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1 Laplace’s equation

We start now with the analysis of one of the most important PDEs of mathe-
matics and physics, the Laplace equation

∆u :=
d

∑

i=1

∂2i u = 0 , (1)

or, more generally, the Poisson equation, ∆u = f , which has a prescribed in-
homogeneity f on the right hand side.1 Equation (1) appears naturally in
electrostatics, complex analysis and many other areas. We have already seen
that this PDE is elliptic. Our approach will be to understand the behavior of
solutions to (1) in great detail first (which is doable in view of the highly sym-
metric form of the operator) before turning to more general elliptic operators
and equations. In summary, our goals are

• “Solve” ∆u = f . What formulation is well-posed and which one’s are
ill-posed? What are the conditions on f?

• What is the regularity of u? How does it depend on f?

• What happens for more general elliptic operators Lu = f?

I will follow very closely Fritz John’s book, Chapter 4, for the first part.

1.1 Uniqueness for Dirichlet and Neumann problem

Let Ω ⊂ R
d be an open bounded connected region of Rd whose boundary is

sufficiently regular for Stokes theorem to apply. Recall the Green’s identities

1In applications, f could be a charge-distribution whose electrostatic potential u is to be
determined.
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(which are special cases of our formula for the transpose of an operator), valid
for u, v ∈ C2

(

Ω̄
)

:

∫

Ω

v∆u = −

∫

Ω

∑

i

vxi
uxi

dx +

∫

∂Ω

v
du

dn
dS , (2)

∫

Ω

v∆u =

∫

Ω

u∆v +

∫

∂Ω

[

v
du

dn
− u

dv

dn

]

dS , (3)

and recall that d
dn
f =

∑

i ξ
i∂if means differentiating in the direction of the

outward unit normal ξ to the boundary ∂Ω. Applying (3) with v = 1 we find

∫

Ω

∆udx =

∫

∂Ω

du

dn
dS , (4)

while applying (2) with v = u produces

∫

Ω

∑

i

(∂iu)
2
+

∫

Ω

u∆u =

∫

∂Ω

u
du

dn
dS . (5)

From (5) we immediately obtain a uniqueness statement for Poisson’s equation.
Consider the following problems

{

∆u = f in Ω
u = g on ∂Ω

(6)

{

∆u = f in Ω
du
dn

= g on ∂Ω
(7)

for prescribed (say smooth for the moment) functions f and g. Problem (6) is
called the Dirichlet problem, problem (7) the Neumann problem for Poisson’s
equation.

Suppose we have two solutions ∆u1 = f and ∆u2 = f of the Dirichlet
problem with u1, u2 ∈ C2

(

Ω̄
)

, then their difference satisfies Laplace’s equation,
∆ (u1 − u2) = 0 with u1 − u2 = 0 on the boundary. By (5)

∑

i

(∂i [u1 − u2])
2
= 0 ,

and hence u1 − u2 = c must be constant in Ω. But since u1 − u2 = 0 on ∂Ω,
we can conclude u1 = u2 and hence the uniqueness of C2

(

Ω̄
)

solutions to the
Dirichlet problem (6). For the Neumann problem (7) there remains ambiguity
up to a constant. Note, that there is an obvious constraint for existence of
solutions to the Neumann problem given by (4) which produces a non-trivial
relation between f and g.
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1.2 The fundamental solution

The Laplacian is spherically symmetric. By this we mean that if u (x) is a
solution of ∆u = 0 then v (x) = u (Rx), with R a rotation in R

d, satisfies
∆v = 0 (Exercise). There is also invariance under translations and dilations. In
two-dimension, the Laplacian is also invariant under spherical inversion:

Exercise 1.1. Prove that ∆u = 0 for u = u (x1, . . . , xd) implies that

∆

[

|x|2−du

(

x

|x|2

)]

= 0

in the domain of u. Conclude that in two dimensions the Laplacian is invariant
under conformal transformations.

