattering problem. Note

V ′ (r) =
L2

r4
(3M − r)

so the potential has a unique global maximum at r = 3M . We already see
the existence of null-geodesics remaining stationary at r = 3M (choose
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L2

E2 = 27M2). (Note the geodesic is of course non-radial!) This is an
obstruction to decay in the geometric optics (=high frequency) approxi-
mation where wave propagation can be approximated by null-geodesics.
However, using elementary ODE analysis, one can also see that the phe-
nomenon is unstable.

4.6.5 A quantitative statement

Theorem 4.2 (Sbierski). There exists a sequence of initial data for the
wave equation with corresponding solution ψn such that

• E0 [ψn] = 1 for all n and

• there exists a positive constant b > 0 (not depending on n) such that
given any time T ⋆ > 0, there exists an n such that

∫

Σt⋆∩{|r−3M|< 1
10

}

[

(∂t⋆ψ)
2 + (∂rψ)

2 + | /∇ψ|2
]

≥ bE0 [ψn]

In other words, the energy can remain concentrated near r = 3M for
arbitrary long times without increasing the H1-norm of the initial data.
Of course localising the solution very close to r = 3M will make the
H2-norm large!

Sbierski’s theorem tells you why there has to be a degeneration in
the first estimate of Proposition 4.5. [Sketch: If there wasn’t, then using
a dyadic decomposition t⋆i = 2it⋆i−1, we could find a sequence of good
slices Σ̃t̄⋆

i
(with t⋆i ≤ t̄⋆i ≤ t⋆i+1) on which in particular the estimate

∫

Σt̄⋆
i
∩{|r−3M|< 1

10
}

[

(∂t⋆ψ)
2 + (∂rψ)

2 + | /∇ψ|2
]

≤ C (t̄⋆i )
−1 Ẽ0 [ψ] holds. As

this estimate holds for any ψn (the t̄⋆i will change but always t⋆i ≤ t̄⋆i ≤
t⋆i+1), we can for any solution find a (sufficiently late) slice where the
energy near 3M is ǫ of the initial energy. This violates Sbierski’s theorem.]

5 Instability: Waves on extremal RN back-

grounds

Let us recapitulate what we have learned so far. We considered the wave
equation on a spherically-symmetric, static background. The time-like
Killing field gave us a conservation law and already a boundedness state-
ment away from the horizon. We then used the redshift vectorfield both as
a multiplier and as a commutator to obtain L2 bounds for all derivatives.
The latter computation relied on the positivity of the surface gravity of the
event horizon. The next example, studied in detail by Stefanos Aretakis
shows that our result breaks down in the case of a degenerate horizon.

5.0.6 The Reissner-Nordstroem metric

We consider the Einstein-Maxwell equations

Rµν − 1

2
Rµν = 8πTµν

for

Tµν = FµσF
σ

ν − 1

4
gµνFστF

στ
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and F the Maxwell two-form. The following spherically-symmetric metric
is a solution of the Einstein-Maxwell system

g = −
(

1− 2M

r
+
Q2

r2

)

dt2 +

(

1− 2M

r
+
Q2

r2

)−1

dr2 + r2dω2 (36)

Here Q is the charge of the black hole and M ≥ |Q| is the mass. Let us
look at the Penrose diagram (again we are interested in the exterior only).

In (v, r, θ, φ)-coordinates (horizon penetrating), the metric reads (v =
t+ r⋆)

g = −
(

1− 2M

r
+
Q2

r2

)

dv2 + 2dvdr + r2dω2 .

Write

D = 1− 2M

r
+
Q2

r2
=

1

r2
(r − r+) (r − r−) r+ ≥ r− (equality if |Q| =M)

The vectorfield V = ∂v is Killing and null on the horizon H+. The surface
gravity κ on the event horizon is

κ = (∇V V )v
∣

∣

∣

H+
= Γv

vv

∣

∣

∣

H+
=

1

2
gvr (−gvv)r

∣

∣

∣

r=r+

=
1

2
D,r

∣

∣

∣

r=r+

=
1

2

r+ − r−
r2+

Hence it vanishes in the extremal case and is positive in the non-extremal
case.

Recall that κ > 0 was crucial for our boundedness statement! Here we
again have boundedness of the degenerate energy (why?) but the second
(transversal) derivative of ψ actually blows up along the horizon! This
can be seen quite easily. Let nowM = |Q|. Restricting the wave equation

�gψ = D∂r∂rψ + 2∂v∂rψ +
2

r
∂vψ +

(

D,r +
2D

r

)

∂rψ + /∆ψ

to the horizon we find

∂v

(

∂rψ +
1

M
ψ

)

= − /∆ψ .

Hence
∫

S2 ∂rψ + 1
2M

ψ is constant along H+ and does not decay!
Commuting the wave equation by ∂r and restricting again to the hori-

zon yields (extremal case)

|∂r∂rψ| → ∞

along H+.

6 The Wave Equation on Kerr

only heuristics; explain superradiance, small a-case and separation of su-
perradiant and trapped modes (see slides!)
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