Measure and Integration: Example Sheet 3

Fall 2016 [G. Holzegel]

November 21, 2016

1 Properties of lim sup **and** lim inf

Let (a_n) be a sequence of numbers in the extended real numbers $\overline{\mathbb{R}}$. In lectures we defined

$$\limsup_{n \to \infty} a_n = \inf_{n \ge 1} \sup_{k \ge n} a_k \quad \text{and} \quad \liminf_{n \to \infty} a_n = \sup_{n \ge 1} \inf_{k \ge n} a_k$$

and observed that while $\lim_{n\to\infty} a_n$ does not necessarily exists, the lim sup and the lim inf always do (why?).

- a) Give an example of a sequence for which $\sup a_n$, $\inf a_n$, $\limsup a_n$ and $\liminf a_n$ are all different.
- b) Show that if $\limsup_{n\to\infty} a_n = A$ then (a_n) has a subsequence converging to A and A is the largest number with this property.
- c) Let (a_n) and (b_n) be sequences in $\overline{\mathbb{R}}$. Show that

$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} (a_n) \,.$$

Show also that (provided none of the sums below is of the form $\infty - \infty$) one has

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

2 G_{δ} and F_{σ} sets

- a) Show that a closed set is a G_{δ} and an open set an F_{σ} . Hint: If F is closed, consider $U_n = \{x \mid d(x, F) < \frac{1}{n}\}$.
- b) *Give an example of an F_{σ} that is not a G_{δ} . Hint: Consider the rationals in \mathbb{R} . In the proof you might need the Baire Category Theorem ("A complete metric space (here \mathbb{R}) cannot be written as a countable union of nowhere dense sets.")]
- c) *Give an example of a Borel set which is neither a G_{δ} nor an F_{σ} .

3 Measurable functions

- a) Prove that a monotone function $f : \mathbb{R} \to \mathbb{R}$ is measurable (in fact Borel measurable).
- b) Let $f : \mathbb{R}^d \to \mathbb{R}$. Prove that if $\{x \mid f(x) \ge r\}$ is measurable for every $r \in \mathbb{Q}$ then f is measurable.
- c) If $(f_n) : \mathbb{R}^d \to \mathbb{R}$ is a sequence of measurable functions on \mathbb{R}^d , then the set $\{x \mid \lim f_n(x) \text{ exists}\}$ is measurable.

4 Approximating measurable functions by continuous ones

Prove that every measurable function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is the limit a.e. of a sequence of continuous functions. Hint: Recall the approximation theorems (and their proof) given in lectures.

5 The Cantor Function revisited

Recall the function F from Example Sheet 1 (Problem 1), which we constructed as a continuous surjective function $F : \mathfrak{C} \to [0, 1]$ from the Cantor Set onto [0, 1].

- a) Show that F can be extended as a continuous function $f: [0,1] \to [0,1]$. Hint: If $x \in \mathfrak{C}^c = \bigcup_n U_n$, then x lies in one of the disjoint open intervals of U_N for some N, say (a,b). Show that F(a) = F(b) (using the properties of the Cantor function) and define f to be equal to that number on the interval (a,b). This defines f on all of [0,1] and it is not hard to see that f is continuous.
- b) By considering the inverse image of $\mathcal{N} \subset [0,1]$ (the non-measurable set from lectures) with respect to f conclude that a continuous function can map a measurable set to a non-measurable set.
- c) By considering the function $g: [0,1] \rightarrow [0,1]$ defined by

$$g(y) = \inf\{x \in [0,1] \mid f(x) = y\}$$

conclude that a monotone function can map a non-measurable set to a measurable set. Hint: First show that g is monotone, injective and maps [0, 1] to \mathfrak{C} . Now take \mathcal{N} to be the non-measurable set constructed in lectures.

Remark: Part c) can be seen as the reason why we only require the Borel sets to be pulled back to measurable sets in the definition of a measurable function. Indeed, if we included the Lebesgue measurable sets we would (by the above) have to exclude monotone functions, which is clearly undesirable. (Working a bit harder one can also give examples of continuous functions mapping a non-measurable to a measurable set.)