In view of the spherical symmetry of the Laplace operator, one may try to
find spherically symmetric solutions of ∆u = 0. Setting u = ψ (r) and expressing
the Laplacian in spherical coordinates one obtains the ODE

ψ′′ (r) +
d− 1

r
ψ′ (r) = 0

which is readily solved as ψ′ = Cr1−d for some constant C and

ψ (r) =

{

C
2−d

r2−d for d > 2

C log r for d = 2
(8)

We can still add a non-trivial constant to ψ (which we suppress). The function
(8) solves ∆ψ = 0 for r 6= 0 by construction but has a singularity for r = 0.
Note that ψ (r) and also ψ′ (r) are still in L1

loc

(

R
d
)

but that ψ′′ (r) fails (barely).
Note also that in view of the translation invariance we could have introduced
polar coordinates around any point. We will now prove

Lemma 1.2. Let Ω ⊂ R
d open, bounded and connected and ξ ∈ Ω. Then for

any u ∈ C2
(

Ω̄
)

and ξ ∈ Ω we have the identity

u (ξ) =

∫

Ω

K (x, ξ)∆udx−

∫

∂Ω

[

K (x, ξ)
du

dnx

(x)− u (x)
dK (x, ξ)

dnx

]

dSx (9)

with K (x, ξ) = ψ (|x− ξ|) and the constant C in ψ chosen such that C−1 = ωd

equals the surface area of the unit-sphere in d− 1 dimensions.

Corollary 1.3. The function K (x, ξ) is a fundamental solution with pole ξ for
the Laplace operator in Ω in that

∆v = δξ

holds in Ω the sense of distributions.
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Proof. Indeed, by the identity of the Lemma,

∫

Ω

K (x, ξ)∆udx = u (ξ)

for all test functions u ∈ C∞
0 (Ω) ⊂ C2

(

Ω̄
)

.

Proof of Lemma 1.2. Consider the region Ωρ = Ω \B (ξ, ρ) obtained by cutting
out a small ball from Ω around ξ.

ξ

S (ξ, ρ)

Ω

∂Ω

Then, for u ∈ C2
(

Ω̄
)

we have from (3) applied in Ωρ (where v is harmonic) the
identity

∫

Ωρ

v∆u =

∫

∂Ω

(

v
du

dn
− u

dv

dn

)

dS +

∫

S(ξ,ρ)

(

v
du

dn
− u

dv

dn

)

dS (10)

where d
dn

denotes the inward normal on S (ξ, ρ) and the outward normal on ∂Ω.
We claim that the boundary term on S (ξ, ρ) converges to u (ξ) in the limit as
ρ→ 0. To see this, note that since v is radial around ξ we have for d > 2

∣

∣

∣

∫

S(ξ,ρ)

v
du

dn

∣

∣

∣
=

∣

∣

∣
v (ρ)

∫

S(ξ,ρ)

du

dn

∣

∣

∣
=

∣

∣

∣
v (ρ)

∫

B(ξ,ρ)

∆u
∣

∣

∣

≤
C

2− d
ρ2−dρd−1ωd| max

B(ξ,ρ)
∆u (ξ) | (11)

where we have used (2), the explicit form of v and recall the notation ωd for the
surface area of the d − 1-dimensional unit-sphere. (For d = 2 we would obtain
log ρ · ρ instead of ρ.) Clearly, the right hand side goes to zero as ρ → 0. On
the other hand, by a similar computation, we have

∫

S(ξ,ρ)

u
dv

dn
= Cρ1−d

∫

S(ξ,ρ)

u = u
(

ξ̃
)

Cωd (12)

for some ξ̃ ∈ S (ξ, ρ) by the mean value theorem. By the continuity of u, the
expression converges to Cωdu (ξ) in the limit as ρ → 0. Choosing C = ω−1

d

produces the identity claimed in the Lemma.

The formula (9) is extremely useful, as it expresses the value of u at any point
in Ω by the value of ∆u in Ω (which is prescribed in Poission’s equation) and
the values of u and its normal derivative on the boundary. However, we already
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know that the solution of Poisson’s equation is already unique by prescribing
either u on the boundary or its normal derivative. In other words, once u is
prescribed on the boundary, there can be at most one C2

(

Ω̄
)

solution, whose
normal derivative would then also be uniquely determined and can no longer be
freely specified. This tells us that the Cauchy-problem for Laplace’s equation
∆u = 0 (i.e. specifying the function and its normal derivative on ∂Ω) is not
solvable in general. Of course we know it is solvable for analytic data in a small
neighborhood of a point on the boundary by the Cauchy Kovalevskaya theorem.
However, this does not mean that one can solve the problem in the analytic class
in a full neighborhood of all of ∂Ω (and indeed one cannot in general!).

