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1 Introduction

Recall the Cauchy-Kovalevskaya warm-up exercise from last week. There you
showed that the transport equation ∂tu+cux = 0 admits an analytic solution in
a neighborhood of (0, 0) provided data h (x) which are analytic near x = 0 are
prescribed at t = 0. We also saw that for non-analytic data the series did not
have to converge to a solution. Finally, we observed that if data were prescribed
on a characteristic curve, we could not determine all partial derivatives of the
solution on the curve, which was a necessary requirement to construct the local
power series.

This week we will look at this circle of ideas from a more general perspective.
We will state and prove the Cauchy-Kovalevskaya (CK) theorem, which provides
the general setting when analytic Cauchy data yield an analytic solution.

A beautiful application of the CK-theorem is Holmgren’s uniqueness theo-
rem, which – quite surprisingly – will allow us to make a uniqueness assertion
for linear equations with analytic coefficients in the smooth category. A typical
setting where this becomes useful is the following. Consider a region Ω = Ω1∪Ω2

separated by a curve Γ. Suppose u satisfies a linear PDE Pu = 0 in Ω, and
suppose also that you know that u = 0 in Ω1. Does this mean that u = 0
in all of Ω? In the analytical class, this is the well-known unique-continuation
principle. But this does not prevent smooth non-zero solutions to exist! You
will see examples in the exercises.

2 The Cauchy-Kovalevskaya theorem

Recall the index notation of Laurent Schwartz:

α = (α1, . . . , αd) ∈ N
d

∂α = (∂x1)
α1 . . . (∂xd

)
αd

xα = xα1
1 . . . xαd

d

α! = α1! · . . . · αd!

|α| = α1 + · · ·αd
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Hence the most general linear partial differential operator can be written

Plin =
∑

|α|≤m

aα (x) ∂α .

We first investigate the CK theorem in the simple setting where data are pre-
scribed on t = 0 and where the PDE is already solved for the highest t derivative:

∂mt u = G
(

t, x, ∂jt ∂
α
x u; j ≤ m− 1

)

∂νt u (0, x) = gν (x) ν = 0, . . . ,m− 1 near x = 0
(1)

and with G and gν smooth functions. (Examples: utt = ∆u + u3 (∂xu)
2
or

ut = ∆u.) To even construct a formal power series for the solution, we should
be able to determine all partial derivatives:

Proposition 2.1. If u is a smooth solution of (1), then all derivatives of u (t, x)
are determined at (0, 0).

Proof. We can compute ∂αx ∂
ν
t u (0, 0) = ∂αx gν (0) from the data for ν = 0, 1, . . . ,m−

1. For the higher t-derivatives, suppose that k ≥ m and that ∂νt ∂
α
x u (0, x) are

known for ν ≤ k − 1 and all α. Then, differentiating the PDE we have

∂kt ∂
α
x u = ∂k−m

t ∂αx

[

G
(

t, x, ∂jt ∂
α
x u; j ≤ m− 1

)]

After applying the chain rule, the function on the right hand side only involves
terms with at most k − 1 t-derivatives, which are known by the induction as-
sumption.

Hence the basic requirement that all partial derivatives are determined is
met for (1). We also know that we will have to assume gν and G in (1) to be
analytic functions to have a chance of finding an analytic solution.

The crucial issue is of course the convergence. The following exercise shows
that there is an obstruction for the associated Taylor series to converge, i.e. that
the class (1) is still “too general”:

Exercise 2.2. Consider the one-dimensional heat equation ut = uxx with data
u (0, x) = 1

1+x2 (analytic near x = 0) prescribed at t = 0. Show that while all
partial derivatives are determined from the data, the associated Taylor series at
the origin does not converge for any (t, x) with t 6= 0.

It is likely that the problem is caused by the fact that the one-dimensional
heat equation is actually not highest order in t. Hence we are lead to consider
the class of PDEs

∂mt u = G
(

t, x, ∂jt ∂
α
x u; j ≤ m− 1 , j + |α| ≤ m

)

∂νt u (0, x) = gν (x) ν = 0, . . . ,m− 1 near x = x̄
(2)

with G and gν analytic functions.
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Theorem 2.3. Suppose gj is real analytic on a neighborhood of x̄ ∈ R
d and that

G is real analytic on a neighborhood of (0, x̄, ∂αx gj (x̄) ; j ≤ m− 1, j + |α| ≤ m).
Then, there exists a real analytic solution of (2) defined on a neighborhood of
(0, x̄) ∈ Rt × R

d. The solution is unique in the class of analytic solutions,
i.e. two analytic solutions u and v of (2) defined on a neighborhood of (0, x̄)
have to agree.

This is a basic version of the Cauchy-Kovalevskaya theorem for the class of
PDEs given by (2) and with Cauchy data prescribed at t = 0. We will later
generalize to fully non-linear equations and arbitrary initial data hypersurfaces.

The uniqueness part of Theorem 2.3 is easy to prove: By Proposition 2.1,
two functions which satisfy (2) must have the same Taylor series at (0, x̄) and
hence must agree on an entire neighborhood if they are assumed to be analytic.

For the existence part we have to work harder, namely we need to establish
that the Taylor series which we can compute formally, actually converges. In
the following sections, I will give at least a sketch of the proof.

2.1 Preliminaries

Definition 2.4. A function f : Rd → R is called real analytic near x0 if there
exists an r > 0 and constants fα such that

f (x) =
∑

α

fα (x− x0)
α

for |x− x0| < r.

Note that for a real analytic function one has fα = Dαf(x0)
α! .

The following example is key:

Example 2.5. For r > 0 set

f (x) =
r

r − (x1 + . . .+ xd)
for |x| < r√

d

Then

f (x) =
1

1− x1+...+xd

r

=
∞
∑

k=0

(

x1 + . . .+ xd
r

)k

=
∞
∑

k=0

1

rk
(x1 + . . .+ xd)

k

=

∞
∑

k=0

1

rk

∑

|α|=k

|α|!
α!

xα =
∑

α

1

r|α|
|α|!
α!

xα (3)

where we have used the multinomial identity (cf. Exercise 1 below).

Definition 2.6. Let f =
∑

α fαx
α and g =

∑

α gαx
α be two power series. We

say that g majorizes f , written g ≫ f , provided gα ≥ |fα| for all α.

