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On this example sheet we look at the Cantor Set and its cousins. The exercises are taken from the first
chapter of Stein-Shakarchi [SS], mildly edited.

1 The Cantor Set

To construct the Cantor Set €, let Cy = [0,1] be the unit interval. The set C is obtained from Cj by
tri-secting Cy and removing from it the middle-third open interval, i.e. C; = [0,1/3] U [2/3,1]. The C; for
i > 2 are defined recursively by always deleting the open middle-third of the (disjoint) intervals from C;_1.
The Cantor set € is finally obtained as the intersection

¢.= ﬁ C,.
n=1

a) Prove that € is compact and non-empty.

b) Prove that € is totally disconnected, i.e. given = and y in € with  # y there is a ¢ < z < y with z ¢ €.

d

)
)
c¢) Prove that € does not have isolated points.
) Prove that m, (€) = 0.

)

e) Show that we can write C,, as

C, = U zn:aki%_k, En:ak?)_k + %
ai,...,an€{0,2} Lk=1 k=1 3

Hints: How many intervals of what length does C), contain? Use induction to prove that the left endpoints
of the intervals in C,, are given by >__, ax3~" for the a;, € {0,2}.

f) Show that z =Y ;- | ax3~" with a), € {0,2} & 2 € €.
g) Define the Cantor-Lebesgue function F : € — [0, 1] as
o0 b o0

F(xz)= I; 2—’; for x = ;ak3_k7 where by, = %.

Show that F' is well-defined and in fact continuous on €. Show also that F' is surjective. Conclude that
¢ is uncountable.



2 Fat Cantor Sets

Construct a closed set € analogous to the Cantor set as follows: This time we remove at the k*" stage 2F~!

centrally situated open intervals each of length ¢;, = ﬁ. The set € is again defined as the intersection of the
closed sets €, appearing at stage k.

a) Show that my ((;:) = % and conclude that ¢ is uncountable.

b) Show that ¢ is again compact, totally disconnected and has no isolated points.

3 *Characterisation of Riemann integrable functions

Prove that a bounded function on an interval [a, b] is Riemann integrable if and only if its set of discontinu-
ities has measure zero.

This is a hard problem. You should look up the outline of the proof in Stein-Shakarchi (p.47) or elsewhere
in the literature. You can use the result at the end of Exercise 4.

4 Limits of continuous functions f : [0,1] — R (Exercise 10 of [SS])

In this exercise we construct the sequence of continuous functions promised in the first lecture.

Let ¢ denote the Fat Cantor Set constructed in Exercise 2. We define the function F; to be a piecewise
linear continuous function which is equal to 1 on the complement of the first interval I; = [3/8,5/8] removed
from [0, 1] in the construction of ¢ and zero at the point at the centre of I;. Similarly we construct F» to be
a piecewise linear continuous function which is equal to 1 on the complement of the open intervals removed
at the second stage and zero at the centre of these intervals. Continuing in this way we can define F,, for all
n and finally

fn=F -F-...- F,

a) Show that for all n > 1 and all z € [0,1] one has 0 < f,, () <1 and f, () > fnt1 (x). We conclude that
fn (x) converges to a limit which we denote by f (z).

b) Show that the function f is discontinuous at every point of ¢. Conclude that f is not Riemann integrable
(despite the sequence s,, = [ f,, converging).
Hint: Note that f (x) =1 if 2 € € and find a sequence of points {z,} so that x,, — x and f (x,) = 0.

5 The outer Jordan content of a set (Exercise 14 of [SS])

The outer Jordan content J, (E) of a bounded set E in R is defined by
N
J, (E) =inf » _|I;]
j=1

where the infimum is taken over all finite coverings ¥ C U;V=1 I; by intervals I;.

a) Prove that J, (E) = J, (E) for every set E. Here E denotes the closure of E.

b) Exhibit a countable subset E C [0, 1] such that J, (E) = 1 while m, (E) = 0.