1.3 Regularity of harmonic functions

The formula (9) provides important insights into the regularity of harmonic
functions. The latter satisfy (recall this formula was derived for u ∈ C2

(

Ω̄
)

)

u (ξ) = −

∫

∂Ω

[

K (x, ξ)
du

dnx

(x)− u (x)
dK (x, ξ)

dnx

]

dSx . (13)

We can easily show that u is C∞ at any ξ ∈ Ω. Namely, given ξ we find a small

ball B (ξ, ρ) around ξ such that dist
(

ξ̃, ∂Ω
)

≥ δ > 0 for all ξ̃ ∈ B (ξ, ρ). Then

we apply formula (13) in that ball B (ξ, ρ). Differentiating u (ξ) we can inter-
change the derivative with the integral as the integrand and all its derivatives
are uniformly bounded on ∂Ω. It follows that u is C1 in the ball B (ξ, ρ) and
hence u ∈ C1 (Ω). By the same argument one sees u ∈ Cn (Ω) for any n. For
this argument, we have only used the formula (13) in small balls inside Ω, on

which u is always C2
(

B (ξ, ρ)
)

provided u is C2 (Ω). We summarize this as

Lemma 1.4. Any u ∈ C2 (Ω) which solves ∆u = 0 in Ω is actually C∞ (Ω).

In fact, one can show something stronger:

Lemma 1.5. Any u like in the previous Lemma is actually analytic in Ω.

The proof is an exercise. It only requires suitably extending the formula
(13) into a complex neighborhood. Fixing a ξ it is not hard to see that (13)
defines a complex analytic function one the disc |z − ξ| < δ for suitable small
δ. Alternatively, you can construct the power series for u directly and show it
converges using the estimates obtained from the mean value theorem (see the
exercises below).

The two previous Lemmata give yet another proof of the fact that the
Cauchy-problem for the Laplace equation cannot be solved in general. Assume
that you specified Cauchy data for u on xd = 0 in R

d

xd = 0

∆u = 0
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and that you were able to solve Laplace’s equation in a small ball around the
origin. By the Lemmas, you know that the solution has to be C∞ (in fact,
analytic) inside that ball. But this implies that your Cauchy-data would have
to have been analytic in the first place! It follows that you cannot solve the
Cauchy problem for Laplace’s equation except if the data are analytic. This is
very similar to the equation ut + iux = 0 we discussed previously!

1.4 Mean value formulas

Let us return once more to the formula (9). It is clear that the function

G (x, ξ) = K (x, ξ) + w (x) (14)

for w ∈ C2
(

Ω̄
)

with ∆w = 0 in Ω is another fundamental solution with pole ξ
and that the formula

u (ξ) =

∫

Ω

G (x, ξ)∆udx−

∫

∂Ω

[

G (x, ξ)
du

dnx

(x)− u (x)
dG (x, ξ)

dnx

]

dSx (15)

is valid. (Simply observe that the right hand side is zero if G is replaced by the
harmonic w ∈ C2

(

Ω̄
)

in view of (3).)
For instance, taking for Ω a ball B (ξ, ρ) centered around ξ and

G (x, ξ) = K (x, ξ) − ψ (ρ) = ψ (|x− ξ|)− ψ (ρ) , (16)

we have that G (x, ξ) = 0 for x ∈ ∂Ω and, in view of dG
dnx

|∂Ω = 1
ωd
ρ1−d, the

identity

u (ξ) =

∫

|x−ξ|<ρ

(ψ (|x− ξ|)− ψ (ρ))∆u (x) dx+
1

ωdρd−1

∫

|x−ξ|=ρ

u (x) dSx

(17)

expressing the values of u at the center of a ball in terms of its values on the
boundary and a volume integral involving ∆u (which is typically prescribed).
Noting that ψ (|x− ξ|)−ψ (ρ) < 0 (recall ψ (|x− ξ|) is monotone and gets large
and negative for small arguments), we immediately produce

Lemma 1.6. If u ∈ C2 in B (ξ, ρ) and ∆u ≥ 0 in the ball, then

u (ξ) ≤
1

ωdρd−1

∫

|x−ξ|=ρ

u (x) dSx . (18)

Note that for harmonic functions this is the well-known mean value property:
The value of a harmonic function at a point equals its average value over a sphere
surrounding that point.

