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1 Introduction and Classification of PDEs

A partial differential equation (PDE) for a function u : Ω ⊂ Rn → R is a relation
of the form

F (x1, x2, ..., u, ux1
, ux2

, ..., ux1x1
, ux1x2

, ...) = 0 , (1)

where F is a given function of the variables x1, ..., xn, the unknown u and a finite
number of partial derivatives of u. We will sometimes write this shorthand as

F
(
x, u,Du,D2u, ...,Dku

)
= 0 . (2)

The order of the PDE is the number of highest derivatives appearing in (1). A
classical solution of the kth-order PDE is a k-times continuously differentiable
function u (x1, ..., xn) satisfying (2).

Which F ’s give rise to “interesting” PDE? Can one develop a theory for all
reasonable F ’s? It turns out that the latter point of view is too general to lead
to powerful results.1 Instead, physics provides some of the most interesting2

PDEs and this was also how historically, PDE developed as a subject. The
theories of electromagnetism, quantum mechanics, fluid dynamics etc all rest
on (systems of) PDEs. As is often the case, the equations are relatively easy
to state but statements about general behavior solutions can be extremely hard
to obtain. As you can imagine, if the F above is complicated, one will not be
able to write down “explicit” solutions but merely hope to prove existence of a
suitable class of solutions and, perhaps, properties of such solutions in the large.
Fortunately for us, most PDEs in physics are first or second order and for this
course we’ll certainly focus on those.

Before we turn to concrete examples, let us classify the PDEs further.

1Although this approach goes some way, as we shall see during the first few weeks.
2both from the point of view of applications (obviously) and from the point of view of

leading to interesting mathematics
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We will say that the PDE is linear if it is of the form∑
|α|≤k

aα (x1, ..., xn)Dαu = f (x) (3)

where the sum runs over all multiindices α = (α1, α2, . . . , αn) ∈ Nn, |α| =
α1+α2+. . .+αn of size 0 to k. If also f = 0, the equation in called homogeneous.
In the latter case we have the important superposition principle for solutions
(in particular, adding two solutions produces another). If the αa are constant,
we call the equation a constant-coefficient linear PDE.

The next level of difficulty is given by semilinear equations. These are
equations of the form∑

|α|=k

aα (x)Dαu+ F̃
(
x, u,Du, ...,Dk−1u

)
= 0 , (4)

i.e. the relation is purely linear in the top-order derivatives.
Moving on, we get to quasilinear equations, which are of the form∑

|α|=k

aα
(
x, u,Du, ...,Dk−1u

)
Dαu+ F̃

(
x, u,Du, ...,Dk−1u

)
= 0 , (5)

i.e. the top-derivatives still enter only linearly in the sense that their coefficients
are allowed to depend only on all strictly lower derivatives.

Finally, there are fully non-linear PDEs, for which no special structure is as-
sumed. Such equations will not make a big appearance in the seminar although
there are certainly “interesting” such PDEs (see the examples below)!

Here are some examples:

1. if n = 1 in (1) we arrive at an ODE. I will review basic ODE theory in
the second lecture.

2. if n ≥ 2 and k = 1 we get first order equations. The simplest is perhaps the
transport equation: ∂tu+a∂xu = 0 for a constant a > 0. This equation is
a linear constant coefficient equation and is easily understood (see below).
The general case will be addressed in Week 2.

3. Laplace/ Poisson equation, ∆u =
∑
i ∂

2
i u = f

4. The wave equation −∂2t u+ ∆u = 0

5. The heat equation ∂tu−∆u = 0

6. A semi-linear wave equation: −∂2t u+ ∆u = u3

7. A quasi-linear wave equation: −∂2t u+ (1 + φ (ut)) ∆u = 0 for some func-
tion φ : R→ R (which is small in L∞, say)

8. The eikonal equation u2x + u2y = 1 appearing in geometric optics is first-
order fully non-linear.
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9. Let u : Rn ⊃ Ω → R: det
(
D2u

)
= f (x, u,Du) with f : Ω × Rn+1 → R

given, the Monge-Ampere equation (appears in conformal geometry and
when trying to find a hypersurface with prescribed Gaussian curvature).
This is an example of a fully non-linear equation.