Lemma 2.7. If g ≫ f and g converges for |x| < r, then f also converges for
|x| < r.
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Proof. Exercise.

Lemma 2.8. Let f =
∑

α fαx
α converge for |x| < r. Then, for s satisfying

0 < s
√
d < r, the function f can be majorized by (4) for |x| < s√

d
.

Remark 2.9. The main point of this Lemma is that there is a simple, explicit
majorant which will be constructed in the proof.

Proof. Let 0 < s
√
d < r. Set y = s (1, . . . , 1) so that |y| = s

√
d < r. This

implies that
∑

α fαy
α converges which is only possible if |fαyα| < C for all α

and a uniform C. Hence |fα| ≤ C
s|α| ≤ C |α|!

s|α|α!
. But on the other hand, by

Example 2.5 above, we have

g (x) :=
Cs

s− (x1 + . . .+ xd)
=

∑

α

C
|α|!
s|α|α!

xα (4)

and so g indeed majorizes f for |x| < s√
d
as claimed.

Finally, note that we can generalize all this to vector valued f = (f1, . . . , fn)
and g = (g1, . . . , gn) with each component fi, gi given by a power series. We
will say g majorizes f and write g ≫ f if gi ≫ fi holds for all i from 1 to n.

2.2 Sketch of the proof of the CK-theorem

To get the idea, we will do the proof for a second order quasi-linear equation of
the form

∂2t u =
∑

|α|=2,αt≤1

Gα (t, x, u, ∂tu, ∂x1u, ..., ∂xd
u) ∂αu+ G̃ (t, x, u, ∂u)

u (x, 0) = g0 (x)

∂tu (x, 0) = g1 (x)

(5)

with α = (α1, ..., αd, αt) andGα, G̃, g0, g1 analytic and attempt to find a solution
near (0, 0). Note we can always reduce to x = 0 by a translation.
Step 0. Transformation to zero Cauchy data, formulation as first order system
Let us subtract the (analytic) Cauchy data and state the PDE satisfied by
u−g0 (x)−tg1 (x). This allows us to wlog consider the problem (5) for vanishing
Cauchy data (and, of course now different analytic functions Gα and G̃).

Next, we want to write the system (5) as a first order system. We set

u = (u, ux1, . . . , uxd
, ut)

to be the vector containing u and all its partial derivatives. It has m = d +
2 components and satisfies u = 0 at t = 0 by the previous considerations.
Considering the vector ut, it is clear that its components ujt for j = 1, 2, . . . ,m−1

are determined by the vectors
(

uxi

)d

i=1
(and u itself). The missing component,
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umt = utt is determined by the same quantities in view of the PDE (5). Given
the quasi-linear structure, we hence obtain the first order system

ut =

d
∑

j=1

Bj (u, x) uxj
+ c (u, x)

u = 0 for |x| < r at t = 0 . (6)

Here

Bj : R
m × R

d →Mat (m×m) for j = 1, . . . , d

c : Rm × R
d → R

m (7)

are a matrix with components Bj =
(

bnlj
)

and a vector with components c =
(

c1, . . . , cm
)

, both depending on u and x.

Remark 2.10. Without loss of generality we have assumed Bj and c not to
depend on t. We can always achieve this, by adding an additional component
um+1 to the vector u and demand the equation ∂tu

m+1 = 1 (hence um+1 = t).

In components, our PDE reads

unt =

d
∑

j=1

m
∑

l=1

bnlj (u, x) ulxj
+ cn (u, x) (8)

for n = 1, . . .m with zero data imposed for each un.

Step 1: Compute the Taylor series.
We expect that we locally have

un (x, t) =
∑

α

unαx
α =

∑

α

[

∂αun

α!
(0, 0)

]

xα
′

tαt (9)

with x = (x, t) and α = (α′, αt) = (α1, ..., αd, αt) and that this power series
converges. In view of the analyticity assumption on Bj and c, we have that

Bj (z, x) =
∑

γ,δ

Bj,γ,δz
γxδ for j = 1, . . . , d

c (z, x) =
∑

γ,δ

cγ,δz
γxδ (10)

are convergent power series for |z|+ |x| < s for some small s where

Bj,γ,δ =
∂γz ∂

δ
xBj

γ!δ!
(0, 0) , cγ,δ =

∂γz ∂
δ
xc

γ!δ!
(0, 0) . (11)

To compute the unα = ∂αun

α! (0, 0) we note that for α of the form α = (α′, 0)
we have unα = 0 for all n = 1, ...,m (why?). For α of the form (α′, 1) we have,
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from equation (8), unα = ∂α
′

cnα (0, 0) (why?). For α = (α′, 2) we obtain (differ-
entiating (8), using the chain rule and the fact that we evaluate at (0, 0)) that

unα = ∂α
′
(

∑d
j=1 Bj (u, x) uxjt

+
∑m

j=1 c
n
zj
ujt

) ∣

∣

∣

(u,x)=(0,0)
. Pushing the deriva-

tive through and evaluating at (0, 0) it is clear that for any fixed α′ we are going
to see an expression polynomial in the (components of finitely many) Taylor
“coefficients” Bj,γ,δ, cγ,δ and the Taylor “coefficients” uβ where β = (β′, βt)
with βt ≤ 1 and |β′| ≤ |α′| + 1. Moreover, the polynomial has only positive
integer coefficients, as this is all the chain and product rule can produce.

Continuing in this way it is easy to see that for general α = (α′, αt) one will
obtain

unα = qnα
(

..., Bj,γ,δ, ..., cγ,δ, ...., uβ, ...
)

(12)

where qnα is a polynomial with non-negative coefficients and βt ≤ αt − 1,
|β′| ≤ |α′|+ 1.

Step 2: Use the method of majorants to establish convergence.
Now that we have computed the formal Taylor series (i.e. the ukα), we would
like to show that it converges for |x|+ |t| < r with r sufficiently small. Suppose
that we had majorizing B⋆

j ≫ Bj and c⋆ ≫ c, i.e.