Definition 1.7. We call u subharmonic in Ω if (18) holds for any point ξ ∈ Ω
and sufficiently small balls B (ξ, ρ).
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By Lemma 1.6, functions with ∆u ≥ 0 in Ω are subharmonic. Conversely, a
subharmonic function which is also C2 satisfies ∆u ≥ 0. This follows directly
from (17). It particular, a C2 function which has the mean value property is
harmonic.2

1.5 Poisson’s formula

The goal of this subsection is to prove Poisson’s formula,

u (ξ) = ∆ξ

∫

Ω

K (x, ξ)u (x) dx (19)

valid for u ∈ C2
(

Ω̄
)

and ξ ∈ Ω. The “quick and dirty” prove of (19) would be
to pull the Laplacian through the integral and use that ∆ξK = δξ.

To do it carefully, we first let u ∈ C2
0 (Ω). Then formula (9) reduces to

u (ξ) =

∫

Ω

K (x, ξ)∆xu (x) dx =

∫

Rd

K (x, ξ)∆xu (x) dx (20)

since the boundary terms vanish by the assumption of compact support. The
domain can be increased to all of Rd for the same reason. Then
∫

Rd

K (x, ξ)∆xu (x) dx =

∫

Rd

ψ (|x− ξ|)∆xu (x) dx =

∫

Rd

ψ (|y|)∆yu (y + ξ) dy

=

∫

Rd

ψ (|y|)∆ξu (y + ξ) dy = ∆ξ

∫

Rd

ψ (|y|)u (y + ξ) dy

= ∆ξ

∫

Rd

ψ (|x− ξ|)u (x) dx = ∆ξ

∫

Ω

K (x, ξ) u (x) dx ,

which proves the desired formula for u ∈ C2
0 (Ω) and any ξ ∈ Ω. Now for a

given ξ, a general u ∈ C2
(

Ω̄
)

can be decomposed into a part which is supported
away from the boundary and a part which is supported away from a small ball
around ξ. More precisely, let ξ ∈ Ω be given and choose a small ball b ⊂ Ω
around ξ. Choose also a larger ball B such that b̄ ⊂ B ⊂ Ω and a cut-off
function χ ∈ C2

0 (Ω) which is equal to 1 in B. Then u ∈ C2
(

Ω̄
)

can be written
as

u = u1 + u2 = χ · u+ (1− χ)u

with u1 ∈ C2
0 (Ω) and u2 supported away from B. For u2 we have

∆ξ

∫

Ω

K (x, ξ) u2 (x) dx = ∆ξ

∫

Ω\B

K (x, ξ) u2 (x) dx = 0

since K (x, ξ) is in C2
(

Ω \B
)

and harmonic for any ξ ∈ b. This concludes the

proof.

2This remains true assuming only that u is C0.
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The relevance of Poisson’s formula is that for a given u ∈ C2
(

Ω̄
)

(for in-
stance, a charge distribution), the expression

w (ξ) =

∫

Ω

K (x, ξ) u (x) dx

provides a special solution to Poisson’s equation ∆ξw = u (whose negative
gradient is the electric field). We can in fact consider the above w (x) as a
function on all of Rd. We know that w is C2 inside Ω and3 satisfies Poisson’s
equation. It’s not hard to see that w is harmonic (hence analytic) at points
ξ /∈ Ω̄, and that for points on ∂Ω, w may fail to be C2.

1.6 Maximum Principles

The previous considerations relied heavily on the exact form of the Laplacian.
The ideas considered in this section, on the other hand, carry over to more
general (even non-linear!) elliptic equations. More about this in the exercises.