As we will see, a good understanding of the linear equations is essential to
make progress with non-linear equations (simply because one can understand a
lot by linearizing!).

The above concerns PDEs for a scalar function. We can clearly generalize
the above to systems of PDEs. The unknown u then becomes vector valued
(u1, ..., um) and n (not necessarily equal to m) PDE’s are specified to form a
system of PDEs. The classical (linear) example is of course Maxwell’s equations
(in vacuum):

divE = 0 , divB = 0 , ∂tB + ~∇× E = 0 , ∂tE − ~∇×B = 0 (6)

for vectorfields E : R4 → R3 and B : R4 → R3. If you write this out in
components you find a first-order linear system of 8 equations for 6 unknowns.
(Hence it seems overdetermined, we’ll understand why this is not a problem
when we talk about constraints later).

Exercise 1.1. Given a C2 solution of Maxwell’s equations, show that the com-
ponents of E and B satisfy wave equations.

An example of a non-linear system are the Euler equations for an incom-
pressible fluid (of constant density) with velocity vector uµ and pressure p

(ut)ν + uµ∂µuν = −∂νp (7)

div u = 0 . (8)

As I already mentioned, every PDE is somehow different (which is not sur-
prising given the manifold of different physical phenomena they describe!) and
different techniques are available for different PDE. However, there are a couple
of common themes that are worth pointing out:

1. well-posedness. It is easily seen that an equation like Laplace’s equation
has infinitely many solutions. Is there a useful way to parametrize the set
of solutions to a PDE? Can we supplement the above PDE with initial/
boundary conditions so that there exists a unique solution which depends
continuously on the data prescribed? What function spaces do the solu-
tions live in? Does it make sense to consider (only) analytic solutions?

2. Connect the mathematical analysis with the physical phenomena (e.g. fi-
nite speed of propagation for the wave equation, dispersion, dissipation,
formation of shocks), “derivation” of PDEs from physics

3. asymptotic behavior of solutions: as they approach the boundary or “large
times”, local vs global existence of solutions. Blow-up phenomena.
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4. conservation laws: are there (perhaps “almost”) conserved quantities in
the evolution? Do they help to control the solution? For instance, given
the Schroedinger equation ut = i∆u for u : R×Rd → C, suppose we have a
solution which decays sufficiently fast near infinity one can formally show
that the L2-norm is conserved in time. One of our tasks will be to make
such formal computations rigorous.

5. a-priori estimates

2 ODEs refresher

2.1 Basic functional analysis: Function spaces

Recall the notion of a metric space (E, d), i.e. a set E for whose elements (called
points) one has a distance function d : E × E → R+

0 which satisfies

• d (x, y) ≥ 0 with equality iff x = y

• d (x, y) = d (y, x)

• d (x, y) ≤ d (x, z) + d (z, y)

A metric space (E, d) is called complete if every Cauchy sequence (with respect
to d) converges to an element of E.

A normed vectorspace (E, ‖ · ‖) is a vectorspace equipped with a function
(the norm) ‖ · ‖ : E → R+

0 such that for any x, y ∈ E we have

• ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

• ‖tx‖ = |t|‖x‖ for any t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖
The norm induces a canonical metric d (x, y) := ‖x − y‖ on E, as one readily
checks.

A Banach space is a normed vectorspace which is complete with respect to
its canonical metric.