0 ≤ |Bj,γ,δ| ≤ B⋆
j,γ,δ , 0 ≤ |cγ,δ| ≤ c⋆γ,δ (13)

(in the sense that it holds for all components and j = 1, ..., d) for power series

B⋆
j =

∑

γ,δ

B⋆
j,γ,δz

γxδ c⋆ =
∑

γ,δ

c⋆γ,δz
γxδ . (14)

Given these majorants, we can consider the PDE system

u⋆t =
d

∑

j=1

B⋆
j (u

⋆, x)u⋆xj
+ c⋆ (u⋆, x) for |x|+ |t| < r

u⋆ = 0 for |x| < r on t = 0 .

(15)

If we can find a convergent power series (for sufficiently small r) for u⋆ which
solves (15), then we have in particular that u⋆ ≫ u. This follows from

|ukα| = |qkα
(

..., Bj,γ,δ, ..., cγ,δ, ...., uβ , ...
)

| ≤ qkα
(

..., |Bj,γ,δ|, ..., |cγ,δ|, ...., |uβ |, ...
)

≤ qkα
(

..., B⋆
j,γ,δ, ..., c

⋆
γ,δ, ...., u

⋆
β , ...

)

=
(

ukα
)⋆
,

which in turn can be proven by an induction on αt in α = (α′, αt). But this
implies (cf. Lemma 2.7) that our power series for u also converges. Therefore,
once we have proven the existence of a majorizing u⋆, we are done: Indeed, the
power series of the left hand side and the right hand side of the PDE (6) agree
by construction at (0, 0) and they also converge. Hence the left hand side and
the right hand side of the PDE have to agree on a neighborhood of (0, 0).
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The missing bit is to find the majorizing u⋆. Note that by Lemma 2.8 we
have a simple majorant for both Bj and c: The expressions

B⋆
j =

Cr

r − (x1 + . . . xd)− (z1 + . . . zm)







1 1 . . .
1 1 . . .
...

...
. . .






, (16)

c⋆ =
Cr

r − (x1 + . . . xd)− (z1 + . . . zm)
(1, . . . , 1) (17)

will majorize Bj and c respectively in |x| + |z| < r provided C is chosen suffi-
ciently large and r sufficiently small.

The point is that the resulting PDE (15) for u⋆ has a simple explicit analytic
solution. Indeed, one easily sees that each component satisfies

(u⋆)
k
t =

Cr

r − (x1 + . . . xd)− ((u⋆)1 + . . . (u⋆)m)





∑

j,l

(u⋆)lxj
+ 1



 , (18)

the right hand side being independent of the particular components k considered.
This suggests setting u⋆ (x, t) = v⋆(x, t) (1, . . . , 1) with v⋆ satisfying

v⋆t =
Cr

r − (x1 + . . . xd)−m · v⋆

[

m

d
∑

i=1

v⋆xi
+ 1

]

. (19)

The ansatz v⋆ (t, x1, . . . xd) = v⋆ (t, s = x1 + . . .+ xd), i.e. v
⋆ a function of t and

the sum of the xi only, leads to

v⋆t =
Cr

r − s−m · v⋆ [md · v⋆s + 1] (20)

for a function v⋆ (t, s) with v⋆ (0, s) = 0 initially. This can be solved using the
method of characteristics (Exercise) to find

v⋆ (x, t) =
r − (x1 + . . . xd)−

√

(r − (x1 + . . . xd))
2 − 2m (d+ 1) · C · r · t

m(d+ 1)
.

This is analytic for |x|+ |t| < r̃ provided r̃ ≤ r is chosen sufficiently small.
Final Remark: Note that the domain of convergence of the solution de-

pends only on the radius of convergence of the B and c and the constant C
appearing in the explicit majorant.

2.3 CK-theorem for non-linear equations and data at t = 0

We would like to generalize our result to fully non-linear equations and arbitrary
surfaces. If you recall our discussion of first order fully non-linear PDE, you will
remember that it did not suffice to specify data along a curve Γ but that one
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has to specify the highest derivatives at one point of Γ, consistent with the PDE
and the geometry of Γ. A “non-degeneracy” condition allowed one to apply the
implicit function theorem to complete the data on Γ and to make the Cauchy
problem well-posed.

Consider the fully non-linear PDE

F
(

t, x, ∂mt u, ∂
j
t ∂

α
x u ; j ≤ m− 1, j + |α| ≤ m

)

= 0 (21)

with prescribed data

∂jt u (0, x) = gj (x) 0 ≤ j ≤ m− 1 . (22)

Then, we can locally solve (21) uniquely for ∂mt u provided that we have a
solution at a point and the non-degeneracy condition, i.e. if for some γ ∈ R the
conditions

F (0, x̄, γ, ∂αx gj (x̄)) = 0

∂

∂s
F (0, x̄, s, ∂αx gj (x̄))

∣

∣

∣

s=γ
6= 0

(23)

hold, then we locally have

∂mt u = G
(

t, x, ∂jt ∂
α
x u ; j ≤ m− 1, j + |α| ≤ m

)

with G real analytic if F is.1 This reduces (21) to our previously studied case
and we immediately obtain

Theorem 2.11. Consider the non-linear PDE (21) with data (22) imposed at
t = 0 and with F real analytic near (0, x̄, γ, ∂αx gj (x̄)) and gj analytic near x̄ for
some γ ∈ R such that also (23) holds. Then, there exists an analytic solution u
of (21) realizing the given data at t = 0. The solution is unique within the class
of analytic solutions.

Let us investigate the non-degeneracy condition (23) a bit more.

Definition 2.12. Consider the PDE (21). We will say that the surface t = 0
is non-characteristic at (0, x) on the solution u of the PDE (21) provided that

∂F

∂ (∂mt u)

(

0, x, ∂mt u (0, x) , ∂
j
t ∂

α
x u (0, x)

)

6= 0

holds at t = 0.

Example 2.13. For a linear partial differential operator

F =
∑

|α|+j≤m

aj,α (t, x) ∂jt ∂
α
x u− f (t, x)

we need am,0 (0, x) 6= 0. For a linear operator the non-characteristic condition
does not depend on the solution. No implicit function theorem is needed.