Proposition 1.8. (Weak maximum principle) Let u ∈ C2 (Ω) ∩ C0
(

Ω̄
)

and
∆u ≥ 0 in Ω. Then

max
Ω̄

u = max
∂Ω

u

Proof. Since u ∈ C0
(

Ω̄
)

the expressions are well-defined. For ∆u > 0 the
conclusion would follow immediately since at an interior maximum we would
need both ∂2xu ≤ 0 and ∂2yu ≤ 0 and hence ∆u ≤ 0. For the general case, we
consider the auxiliary function

v (x) = u (x) + ǫ|x|2

which satisfies ∆v = ∆u+ 2ǫn > 0 in Ω for any ǫ > 0. Therefore

max
Ω̄

(

u+ ǫ|x|2
)

= max
∂Ω

(

u+ ǫ|x|2
)

max
Ω̄

u+ ǫmin
Ω̄

|x|2 ≤ max
∂Ω

u+ ǫmax
∂Ω

|x|2

and since this holds for any ǫ > 0, maxΩ̄ u ≤ max∂Ω u. Since the reverse
inequality is trivial, we obtain the desired equality.

For u being harmonic, the same argument leads to the equality for the
minimum and in view of |u| = max (u,−u) we also have

Corollary 1.9. Let u ∈ C2 (Ω) ∩ C0
(

Ω̄
)

and ∆u = 0 in Ω. Then

max
Ω̄

|u| = max
∂Ω

|u|

3This is clear for u supported away from ξ. On the other hand, for u of compact
support away from the boundary ∂Ω one has, similar to the above computation, w (ξ) =∫
Ω
K (x, ξ)u (x) dx =

∫
Rd ψ (|x− ξ|)u (x) dx =

∫
Rd ψ (|y|)u (y + ξ)dy. Since ψ is in L1

loc
, w

can be differentiated (at least) as many times as u.
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Corollary 1.10. Let u ∈ C2 (Ω) ∩ C0
(

Ω̄
)

and ∆u = 0. Then u = 0 on ∂Ω
implies u = 0 in all of Ω.

Corollary 1.10 improves our uniqueness statement about the Dirichlet prob-
lem for Poisson’s equation (6) from Section 1.1, which required u ∈ C2

(

Ω̄
)

. Now

we know there can only be one solution to this problem in u ∈ C2 (Ω)∩C0
(

Ω̄
)

.
Proposition 1.8 still allows the maximum of u to be attained in the interior

(of course in addition to it being attained on the boundary). The following
“strong” maximum principle asserts that this can only happen if u is actually
constant:

Proposition 1.11. Let u ∈ C2 (Ω) and ∆u ≥ 0 in Ω. Then either u is constant
or

u (ξ) < sup
Ω
u

for all ξ ∈ Ω.

Corollary 1.12. If u ∈ C2 (Ω) ∩ C0
(

Ω̄
)

is non-constant, then

u (ξ) < max
∂Ω

u

Proof. The continuity implies supΩ u = maxΩ̄ u = max∂Ω u, the last step being
Proposition 1.8.

Proof of Proposition 1.11. Set M = supu and decompose Ω = Ω1 ∪ Ω2 as

Ω1 = { ξ ∈ Ω | u (ξ) =M} and Ω2 = { ξ ∈ Ω | u (ξ) < M} (21)

These sets are obviously disjoint. If we can show they are both open, then one
of them must be empty (a connected set cannot be written as the union of two
open sets, by definition). Now Ω2 is open by the continuity of u in Ω. To see
that Ω1 is open, fix ξ ∈ Ω1 and consider the mean value inequality (18) in a
small ball around ξ contained in Ω

0 ≤

∫

|x−ξ|=ρ

u (x) dSx − ωdρ
n−1u (ξ) =

∫

|x−ξ|=ρ

[u (x) − u (ξ)] dSx

Since u (ξ) =M and u (x) ≤M for all x, the integrand is non-positive. This is
only consistent if u (x) =M holds in the ball, establishing that Ω1 is open.

1.7 Existence of solutions: Green’s function for a ball

So far we have been talking about the uniqueness of solutions and about their
properties but not about whether they actually exist! Let us return to equation
(15) which we know holds for any u ∈ C2

(

Ω̄
)

. The claim is the following: If we
would be able to find a G (x, ξ) (and hence a w (x)) such that G (x, ξ) = 0 holds
for all of x ∈ ∂Ω (independently of ξ ∈ Ω), then we would have a formal solution
of the Dirichlet problem (6) expressed purely in terms of the “data” f and g.
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We say formal because formula (15) hinges on u ∈ C2
(

Ω̄
)

and it is not clear
a-priori whether a solution of (6) has to be C2 up to the boundary. However,
once one has found the desired G (x, ξ), one can directly check whether the u (ξ)
thus defined satisfies (6) and what regularity properties it has.

We will carry out this program for Ω being a ball of radius a, which wlog
(translation invariance) we put at the origin. Given a ξ ∈ B (0, a) we define it’s
dual point (cf. Exercise 1.1) to be

ξ⋆ =
a2

|ξ|2
ξ

The point of this definition is that the quotient r⋆

r
of r = |x − ξ|, the distance

from a point x to ξ, and r⋆ = |x − ξ⋆|, the distance from a point x to ξ⋆, is
constant for x being any point on the boundary of the ball S (0, a):

r⋆

r
=

a

|ξ|

for x ∈ ∂Ω. This is verified by a quick computation. It follows that, for d > 2,
if we define

G (x, ξ) = K (x, ξ) −

(

|ξ|

a

)2−d

K (x, ξ⋆) ,

then G (x, ξ) = 0 for x ∈ ∂Ω. Moreover, for any fixed ξ ∈ Ω, we have ξ⋆ /∈ Ω̄
and hence K (x, ξ⋆) is both C2

(

Ω̄
)

in x and harmonic (recall this is required
of the w in (14)!) Note also that for ξ → 0 we recover the G used in the mean
value formula (16).

Plugging this into (15) we obtain the formula

u (ξ) =

∫

|x|=a

H (x, ξ) gdSx where H (x, ξ) =
1

aωd

a2 − |ξ|2

|x− ξ|d
(22)

valid for |ξ| < a as a natural candidate to solve the Dirichlet problem “∆u = 0
in B (0, a) and u = g on S (0, a)”. (In fact, we know that if u ∈ C2

(

Ω̄
)

then
this has to be the solution.) The following Proposition checks this directly.

Proposition 1.13. Let g be continuous for |x| = a. Then the function

u (ξ) =

{

g (ξ) for |ξ| = a
∫

|x|=a
H (x, ξ) g (x) dSx for |ξ| < a

(23)

is continuous in the closed ball B (0, a) and C∞ and harmonic in the inside.

By our improved uniqueness theorem (Corollary 1.10) we know this is the
unique solution in C2 (Ω) ∩ C0

(

Ω̄
)

of the desired Dirichlet problem.

Proof. We first check the following properties of the Poission kernel H (x, ξ):

• H (x, ξ) ∈ C∞ for |x| ≤ a , |ξ| < a , x 6= ξ
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• ∆ξH (x, ξ) = 0 for |ξ| < a, |x| = a

•
∫

|x|=a
H (x, ξ) dSx = 1 for |ξ| < a (use (23) with g = 1. (This problem

has the unique solution u = 1, which is C2
(

Ω̄
)

and harmonic, hence the
formula is valid.))

• H (x, ξ) > 0 for |x| = a, |ξ| < a.

• If |y| = a, then

lim
ξ→y,|ξ|<a

H (x, ξ) = 0 (24)

uniformly in x for |x− y| > δ > 0.

The first property justifies interchanging derivatives in ξ with the integral in
the expression for u and hence yields that u ∈ C∞ in Ω. Doing this interchange
for the Laplacian, the second property shows that u is harmonic in Ω.

The difficult part is to establish the continuity at the boundary. We fix a y
with |y| = a. We need to show that limξ→y u (ξ) = g (y) that is

lim
ξ→y

∫

|x|=a

H (x, ξ) [g (x)− g (y)] dSx = 0 , (25)

where we have used the third property of H above for the reformulation. Now
g is continuous on the boundary at y. Hence, given ǫ > 0 we can fix a δ > 0
such that |g (x)− g (y) | < ǫ holds for all x with |x− y| < δ. Therefore,

∫

|x|=a,|x−y|<δ

H (x, ξ) [g (x)− g (y)] dSx

≤ sup
|x−y|<δ

|g (x)− g (y) |

∫

|x|=a

H (x, ξ) dSx ≤ ǫ (26)

Note that here we have used the fourth (positivity) property of H above.
On the other hand, using the uniformity in the last property of H above,

we can find now a δ′ such that with M = max∂Ω g > 0 (otherwise we know the
unique solution is u = 0).

H (x, ξ) < ǫ ·
1

2Mωdad−1
holds for all |ξ − y| < δ′ and all |x− y| > δ.

Therefore,
∫

|x|=a,|x−y|>δ

H (x, ξ) [g (x)− g (y)] dSx < ǫ holds for |ξ − y| < δ′ (27)

Adding (26) and (27) we have shown that given any ǫ we can find a δ′ such
that the integral in (25) is smaller than 2ǫ for all |ξ − y| < δ′, which proves the
continuity.

We have successfully solved the Dirichlet problem for harmonic functions,
giving existence and uniqueness. It is also not hard to see the continuous de-
pendence of u on g from the explicit formulae we derived.
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1.8 Applications

The fact that we can solve explicitly the Dirichlet problem for a ball is very
useful. If we differentiate u at the center of the ball, a computation yields

∂ξiu (0) =
d

ωdan+1

∫

|x|=a

xiu (x) dSx

expressing the derivative of u at the center in terms of the value of u on the
boundary. Therefore, we have the estimate

|∂ξiu (0) | ≤
d

a
max
|x|=a

|u (x) |

and similarly for higher derivatives. Now for an open region Ω ⊂ R
d and a point

ξ ∈ Ω, we can always find a small ball around ξ which is contained in Ω. By
the property above, translated to ξ we have

|∂ξiu (ξ) | ≤
d

dist (ξ, ∂Ω)
sup
Ω

|u (x) | (28)

Consequently, on any compact subset of Ω we will obtain uniform bounds for
all derivatives up to a fixed order.

Completeness and compactness properties of harmonic functions

Suppose you have a sequence uk ∈ C2 (Ω)∩C0
(

Ω̄
)

which is harmonic in Ω. Then
if the uk converge uniformly to f on the boundary, they converge uniformly to
a continuous function u on the entire disk by the maximum principle. In any
compact subset of Ω, all derivatives up to a fixed order converge uniformly. It
follows that u ∈ C∞ (Ω) and harmonic in Ω.

Exercise 1.14. Suppose you only knew |uk| ≤ C on the boundary for uk ∈
C2 (Ω) ∩ C0

(

Ω̄
)

a sequence of harmonic functions in Ω. Can you extract a
subsequence which converges? Hint: Arzela-Ascoli.
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2 Exercises

1. At various stages we have used the interchange of differentiation and in-
tegration. The following theorems cover these situations.

(a) Suppose that I ⊂ R is open and that f : I ×Ω → R, (t, x) 7→ f (t, x)
with Ω ⊂ R

n is a function which is in L1 (Ω) for all t, differentiable
in t for all x with the derivative satisfying | ∂

∂t
f (t, x) | ≤ g (x) for all

(t, x) with g a function in L1 (Ω). Then

d

dt

∫

Ω

f (t, x) dx =

∫

Ω

∂f

∂t
(t, x) dx <∞ .

Hint: Use the dominant convergence theorem.

(b) Let U ⊂ R
n be open and Ω ⊂ R

k be compact. Let f : U × Ω → R,
(x, y) 7→ f(x, y) be continuous with continuous partial derivatives
∂xi

f : U×Ω → R. Then F : U → R, x 7→
∫

Ω
f(x, y)dy is continuously

differentiable in xi and

∂

∂xi

∫

Ω

f(x, y)dy =

∫

Ω

∂

∂xi
f(x, y)dy

for all x ∈ U .
Hint: Uniform continuity and exchange of limit and integral.

2. Let ∆u = 0 for u ∈ C2 (Ω) ∩ C0
(

Ω̄
)

and g ≥ 0 on ∂Ω. If g > 0 at one
point of ∂Ω, then u > 0 in Ω.

3. (Fritz John, 4.2 (1)) