Measure and Integration: Example Sheet 1

Fall 2016 [G. Holzegel]

October 10, 2016

On this example sheet we look at the Cantor Set and its cousins. The exercises are taken from the first chapter of Stein-Shakarchi [SS], mildly edited.

1 The Cantor Set

To construct the Cantor Set \mathfrak{C} , let $C_0 = [0,1]$ be the unit interval. The set C_1 is obtained from C_0 by tri-secting C_0 and removing from it the middle-third open interval, i.e. $C_1 = [0, 1/3] \cup [2/3, 1]$. The C_i for $i \geq 2$ are defined recursively by always deleting the open middle-third of the (disjoint) intervals from C_{i-1} . The Cantor set \mathfrak{C} is finally obtained as the intersection

$$\mathfrak{C} := \bigcap_{n=1}^{\infty} C_n \, .$$

- a) Prove that \mathfrak{C} is compact and non-empty.
- b) Prove that \mathfrak{C} is totally disconnected, i.e. given x and y in \mathfrak{C} with $x \neq y$ there is a x < z < y with $z \notin \mathfrak{C}$.
- c) Prove that \mathfrak{C} does not have isolated points.
- d) Prove that $m_{\star}(\mathfrak{C}) = 0$.
- e) Show that we can write C_n as

$$C_n = \bigcup_{a_1,\dots,a_n \in \{0,2\}} \left[\sum_{k=1}^n a_k 3^{-k}, \sum_{k=1}^n a_k 3^{-k} + \frac{1}{3^n} \right]$$

Hints: How many intervals of what length does C_n contain? Use induction to prove that the left endpoints of the intervals in C_n are given by $\sum_{k=1}^n a_k 3^{-k}$ for the $a_k \in \{0, 2\}$.

- f) Show that $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \in \{0, 2\} \Leftrightarrow x \in \mathfrak{C}$.
- g) Define the Cantor-Lebesgue function $F:\mathfrak{C}\to [0,1]$ as

$$F(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k}$$
 for $x = \sum_{k=1}^{\infty} a_k 3^{-k}$, where $b_k = \frac{a_k}{2}$.

Show that F is well-defined and in fact continuous on \mathfrak{C} . Show also that F is surjective. Conclude that \mathfrak{C} is uncountable.

2 Fat Cantor Sets

Construct a closed set $\hat{\mathfrak{C}}$ analogous to the Cantor set as follows: This time we remove at the k^{th} stage 2^{k-1} centrally situated open intervals each of length $\ell_k = \frac{1}{4^k}$. The set $\hat{\mathfrak{C}}$ is again defined as the intersection of the closed sets $\hat{\mathfrak{C}}_k$ appearing at stage k.

a) Show that $m_{\star}\left(\hat{\mathfrak{C}}\right) = \frac{1}{2}$ and conclude that $\hat{\mathfrak{C}}$ is uncountable.

b) Show that $\hat{\mathfrak{C}}$ is again compact, totally disconnected and has no isolated points.

3 *Characterisation of Riemann integrable functions

Prove that a bounded function on an interval [a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.

This is a hard problem. You should look up the outline of the proof in Stein-Shakarchi (p.47) or elsewhere in the literature. You can use the result at the end of Exercise 4.

4 Limits of continuous functions $f : [0, 1] \rightarrow \mathbb{R}$ (Exercise 10 of [SS])

In this exercise we construct the sequence of continuous functions promised in the first lecture.

Let \mathfrak{C} denote the Fat Cantor Set constructed in Exercise 2. We define the function F_1 to be a piecewise linear continuous function which is equal to 1 on the complement of the first interval $I_1 = [3/8, 5/8]$ removed from [0, 1] in the construction of $\hat{\mathfrak{C}}$ and zero at the point at the centre of I_1 . Similarly we construct F_2 to be a piecewise linear continuous function which is equal to 1 on the complement of the open intervals removed at the second stage and zero at the centre of these intervals. Continuing in this way we can define F_n for all n and finally

$$f_n = F_1 \cdot F_2 \cdot \ldots \cdot F_n$$

- a) Show that for all $n \ge 1$ and all $x \in [0, 1]$ one has $0 \le f_n(x) \le 1$ and $f_n(x) \ge f_{n+1}(x)$. We conclude that $f_n(x)$ converges to a limit which we denote by f(x).
- b) Show that the function f is discontinuous at every point of 𝔅. Conclude that f is not Riemann integrable (despite the sequence s_n = ∫ f_n converging).
 Hint: Note that f (x) = 1 if x ∈ 𝔅 and find a sequence of points {x_n} so that x_n → x and f (x_n) = 0.

5 The outer Jordan content of a set (Exercise 14 of [SS])

The outer Jordan content $J_{\star}(E)$ of a bounded set E in \mathbb{R} is defined by

$$J_{\star}(E) = \inf \sum_{j=1}^{N} |I_j|$$

where the infimum is taken over all *finite* coverings $E \subset \bigcup_{j=1}^{N} I_j$ by intervals I_j .

- a) Prove that $J_{\star}(E) = J_{\star}(\overline{E})$ for every set E. Here \overline{E} denotes the closure of E.
- b) Exhibit a countable subset $E \subset [0, 1]$ such that $J_{\star}(E) = 1$ while $m_{\star}(E) = 0$.