1There is an analytic version of the implicit function theorem. See for instance, Exercise 6
of Section 3.3b) in Fritz John’s book.
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We can carry the idea of being non-characteristic further by relating it to
the linearization of a PDE. Suppose we have a solution u of a PDE

F
(

x, ∂βu
)

= 0 (24)

Suppose further that we want to consider small perturbations of u, i.e. we think
about

F
(

x, ∂β (u+ ǫ · v)
)

= 0 (25)

Then, to linear order in ǫ we can obtain v by solving the linear equation

∑

α

aα (x) ∂αv = 0 where aα (x) :=
∂F

∂ (∂αu)

(

x, ∂βu
)

. (26)

This suggests:

Definition 2.14. If F
(

x, ∂βu ; |β| ≤ m
)

= 0, the linearization of F at u is
the linear partial differential operator

P (x, ∂) =
∑

aα (x) ∂α where aα (x) :=
∂F

∂ (∂αu)

(

x, ∂βu
)

. (27)

Exercise 2.15. Show that the linearization of Burger’s equation at a solution u
is given by vt + uvx + vux = 0. Note that linearization at the constant solution
u = c yields the transport equation!

Theorem 2.16. The following are equivalent

1. t = 0 is non-characteristic at (0, x̄) for the solution u to
F
(

x, ∂βu ; |β| ≤ m
)

= 0.

2. t = 0 is non-characteristic at (0, x̄) for the linearization of F at u.

3. For any smooth function ψ (t, x) with ψ (0, x) = 0 for x near x̄ and
ψt (0, x̄) 6= 0, the linearization P (x, ∂) satisfies P (ψm) 6= 0 at (0, x̄).

Proof. By Definition 2.12, Statement (1) means ∂F
∂(∂αu)

(

x̄, ∂βu (0, x̄)
)

6= 0 for α

being the multi-index (m, 0, 0, ..., 0). Statement (2) means α(m,0) 6= 0 holds for
the linearization with aα defined in (27). The two expressions are equivalent by
definition of the linearization. To show the equivalence of (2) and (3) note that

P (ψm)
∣

∣

∣

x=x̄,t=0
= m! · a(m,0) (ψt (0, x̄))

m

is the only term surviving the evaluation at (0, x̄).

Observe that if (3) holds for one such ψ it holds for any such (why?). The
point of including the statement (3) is that we will be able to give a coordinate
independent formulation of it in the next section, which will be useful to define
the notion of being non-characteristic for arbitrary surfaces.
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2.4 The CK theorem for arbitrary (analytic) surfaces

We now tackle the most general case. We’ll assume that Σ is an analytic hy-
persurface in R

d+1 given locally as the graph of an analytic function.
The first problem we face is how to formulate the Cauchy problem. It would

seem that we are free to describe all m−1 partial derivatives on Σ. Then all but
one mth derivatives will also be determined by differentiating along Σ, while the
PDE should allow us to solve for the missing mth order “normal” derivative.2

However, when specifying the m− 1 partial derivatives on Σ, there are clearly
compatibility conditions between the various partial derivatives, and it is a-priori
not clear what is “free” to be prescribed and what can be determined.

An easy way around this is to formulate the problem as follows. For u :
R

d+1 ⊃ Ω → R consider the PDE

F (x, ∂αu ; |α| ≤ m) = 0

∂αu = ∂αv on Σ for all |α| ≤ m− 1 (28)

for a given smooth function v defined on a neighborhood of Σ.
For instance, for our old t = const problem we could choose v (t, x) =

∑m−1
j=0

1
j! t

j · gj (x).
The general idea will be to introduce an analytic diffeomorphism Φ mapping

a neighborhood in R
d+1
x of x̄ ∈ Σ to neighborhood of the origin in R

d+1
y such

that Φ (U ∩ Σ) ⊂ {yd+1 = 0} ⊂ R
d+1
y , i.e. such that Σ becomes yd+1 = 0 in the

new coordinates. Then the problem reduces to the problem studied previously.
All we need to achieve this is a notion of non-characteristic which does not

depend on any choice of coordinates and moreover reduces to the old definition
in appropriate coordinates.

Definition 2.17. If F
(

x̄, ∂βu (x̄) ; |β| ≤ m
)

= 0, then the hypersurface Σ is
non-characteristic for F on u at x̄, if for any real-valued C∞ function ψ defined
on a neighborhood of x̄ with

ψ
∣

∣

∣

Σ
= 0 , dψ

∣

∣

∣

Σ
6= 0 (29)

we have P (ψm) (x̄) 6= 0.

Note that

• this definition is coordinate invariant

• it reduces to the old definition if Σ is given by t = 0

• if the condition holds for one ψ satisfying (29), it holds for any such ψ.

2Formulating the problem purely geometrically in terms of normal- and tangential deriva-
tives is tricky, however, because it will generally involve taking normal derivatives of the
normal, which requires (and depends) on the extension of the normal of the surface. See the
discussion in Rauch’s book.
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Example 2.18. Let H (t, x, y, z) := t − φ (x, y, z) = 0 define a smooth hy-
persurface in R

4. The differential of H is non-vanishing (it has components
(1,∇xφ) with ∇x being the spatial gradient). For the linear wave equation, the
hypersurface H is non-characteristic at points p ∈ H, for which

(

∂2t − ∂2x − ∂2y − ∂2z
)

H2
∣

∣

∣

Σ
= 2

(

1− |∇φ|2
)

6= 0

holds. Hence we recover the eikonal equation as the equation for characteris-
tic surfaces of the wave equation. As an exercise, you may want to find all
characteristic hyperplanes.

Exercise 2.19. Repeat the previous example with the Laplace equation ∆u = 0.
Show that all surfaces are non-characteristic.

Remark 2.20. A linear PDE Lu = 0 is called elliptic if no hypersurfaces are
characteristic for L.

Exercise 2.21. Some of you mentioned a “simple” criterion for ellipticity for
equations of the form

Pu = auxx + 2buxy + cuyy + 2dux + 2euy + fu = 0 , (30)

with a, b, c, d, e, f function of x and y. Show that P is elliptic at (x, y) if

b2 < ac

holds at (x, y). [Hint: Let H (x, y) = y − f (x) = 0 describe a curve in the
xy-plane....]

With the above, we finally obtain the (so far) most general version of the
Cauchy-Kovalevskaya theorem (see the book of Rauch).

Theorem 2.22. Suppose that

1. x̄ ∈ Σ ⊂ R
d+1
x and Σ is a real analytic hypersurface

2. v : Rd+1
x → R is real analytic in a neighborhood of x̄ and F

(

x, ∂βv (x)
)

= 0
for x in Σ.

3. Σ is non-characteristic for F on v at x̄.

4. F is real analytic on a neighborhood Ω of
(

x̄, ∂βv (x̄)
)

Then, there is a neighborhood Ω of x̄ and a u : Rd+1
x ⊃ Ω → R, real analytic on

Ω such that

• F (x, ∂αu (x)) = 0 in Ω

• ∂αu
∣

∣

∣

Σ∩Ω
= ∂αv

∣

∣

∣

Σ∩Ω
for all |α| ≤ m− 1

• ∂αu (x̄) = ∂αv (x̄) for all |α| = m .

Moreover, the solution is unique in the class of analytic solutions.

Exercise 2.23. Recall Burger’s equation ut + uux = 0. Let γ be an analytic
curve in the (x, t) plane passing through the point (x̄, 0) and let analytic data be
prescribed along γ. When can one apply the CK theorem near (x̄, 0)?
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3 Holmgren’s uniqueness theorem

The setting of Holmgren’s theorem is the following. You have an mth-order,
linear partial differential operator, whose coefficients are analytic functions:

P =
∑

|α|≤m

aα (x) ∂α . (31)

You pose the Cauchy-problem on a non-characteristic analytic surface Σ:

Pu = f (x)

∂αu = ∂αv on Σ for all |α| ≤ m− 1 (32)

for v a given smooth function near Σ (the data). We know that if the data (and
f) are analytic near a point of Σ, then there exists a unique analytic solution of
(32) near that point. However, this does not prevent other (smooth) solutions
to exist. Also, at the moment we cannot say anything about existence and
uniqueness if the data are merely assumed to be smooth.

Holmgren’s theorem makes a statement about the uniqueness of solutions to
the problem (32) in the class of Cm functions. Suppose you have two classical
(i.e. m times continuously differentiable) solutions u1, u2 of (32) near a point of
Σ. Then their difference u = u1 − u2 satisfies the homogeneous PDE

Pu = 0

∂αu = 0 on Σ for all |α| ≤ m− 1 (33)

Holmgren’s theorem states that the only solution to the above which is m times
continuously differentiable is identically zero and hence u1 = u2.

Theorem 3.1. [Holmgren] Let P (x, ∂) be a linear partial differential operator
of order m whose coefficients are analytic in a neighborhood of a point x̄ ∈ R

d.
Let Σ be an analytic hypersurface which is non-characteristic at x̄. Then the
following statement holds. If u is a Cm solution of (33) in a neighborhood of x̄,
then u vanishes on a neighborhood of x̄ ∈ R

d.

You should convince yourself immediately why non-characteristic is an es-
sential requirement, by revisiting the example of the transport equation, for
instance. The necessity of the coefficients being analytic is harder to see (but
true: there are linear equations with C∞ coefficients exhibiting non-uniqueness).
Finally, you will relax the assumption of the hypersurface being analytic (to be-
ing C2 ∩ Cm) in one of the Exercises below.

3.1 The idea of the proof and preliminaries

A priori it may seem strange that the CK Theorem (which is a statement in the
analytic world) can be used to prove Holmgren’s theorem. The idea is following.
Let X,Y be normed linear spaces and T : X → Y be a continuous linear map.
The transpose of T is defined as a map T t : Y ′ → X ′ by

〈T ty′, x〉 = 〈y′, T x〉 for all y′ ∈ Y and all x ∈ X .

12



Proposition 3.2. If the range of T t is dense in X ′, then kerT = {0}, i.e. Tu =
0 implies u = 0.

Proof. Assume u ∈ X satisfies Tu = 0. Then 〈y′, T u〉 = 0 for all y′, which
is equivalent to 〈T ty′, u〉 = 0 for all y′. Since T t has dense range we obtain
〈x′, u〉 = 0 for all x′ ∈ X ′. The Hahn-Banach theorem implies u = 0.

Therefore, the strategy to show that Pu = 0 has trivial kernel, will be to
solve the “transpose” equation P tv = g for a dense set of right hand sides. In
particular, by the Weierstrass approximation theorem, it suffices to solve this
for polynomial (=analytic!) g’s and this is how the CK theorem will come into
play.

To see how Proposition 3.2 is useful, we need to define a notion of the
transpose of P . Let Ω be a connected, open set of Rn and let u ∈ Cm (Ω)
satisfy Pu = 0 in Ω. Clearly, then, for any test-function v ∈ C∞

0 (Ω) we have

∫

Ω

(Pu) vdx = 0

The idea is to pass all the derivatives onto the v. In view of the identity

∫

Ω

aα (x) ∂αu · v = (−1)
|α|

∫

Ω

u · ∂α (aα (x) v)

which holds for all α with |α| ≤ m, we obtain the identity

∫

Ω

Pu · vdx =

∫

Ω

P tv · udx ,

provided we define the transpose of P , denoted P t, by

P t (x, ∂) v :=
∑

α

(−1)|α| ∂α (aα (x) v) (34)

Note that if Σ is non-characteristic for P at x, then it is also non-characteristic
for P t at x. Now do the same computation with u, v ∈ Cm

(

Ω̄
)

and the boundary
∂Ω sufficiently regular such that Stokes’ theorem holds to establish the identity:

∫

Ω

[

Pu · v − P tv · u
]

dx =
∑

|β|+|γ|≤m−1

aβγ (x) ∂
βu∂γvdσ . (35)

Lemma 3.3. Let u, v ∈ Cm
(

Ω
)

and for each x ∈ ∂Ω and any γ with |γ| ≤ m−1
either ∂γu (x) = 0 OR ∂γv (x) = 0 holds. Then

∫

Ω

[

Pu · v − P tv · u
]

dx = 0 . (36)

13



Now the idea becomes more clear: Given the analytic, non-characteristic hy-
persurface Σ, we will find a hypersurface Σ′ nearby, which is also non-characteristic
and together with Σ encloses a “lens-shaped” region Ω.

Σ′

Σ

Ω

We know that Pu = 0 in Ω and ∂αu = 0 on Σ for all |α| ≤ m−1 by assumption.
Now, if we can solve the transpose problem P tv = g in Ω with ∂αv = 0 on Σ′

for all |α| ≤ m− 1 (such that, say, v ∈ Cm
(

Ω̄
)

), then for this g we have

∫

Ω

g · u dx = 0 .

If we could obtain such a solution v of the transpose problem in Ω for any
polynomial (analytic!) g, we would be done because then we would approximate
u uniformly in Ω by polynomials gn, gn → u, and use

0 = lim
n→∞

∫

Ω

gn · u dx =

∫

Ω

|u|2dx

to conclude u = 0 in Ω.

3.2 The proof of Theorem 3.1

Choose analytic coordinates so that Σ = {x1 = 0}, x̄ = (0, 0, ..., 0). Introduce
(t, y = (y1, ...yd)) coordinates via

t = x1 + x22 + . . . x2d y2 = x2, . . . , yd = xd . (37)

In (t, y) coordinates, Σ = {t = |y|2}. For ǫ > 0, define Σ̃ǫ = {t = ǫ} and
ωǫ = {|y|2 < t < ǫ}.

Σ is non-characteristic for P at the origin, so with P =
∑

j+|β|≤m aj,β (x) ∂
j
t ∂

β
y

we have am,0 (0, . . . 0) 6= 0 (note ∂t is normal to Σt at the origin). We choose
r1 > 0 such that am,0 (t, y) 6= 0 holds for all (t, y) with |t| + |y| ≤ r1 and such
that the coefficients of P are real analytic for |t|+ |y| < 2r1.

It follows that there are constants C, B such that the coefficients of the
transpose P t satisfy

|∂αt,yaj,β|
α!

≤ CB|α| in |t|+ |y| ≤ r1

see Exercise 1. We choose ǫ0 > 0 so that ωǫ0 ⊂ {|t| + |y| ≤ r1}. Note that
with this choice, for any ǫ ∈ (0, ǫ0) the slice Σ̃ǫ ∩{t ≥ |y|2} is non-characteristic
and that we have uniform estimates for the coefficients in the associated set ωǫ

depending only on B and C, which we regard now as having been fixed.
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For any t = ǫ ≤ ǫ0 we consider the following Cauchy problem

P tv = g (t, y)

∂αv|t=ǫ = 0 for all |α| ≤ m− 1
(38)

with g (t, y) real analytic at (ǫ, 0). In particular, for any g we have an estimate

|∂αt,yg|
α!

≤ CB|α| (39)

in a small ball around (ǫ, 0). By the CK-Theorem, (38) has a unique analytic
solution around (ǫ, 0). The domain of convergence of this solution depends
on B,C (which were fixed above) and on C, B. This is a consequence of the
methods of majorants used in the proof of the CK theorem. We would like to
make sure that – at least for g a polynomial – the domain of convergence does
not depend on the particular g. To see this note first that (38) it linear. This
implies that the domain of convergence for the solution does not change if we
multiply g by a constant. This in turn means that the size of the domain of
convergence does not depend on C. On the other hand, for g a polynomial,
the estimate (39) holds for any B < ∞ (related to the fact that the radius of
convergence in infinite). Therefore, we obtain a uniform domain of convergence
for any ǫ ∈ [0, ǫ0]. In other words, for any ǫ ∈ [0, ǫ0] and for polynomial g, there
exists an analytic solution of (38) in |t− ǫ|+ |y| < ρ, with ρ independent of the
polynomial g chosen.

|y|

t

Σ

ωǫ

Σ̃ǫ

|y|

t

Σ

|y|

t

Σ

Br1

Σ̃ǫ0

ωǫ0 ⊂ {|t| + |y| ≤ r1}

ωǫ1 ⊂⊂ {|t − ǫ1| + |y| ≤ ρ}

Σ̃ǫ1

Bρ (ǫ1, 0)

Finally, we want to choose ǫ1 ∈ (0, ǫ0] such that ωǫ1 ⊂⊂ {|t− ǫ1|+ |y| ≤ ρ}.
Now we can apply Lemma 3.3 in ωǫ1 : We find a sequence of polynomials gn
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which approximates u uniformly on ωǫ1, apply the Lemma for each gn and take
the limit to conclude u = 0 in ωǫ1 .

The argument shows that u = 0 to one side of Σ. The argument for the other
side is of course identical (replace x1 by −x1 in the definition of the coordinate
t).

3.3 A Global Holmgren Theorem (F. John, 1948)

It is of course natural to ask: How large is the neighborhood on which u is
forced to vanish, if the Cauchy data for u on a (piece of) non-characteristic
hypersurface Σ vanish and u satisfies Pu = 0.

Let Ω be an open region of Rd. Let P be a linear partial differential oper-
ator of order m with analytic coefficients and Σ ⊂ Ω be an embedded non-
characteristic hypersurface. Moreover, suppose we know that u ∈ Cm (Ω),
Pu = 0 in Ω with ∂αu = 0 on Σ for all |α| ≤ m− 1.

Under these conditions, we already know that the solution has to vanish in
a neighborhood of Σ. The idea is to sweep out a region by a one-parameter
family σλ of (sufficiently) smooth embedded non-characteristic hypersurfaces.

Suppose U is a bounded open set of Rd−1 (in many applications: a ball) and
that

1. σ : [0, 1]× U → Ω ⊂ R
d is continuous

2. For each λ ∈ [0, 1], σλ : U → Ω ⊂ R
d is a Cm embedding of a non-

characteristic hypersurface Σλ.

3. Σ0 ⊂ Σ

4. σ ([0, 1]× ∂U) ⊂ Σ (edge remains in Σ)

Theorem 3.4. Let Ω be an open region of Rd. Let P be a linear partial dif-
ferential operator of order m with analytic coefficients and Σ ⊂ Ω an embedded
non-characteristic hypersurface for P . Suppose that u ∈ Cm (Ω) satifies Pu = 0
in Ω and ∂αu = 0 on Σ for all |α| ≤ m − 1. Then, we have ∂αu = 0 for
|α| ≤ m− 1 on all of σ

(

[0, 1]× U
)

.

Proof. Define the following subset of [0, 1]:

A = {λ ∈ [0, 1] | ∂αu = 0 for all |α| ≤ m− 1 in σ
(

[0, λ]× U
)

} . (40)

We want to show A = [0, 1]. Since A is a closed set by the continuity of ∂αu
and non-empty by the fact that 0 ∈ A by assumption, it suffices to show that
A is open in [0, 1] to conclude A = [0, 1].

To show openness, let λ ∈ A. Applying Holmgren’s theorem for each p ∈
σ ({λ} × U) and each p ∈ σ ({λ} × ∂U) on Σ yields (after taking unions) an open
neighbourhood N of σ

(

{λ} × U
)

in R
d where u vanishes identically. Since σ is

continuous we can pull back the open set N to a set V which is relatively open
in [0, 1]× U) and contains {λ} × U . Define now the sets

ηn =
{

[

λ− 1

n
, λ+

1

n

]

∩ [0, 1]× U
}

.
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We need to show ηN ⊂ V for some N ∈ N (and hence all larger ones). Equiva-
lently, we need to show

ηN ∩ Vc = ∅
for some N , where Vc denotes the complement of V in [0, 1]× U .

Suppose this was false and there was a pn ∈ Kn := ηn ∩ Vc for each n.
Then (pn) is a sequence in the compact set K1 and hence a subsequence (pnk

)
converges to some p ∈ K1. It is easy to see that p ∈ ηn for all n and hence
p ∈ {λ} × U . Thus by construction any neighbourhood of p contains points in
Vc which contradicts that p has a neighbourhood in V .

We conclude that σ (ηN ) is a compact subset of the open set N , where u
vanishes identically. Therefore, in particular ∂αu = 0 holds for all |α| ≤ m− 1
in σ (ηN ) and we conclude

[

λ− 1
n
, λ+ 1

n

]

∩ [0, 1] ⊂ A and hence that A is
open.

3.4 Applications

We give two main applications: One is the unique continuation for (linear)
elliptic PDEs with analytic coefficients. The other is to determine the domain
of dependence and domain of influence for the linear wave equation.

3.4.1 Unique Continuation for elliptic PDEs

Theorem 3.5. Let P (x, ∂) be a linear, mth order, elliptic partial differential
operator with analytic coefficients in an open connected set Ω ⊂ R

n and let Σ
be a piece of Cm hypersurface in Ω. Then, the following statement holds: If

• u ∈ Cm (Ω) satisfies P (x, ∂)u = 0 in Ω and

• for all α with |α| ≤ m− 1 we have ∂αu = 0 on Σ

then u = 0 in all of Ω.

Note that we only have to assume that the hypersurface is Cm in view of
Exercise 7 below.

The theorem states that for linear elliptic PDEs with analytic coefficients,
vanishing Cauchy data on (however small!) a piece of hypersurface in Ω already
implies vanishing of u in all of Ω. This is a very strong statement, reminiscent
of analyticity! Indeed, one can actually prove that for a P (x, ∂) as in Theorem
3.5, all solutions of Pu = 0 have to be real analytic. We’ll get back to this once
we discuss regularity theory for elliptic equations.
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Σ
x

y

γ

To prove this theorem we are only going to draw a picture (leaving the
details to you). To show that the solution vanishes in a neighborhood of an
arbitrary point y ∈ Ω, pick a smooth embedded curve γ connecting a point
x ∈ Σ with y. Choose a small tubular neighborhood T around γ. Then choose
a one-parameter family of hypersurfaces contained in T with edges ending on
Σ which foliate T . They are all non-characteristic by the definition of elliptic,
so applying global Holmgren yields u = 0 in T .

3.4.2 The wave equation: Domain of dependence and influence

Consider the linear wave equation, �u =
[

−∂2t + c2
(

∂2x1
+ ...+ ∂2xd

)]

u = 0.

Theorem 3.6. If u ∈ C2
(

Rt × R
d
x

)

satisfies

�u = 0 and u|t=0 = ut|t=0 = 0 in |x| < R (41)

then u = 0 in {(t, x) | |x| < R− c|t|}.
The set in which u is claimed to vanish is a double-cone of revolution. To

prove the theorem (exercise) one sweeps out the cone out by a one parameter
family of hyperboloids (which are seen to be non-characteristic) and applies
global Holmgren.

We also have

Corollary 3.7. Suppose that u ∈ C2
(

R
1+d

)

is a solution of �u = 0 and

K = supp ut|t=0 ∪ supp u|t=0 ⊂ R
d
x

is the support of the Cauchy data on the hypersurface t = 0. Then,

supp u ⊂ {(t, x) | dist (x,K) ≤ c|t|} .

Proof. Pick a point (x̄, t) ∈ R
d+1 for which dist (x̄,K) > c|t̄|. We want to show

u vanishes there. Choose R such that dist (x̄,K) > R > c|t̄|. Then u vanishes
inside the double-cone of all (t, x) with |x − x̄| < R − c|t| by Theorem 3.6.
Clearly, (x̄, t) lies inside that cone as 0 < R− c|t| by our choice of R.
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t = 0

(x̄, t̄)

R

K

(x̄, 0)

dist(x̄,K)

domain of influence of K

3.4.3 d’Alembert’s formula

Finally, we would like to derive a general formula for solutions to the wave
equation in 1+1 dimensions, the famous d’Alembert’s formula. This will reveal
that the estimates obtained for the domain of dependence and the domain of
influence are in fact sharp (in the sense that it can happen that the solution
is supported everywhere on the domain of influence). While the formula is
restricted to 1 + 1 dimensions; we’ll show later that the result is true in all
dimensions.

We consider the Cauchy problem

utt − c2uxx = 0 with data u (0, x) = f (x) ut (0, x) = g (x) (42)

It is easily checked that u = ϕ (x+ ct) + ψ (x− ct) solves utt − c2uxx = 0 for
any C2 functions ϕ and ψ. To realize the given data we need

ψ (x) + ϕ (x) = f (x) (43)

−cψ′ (x) + cϕ′ (x) = g (x) (44)

Differentiating (43) and inverting the linear system we obtain

ψ′ =
f ′

2
− g

2c
and ϕ′ =

f ′

2
+

g

2c
(45)

Choosing a G with G′ = g we obtain the expressions

ψ =
f

2
− G

2c
+ a and ϕ =

f

2
+
G

2c
+ b (46)

On the other hand, we have a+ b = 0 by (43) such that

u (x, t) =
f (x− ct) + f (x+ ct)

2
+

1

2c
(G (x+ ct)−G (x− ct))
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which we can write as

u (x, t) =
f (x− ct) + f (x+ ct)

2
+

1

2c

∫ x+ct

x−ct

g (s) ds (47)

From this formula one easily reads off what we obtained for the domain of
dependence and the domain of influence. In particular, choosing f = 0 and g
to be non-positive and compactly supported one sees that u will be supported
in the entire domain of influence.

t

(X,T )

(X − cT, 0) (X + cT, 0)
x

We also obtain that for any given f ∈ C2 (R) and g ∈ C1 (R), there is a unique
solution u ∈ C2 (Rt × Rx) of the Cauchy problem (42). Indeed, a solution is
given by (47) and it is unique by global Holmgren.

4 Exercises

1. In this question you will prove some useful identities and estimates which
have been used (explicitly or implicitly) in the text.

(a) The multinomial identity: For any integer m and x = (x1, ..., xn) we
have (x1 + . . . xn)

m =
∑

|α|=m = m!
α! x

α.

(b) For α, β ∈ N
d, x ∈ R

n, |xi| < 1 for all i we have

∑

α≥β

α!

(α− β)!
xα−β = Dβ

(

1

1− x1
· 1

1− x2
· . . . · 1

1− xn

)

=
β!

(1− x1)
1+β1 · . . . · (1− xn)

1+βn
(48)

Here α ≥ β means that αi ≥ βi for all i = 1, ..., n.

(c) Let f be a function which is real analytic at x0 ∈ R
n. Show that

there exists a neighborhood N around x0 and positive numbers M ,
r such that for all x ∈ N we have

|Dβf (x) | ≤M · β! · r−β for all β ∈ N
n

Hint: Differentiate the power series for f term-wise and prove con-
vergence using b).
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2. Consider the PDE (non-linear wave equation in 2 + 1 dimension)

∂2t u = (1 + u)
(

∂2x + ∂2y
)

u (49)

with initial data u (x, y, t = 0) = 0 and ∂tu (x, y, t = 0) = g (x, y) for a
real analytic function g (x, y). Carry out “Step 0” of the proof of the CK
theorem (reduction to zero data and transformation to first order system).

3. (John, p. 69, Problem 4) Consider the function

f(x) =

∞
∑

n=1

cos(n!x)

(n!)n
. (50)

(a) Prove that f is C∞ and has period 2π.

(b) Show that f is not real analytic at x = 0.
Hint: Show that (1c) does not hold for f .

(c) Show that f is not real analytic at any real x.
Hint: Show and use that f(x + 2πn/m) − f(x) is analytic for any
integers n and m 6= 0.

4. ⋆ (John, p. 69, Problem 6) The analytic version of the implicit function
theorem has been used in the lectures. The following (non-examinable)
problem provides a proof, which is in spirit quite analogous to that of the
CK Theorem.

Let
f(x, y) = f(f1, ..., fm) = f(x1, ..., xn, y1, ..., ym)

be real analytic at the point (x0, y0) of Rn × R
m. Let

f(x0, y0) = 0 , det

[

∂fi
∂yj

]m

i,j=1

(

x0, y0
)

6= 0 .

Show that f(x, y) = 0 has a unique solution y = y(x) which is real analytic
at x0 with y0 = y(x0). Hints:

(a) By a linear substitution in x, y reduce the equation to the form
y = g(x, y) where g(x, y) is real-analytic at (0, 0) and g(0, 0) = 0,
gy(0, 0) = 0.

(b) Show that necessary and sufficient conditions for a function y = h(x)
analytic at 0 to satisfy y = g(x, y) are a set of recursion relations

cα = P
(

∂βx∂
γ
y g(0, 0), cǫ

)

c0 = 0 (51)

where cα = Dαh(0), |β + γ| ≤ |α|, |ǫ| < α and P is a polynomial
with non-negative coefficients in its arguments.
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(c) Let g(x, y) ≪ G(x, y) where G is real analytic at (0, 0) and G(0, 0) =
0, Gy(0, 0) = 0. Let y = H(x) be a solution of y = G(x, y) which
is analytic at 0. Show that |cα| ≪ DαH(0) for the cα obtained
from (51) by recursion. Conclude that

∑

α cαx
α defines an analytic

solution of y = g(x, y).

(d) Use a G(x, y) = (G1, ..., Gm) of the form

Gk(x, y) =
Mr

r − x1 − ...− xn − y1 − ...− ym
−M −M

r
(y1+ ...+ ym).

5. (Rauch, 1.3, Problem 6) Use the Cauchy-Kowalevskaya theorem to show
that the initial value problem

utux = f(t, x, u) , u(0, x) = g(x) (52)

has a real analytic solution on a neighbourhood of (0, 0) provided that f is
real analytic on a neighbourhood of (0, 0, g(0)) and g is real analytic on a
neighbourhood of 0 and g′(0) 6= 0. Construct an example with g′(0) = 0,
g′′(0) 6= 0, g and f real analytic and such that the initial value problem
does not even have a C1 solution on a neighbourhood of (0, 0).

6. (Rauch, 1.8, Problem 3) Show by explicit computation that

u (t, x) = (4πt)
− 1

2 exp

(

−x
2

4t

)

is a smooth solution of the one-dimensional heat equation ut = uxx in
t > 0. Extend u to vanish for t ≤ 0. Prove that the resulting function
is C∞ (

R
2 \ {0}

)

and satisfies the heat equation in R
2 \ {0}. In addition,

show that u does not vanish in a neighborhood of any point (0, x̄) with
x̄ 6= 0. Why does this not violate Holmgren’s theorem?

7. State and prove Holmgren’s theorem for surfaces which have only regular-
ity Cm ∩C2. (See the book of Rauch if you get stuck with this.)

8. Consider a classical solution u to the one-dimensional heat equation

∂tu = ∂xxu

defined on the half space R
2
t>0. Suppose u = ux = 0 holds along the line

segment {x = 0} × (1, 2). On what region does u necessarily vanish?

9. (Evans, Chapter 4, Problem 2) Consider Laplace’s equation ∆u = 0 in
R

2, taken with the Cauchy data

u = 0 and ux2 =
1

n
sin (nx1) on {x2 = 0} (53)

Use separation of variable to derive the solution

u (x1, x2) =
1

n2
sin (nx1) sinh (nx2) .
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Discuss whether the Cauchy problem for Laplace’s equation is well-posed.
[Hint: Does the solution depend continuously on the data?]

10. Do Exercises 2.2 and 2.19 if you haven’t already done so.
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