A Hilbert space has even more structure. To define it, we first define the
notion of an inner product space (E, 〈·, ·〉), sometimes called a pre-Hilbert space.
This is a vector space E (say over R) equipped with an inner product, i.e. a
function 〈·, ·〉 : E × E → R which satisfies

• 〈x, x〉 > 0 if x 6= 0 and 〈x, x〉 = 0 iff x = 0

• 〈x, y〉 = 〈y, x〉

• 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉
Note that the inner-product defines a norm via ‖x‖ :=

√
〈x, x〉, as one readily

checks. Consequently, every inner product space is a normed vectorspace.
A Hilbert space is an inner-product space which is complete.
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Examples

1. Consider the space C0 [a, b], the space of real valued functions which are
continuous on the interval [a, b]. This is clearly a vectorspace. Consider
the following two norms on C0 [a, b]:

‖x (t) ‖L2 =

(∫ b

a

|x (t) |2dt

) 1
2

‖x (t) ‖∞ = sup
t
|x (t) | (9)

and their associated canonical metrics d2 and d∞. Show that C0 [a, b]
is incomplete with respect to d2 but complete with respect to d∞ (hint:
uniform convergence). Can you generalize to Ck [a, b]?

2. The Lebesgue Lp spaces (1 ≤ p <∞). We define Lp [a, b] to be the space
of measurable functions f : [a, b]→ R for which

‖f‖Lp =

(∫ b

a

|f (t) |pdt

) 1
p

<∞ . (10)

Identifying functions which agree almost everywhere, the left hand side
becomes a norm on this (quotient) space. For p =∞ one defines

‖f‖L∞ = sup esst∈(a,b)|f (t) |. (11)

One can show that Lp [a, b] is a Banach space for 1 ≤ p ≤ ∞. The case
p = 2 is special. The space L2 has a Hilbert space structure inherited
from the inner-product

〈f, g〉 =

∫ b

a

f (t) g (t) dt . (12)

In the course, we will mostly work with L2-based spaces. On the one
hand because the additional Hilbert space structure (and the notion of
orthogonality that comes along with it) is extremely useful, on the other
because for the wave equation L2-estimates are actually the only type of
estimates which don’t lose regularity.

2.2 Banach’s fixed point theorem

Theorem 2.1. Let X ⊂ E be a non-empty closed subset of a complete metric
space (E, d). Let A : X → X be a contraction map, i.e.

d (Ax,Ay) ≤ q · d (x, y) for some q < 1 fixed (13)

Then A has a unique fixed point, i.e. a point x̃ with Ax̃ = x̃.

5



Proof. Note that A is continuous. Choose x0 ∈ X arbitrary and define recur-
sively a sequence xn+1 = Axn. Claim: This sequence is Cauchy. Indeed,

d (xn+k, xn) = d
(
An+kx0, A

nx0
)
≤ qnd

(
Akx0, x0

)
(14)

and we have to show that the right hand side is smaller than some given ε for
n ≥ N sufficiently large and all k ≥ 0. To see this, note that by the triangle
inequality

d
(
Akx0, x0

)
≤

k∑
i=1

d
(
Aix0, A

i−1x0
)
≤

k∑
i=1

qi−1d (Ax0, x0) ≤ 1

1− q
d (Ax0, x0)

In particular, we have

d (xn+k, xn) ≤

[
qn

k∑
i=1

qi−1

]
d (Ax0, x0) ≤ qn

1− q
d (Ax0, x0) . (15)

Obviously, we can choose n so large that the right hand side becomes smaller
than any prescribed ε > 0. This shows that xn is indeed Cauchy.

Since a closed subset of a complete metric space is also complete, xn con-
verges in X to some x̃. As A is continuous we can take the limit n→∞ of the
expression xn+1 = Axn obtaining x̃ = Ax̃ as desired.

To conclude the uniqueness note that if we had x1, x2 with Ax1 = x1 and
Ax2 = x2 we would have

d (x1, x2) = d (Ax1, Ax2) ≤ qd (x1, x2) (16)

which is a contradiction unless x1 = x2.

Remark 2.2. Inspecting the proof we see that it actually suffices to have

d (Anx,Any) ≤ αnd (x, y) with αn ≥ 0 and
∑
n

αn <∞

to conclude the existence of a unique fixed point. This generalization is conve-
nient, as we will see in the next subsection.

2.3 The Theorem of Picard and Lindelöf

Let t0 ∈ R and φ0 ∈ Rn be constant (to be thought of as an initial time and an
initial condition/ state vector). Fix positive constants a, b and let f : R1+n →
Rn be a function which is continuous on the cylinder

R = {(t, φ) ∈ R1+n | |t− t0| ≤ a , ‖φ− φ0‖ ≤ b} ,

and in addition Lipschitz in the second component x, i.e.

‖f (t, φ)− f (t, ψ) ‖ ≤ L‖φ− ψ‖

holds for some positive L <∞ and all (t, φ) , (t, ψ) ∈ R.
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Theorem 2.3. With φ0, f and R as above, set M = sup(t,φ)∈R ‖f (t, φ) ‖ and
consider the ODE

d

dt
φ (t) = f (t, φ (t))

φ (t0) = φ0 (17)

for an unknown function φ : R → Rn. Claim: There exists a unique classical
solution φ (t) to the above ODE on the time interval

J =
{
t ∈ R

∣∣∣ |t− t0| ≤ α where α = min

(
a,

b

M

)}
. (18)

Proof. We first note that the statement claimed is equivalent to the statement
that

φ (t) = φ0 +

∫ t

t0

f (τ, φ (τ)) dτ (19)

has a unique solution φ (t) which is continuous on J . Indeed, one direction fol-
lows directly by integrating the ODE and the fundamental theorem of calculus.
The reverse follows from noting that for continuous φ (t) the right hand side
of (19) is actually differentiable in t and applying the fundamental theorem of
calculus.

Hence let us prove that (19) has a unique solution. We will formulate this as
the statement that a certain map has a fixed point. We define the closed subset

Cb (J) = {φ ∈ C (J)
∣∣∣ sup
t∈J
‖φ (t)− φ0‖ ≤ b} ⊂ C (J) (20)

of the space of functions continuous on J (equipped with the sup-norm). In-
tuitively, these are functions whose graph remains in the cylinder R. We now
consider the map

A : Cb (J)→ Cb (J)

φ (t) 7→ φ0 +

∫ t

t0

f (τ, φ (τ)) dτ . (21)

We need to check that this is indeed a map into Cb (J). This means to show
that

‖
∫ t

t0

f (τ, φ (τ)) ‖ ≤ b

holds for all t ∈ J , which clearly follows from

‖
∫ t

t0

f (τ, φ (τ)) ‖ ≤ |t− t0|M ≤ αM ≤ b .

We claim that A is a contraction. Indeed, by induction we show

‖Anφ (t)−Anψ (t) ‖ ≤ Ln|t− t0|n

n!
sup
t∈J
‖φ (t)− ψ (t) ‖ ,
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the latter claim being a consequence of the induction step

‖Anφ (t)−Anψ (t) ‖ ≤
∫ t

t0

‖f
(
t, An−1φ (τ)

)
− f

(
t, An−1ψ (τ)

)
‖dτ

≤ L
∫ t

t0

‖An−1φ (τ)−An−1ψ (τ) ‖dτ

≤ Ln

(n− 1)!
sup
t∈J
‖φ (t)− ψ (t) ‖

∫ t

t0

|τ − t0|n−1dτ

≤ Ln|t− t0|n

n!
sup
t∈J
‖φ (t)− ψ (t) ‖ .

By Remark 2.2 following the fixed point theorem we conclude that A has a
unique fixed point.3 But this fixed point is a solution of (19) and hence of our
ODE.

A couple of remarks are in order. First note that the Lipschitz condition is
essential (at least for the uniqueness). The ODE

d

dt
u (t) =

√
u (t) u (0) = 0

has the obvious solution u = u1 = 0 identically. However the function u2 defined
by being identically zero for t < 0 and equal to u (t) = t2/4 for t ≥ 0 is also a
classical solution. Of course,

√
u is not Lipschitz in u near zero.

The second remark concerns the local character of the above theorem. The
ODE

d

dt
u (t) = [u (t)]

2
u (0) = 1

blows up in finite time, the solution being u (t) = 1
1−t . We will see later that,

in general, the only way for the solution to cease to exist for times t > tfin for
some tfin > t0 is that u blows up as tfin is approached.

Finally, let us remark how to convert an nth order scalar autonomous ODE
of the form

∂nt φ (t) = F
(
φ (t) , ∂tφ (t) , ..., ∂n−1t φ (t)

)
(22)

to a first order ODE for a system. To do this, define for i = 0, ..., n − 1 the
quantity ui = ∂itφ. We then have the system

(ui)t = ui+1 for i = 0, ..., n− 2

(un−1)t = F (u0, u1, ..., un−1) (23)

Clearly, for (22) one has to specify the first n − 1-derivatives of φ at the ini-
tial time t0 to obtain a well-posed problem, which is of course equivalent to
specifying u0, ..., un−1 in the familiar (23).

Using a similar trick, one can convert a non-autonomous ODE into an au-
tonomous one (Exercise).

3Of course, one could apply Banach’s fixed point theorem in its original form. However,
this is at the cost of (possibly) shrinking the time interval which now depends also on the
Lipschitz constant.
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2.4 Gronwall’s inequality

Theorem 2.4. Let φ : [t0, t1] → R+ be continuous and non-negative. Suppose
that φ obeys

φ (t) ≤ A+

∫ t

t0

B (s)φ (s) ds for all t ∈ [t0, t1] (24)

where A ≥ 0 and B : [t0, t1]→ R+ is continuous and non-negative. Then

φ (t) ≤ A · exp

(∫ t

t0

B (s) ds

)
. (25)

Proof. We will assume A > 0 and obtain the case A = 0 as a limit. Look at

d

dt

(
A+

∫ t

t0

B (s)φ (s) ds

)
= B (t)φ (t) ≤ B (t)

(
A+

∫ t

t0

B (s)φ (s) ds

)
.

Since A > 0, we can write

d

dt
log

[
A+

∫ t

t0

B (s)φ (s) ds

]
≤ B (t)

Integrating this in t yields

φ (t) ≤ A+

∫ t

t0

B (s)φ (s) ds ≤ A exp

(∫ t

t0

B (s) ds

)
which is the result.

Remark 2.5. Note that (25) is sharp in that ψ (t) = A exp
(∫ t

t0
B (s) ds

)
sat-

isfies (24) with equality.

There is also a differential form of Gronwall’s inequality. For φ : [t0, t1]→ R+

a C1 non-negative function satisfying

∂tφ (t) ≤ B (t)φ (t) for all t ∈ [t0, t1]

for B : [t0, t1] → R continuous (but not necessarily non-negative), we have the
estimate

φ (t) ≤ φ (t0) exp

(∫ t

t0

B (s) ds

)
for all t ∈ [t0, t1]

Proof. Define the non-negative C1 function ψ (t) = φ (t) exp
(
−
∫ t
t0
B (s) ds

)
and observe that ψ′ (t) ≤ 0.

9



2.5 Applications

2.5.1 Uniqueness and continuous dependence on the data

To see how Gronwall’s inequality helps us in understanding our ODE problem,
we consider the ODE for the difference of two solutions (not necessarily arising
from the same data). Suppose we are given two C1 solutions φ1 and φ2 of the
ODE

d

dt
φi (t) = f (φi (t)) φi (0) = φ0i

for i = 1, 2 and both defined for [t0, T ]. Then their difference satisfies

d

dt
(φ1 (t)− φ2 (t)) = f (φ1 (t))− f (φ2 (t)) ,

which we can integrate between t0 and t0 ≤ t ≤ T to obtain

φ1 (t)− φ2 (t) = φ1 (t0)− φ2 (t0) +

∫ T

t0

[f (φ1 (τ))− f (φ2 (τ))] dτ

leading to the inequality

‖φ1 (t)− φ2 (t) ‖ ≤ ‖φ1 (t0)− φ2 (t0) ‖+

∫ t

t0

‖f (φ1 (τ))− f (φ2 (τ)) ‖dτ .

Inserting the Lipschitz condition on f we find

‖φ1 (t)− φ2 (t) ‖ ≤ ‖φ1 (t0)− φ2 (t0) ‖+ L

∫ t

t0

‖φ1 (τ)− φ2 (τ) ‖dτ

to which Gronwall’s inequality can be applied

‖φ1 (t)− φ2 (t) ‖ ≤ ‖φ1 (t0)− φ2 (t0) ‖ eL(t−t0) (26)

This estimate implies a uniqueness statement: If two classical solutions agree
at t0, they have to agree for all times. Moreover, the estimate implies what we
call continuous dependence on the data. Given a solution φ (t) for [0, T ) arising
from initial data φ (0) = φ0 and some prescribed ε > 0, there exists a time
0 < T ? < T and a δ > 0 such that for any data ψ0 satisfying ‖φ0 − ψ0‖ < δ we
have ‖φ (t)− ψ (t) ‖ < ε in [0, T ?].

Note that the continuous dependence on the data can be strengthened if we
assume that the right hand side f (φ) has more regularity. Suppose, for instance,
that f is C2. Then

∂t (∂tφ1 (t)− φ2 (t)) = f ′ (φ1) ∂tφ1 (t)− f ′ (φ2) ∂tφ2 (t)

= f ′ (φ1) [∂tφ1 (t)− ∂tφ2 (t)) + ∂tφ2 (t) (f ′ (φ1)− f ′ (φ2)) .

Now integration will produce the estimate

‖∂tφ1 (t)− ∂tφ2 (t) ‖ ≤ ‖∂tφ1 (t0)− ∂tφ2 (t0) ‖

+

∫ t

t0

C1‖∂tφ1 − ∂tφ2‖+

∫ t

t0

C2‖φ1 − φ2‖ . (27)
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Adding the old estimate for ‖φ1 (t) − φ2 (t) ‖ itself will produce a Gronwall
inequality for the C1-norm and hence C1-dependence of the solution on the
data.

2.5.2 Blow up

Let us finally return to the problem of blow-up of solutions and the claim that
if the maximal time of existence is tfin, then limt→tfin

‖φ (t) ‖ =∞ has to hold.
Consider for simplicity

d

dt
φ = f (φ) , φ (t0) = φ0 (28)

with f locally Lipschitz (so in particular Lipschitz on compact domains).

Proposition 2.6. If the solution to (28) only exists for t0 < tfin < ∞ then
necessarily limt→tfin

‖φ(t)‖ =∞. A similar statement holds for the past direc-
tion.

Proof. Suppose for contradiction that there was a sequence of times tn → tfin
along which ‖φ (tn) ‖ ≤ C for all tn. To obtain the contradiction, we observe that
we can infer from Theorem 2.3 the following statement: Given a bound on f in
a ball of radius 2C, i.e. supφ∈B2C(0) ‖f (φ) ‖ ≤M , there is for any initial data in

a ball of radius C, ‖φ0‖ ≤ C a uniform time of existence δ for the solution, with
δ > 0 depending only on M (but not on the particular choice of data in the ball).
Since f is assumed to be locally Lipschitz we have in particular a uniform bound
on f in a ball of radius 2C and hence obtain δ > 0 as described in the previous
sentence. We now pick a tN which is at least δ

2 -close to tfin, i.e. |tN − tfin| < δ
2 .

Next we solve the ODE (28) with the data at tN , which by assumption lies in a
ball of radius C. Thereby we obtain a solution defined on [tN , tN + δ) and glue
it to the old solution defined on [t0, tN ]. This new glued solution agrees with
the old solution for t0 ≤ t < tfin by the Gronwall-uniqueness estimate of the
previous section and extends past tfin. Contradiction.

2.6 Bootstrap arguments

We will encounter bootstrap arguments as a powerful technique to study the
global behavior of solutions to PDE in the last part of the course. We introduce
the main idea at this point and illustrate it with an example below.

The setting is the following. Suppose you have a classical solution φ (t) of our
ODE arising from data φ0 at t = t0 and a (continuous) norm ‖ ·‖ measuring the
size of the solution. We know the solution exists for t close to t0 but we do not
know, in general, about the global behavior. Suppose we have two statements:

‖φ (t) ‖ ≤ 2C Statement A (t)

‖φ (t) ‖ ≤ C Statement B (t)
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Obviously, if B (t) holds at t, then A (t) also holds. Consider now the following
set

Ω = {t ∈ I = [t0,∞) | ‖φ (t) ‖ ≤ 2C} (29)

which is the set of all t such that statement A (t) holds. Clearly this set is
closed by the continuity of the norm, and, with an appropriate (depending on
the data) choice of C also non-empty. Suppose, we could establish in addition
the following statement:

If A (t) holds for the solution, then B (t) holds also. (30)

Then we claim that Ω = [t0,∞) and the solution satisfies ‖φ (t) ‖ < C for all
times. Clearly, the first claim would follow if we could show that Ω is also open.
Namely, together with the above this would imply that Ω ⊂ [t0,∞) is an open,
closed, non-empty subset of a connected set I and therefore Ω = I. (Otherwise
I = Ω∪ (I \ Ω) would express the connected I as a disjoint union of non-empty
open sets, which is a contradiction.) So is Ω open? Yes, because suppose for
t ∈ Ω the above statement implies ‖φ (t) ‖ ≤ C and by continuity, there is an
open neighborhood of t for which ‖φ (t) ‖ < 2C holds.

In applications of this, the hard part of the argument will typically be to
prove (30), i.e. to show that a certain bound on the solution can be bootstrapped.
Let us illustrate this with an example (taken from Tao’s book “Non-linear Dis-
persive Equations”).

Proposition 2.7. Let V ∈ C∞ (Rn → R) be such that V (0) = 0, ∇V (0) = 0
and ∇2V (0) strictly positive definite. Then for all φ0, φ1 ∈ Rn sufficiently
close to zero there is a unique global classical solution φ ∈ C∞ (R→ Rn) to the
Cauchy problem

∂2t φ (t) = −∇V (φ (t)) , φ (0) = φ0 , φt (0) = φ1 . (31)

Moreover, the solution remains bounded uniformly in t.

Proof. Transform the above system to a first order system to establish that a
solution exists locally near t = 0 and that the solution can only blow up if the
norm

‖φ (t) ‖2N = ‖∂tφ (t) ‖2 + ‖φ (t) ‖2 (32)

approaches infinity. To understand the global behavior, note that the energy

E (t) =
1

2
‖∂tφ‖2 + V (φ (t))

is conserved:

∂tE (t) = 〈∂tφ, ∂t∂tφ〉+ 〈∂tφ,∇V (φ (t))〉 = 0 .

Hence

E (t) =
1

2
‖φ1‖2 + V (u0)
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for all times and moreover we can make this quantity as small as we desire by
choosing the data small. However, we can not conclude that φ (t) is small for all
times because away from 0, the potential could be very negative, allowing ∂tφ
to be large while E (t) remains small. However, we can bootstrap the smallness
of φ as follows. Let

Statement A (t) : ‖φ (t) ‖N < 2ε

Statement B (t) : ‖φ (t) ‖N < ε

and
Ω = {t ∈ I = [t0,∞) | ‖φ (t) ‖N ≤ 2ε} .

As above, Ω is clearly closed and non-empty for any ε, the latter provided we
choose the data sufficiently small. The difficulty is to show that A (t) implies
B (t) for ε sufficiently small. Note that by Taylor’s theorem, we have for φ (t)
near 0,

V (φ (t)) = V (0) + 〈∇V (0) , φ (t)〉+ 〈φ (t) ,∇2V (0)φ (t)〉+O
(
‖φ‖3

)
≥ c‖φ (t) ‖2 −O

(
ε3
)

(33)

for some constant c provided A (t) holds for sufficiently small ε (this implies that
‖φ (t) ‖ = O (ε)). But this means that

E (0) = E (t) ≥ 1

2
‖∂tφ (t) ‖2 + c‖φ (t) ‖2 −O

(
ε3
)
,

and hence

‖∂tφ (t) ‖2 + ‖φ (t) ‖2 ≤ max
(
2, c−1

) [1

2
‖∂tφ (t) ‖2 + c‖φ (t) ‖2

]
≤ max

(
2, c−1

) [
E0 +O

(
ε3
)]
≤ ε2 (34)

for sufficiently small ε, which is the statement B (t). We have shown that
A (t) implies B (t) for sufficiently small ε. Therefore Ω is also open and hence
Ω = [t0,∞) and the solution is globally uniformly bounded, as claimed.

3 Exercises

1. Do the exercises in the text.

2. Classify the following PDEs (linear?, semi-linear? quasi-linear?):

(a) div

(
∇u

(1+|∇u|2)
1
2

)
= 0 for u : Rn ⊃ Ω → R, the equation for a

minimal surface. Can you “derive” this equation?

(b) ut − ∆u = u2 for u : R × Rn → R, a so-called reaction-diffusion
equation
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(c) ut +H (Du) = 0 for u : R× Rn → R, where H : Rn → R is smooth.
This is (a simple form of) the Hamilton-Jacobi equation from classical
mechanics.

3. Show that the conclusion of Theorem 2.4 fails ifB is allowed to be negative.

4. Suppose f : [0,∞)→ R+ is C1 and satisfies

f (t2) + c

∫ t2

t1

dt̄f (t̄) ≤ C · f (t1)

for all 0 ≤ t1 < t2 < ∞ and positive constants c, C. Show that f has to
decay exponentially in time.

5. Can the solution to a linear ODE blow up in finite time?

6. Consider the non-linear ODE

d

dt
u (t) = −

(
uTu

)
u

for u : R → Rn. Prove that for all initial data u (t0) = u0, the solution
exists globally for t > t0. Does the solution remain bounded? Does it
decay in time?

7. Give an alternative proof of Gronwall’s inequality using a bootstrap argu-

ment. HINT: Bootstrap the estimate φ(t) ≤ (1+ε)A exp
(∫ t

t0
(1 + ε)B(s)ds

)
for ε > 0.

8. (Osgood’s uniqueness theorem.) Let I be an interval of R and F : I×Rd →
Rd be a continuous function. Let Ω be an open subset of Rd (as usual
endowed with the Euclidean norm), t0 ∈ I, u0 ∈ Ω. Let ω : C (R+,R+)
be an increasing continuous function which satisfies

ω(0) = 0 , ω(σ) > 0 for all σ > 0 , lim
ε→0

∫ a

ε

1

ω(σ)
dσ =∞ for all a > 0.

Suppose that

‖F (t, y1)− F (t, y2)‖ ≤ ω(‖y1 − y2‖) for all (t, y1, y2) ∈ I × Ω× Ω.

Let u1, u2 : I → Ω be two differentiable functions which are solutions to
the Cauchy problem

d

dt
u(t) = F (t, u(t)) u(t0) = u0

(a) Show that u1 = u2 on I.

(b) Why is the uniqueness statement stronger than the one discussed in
lectures?
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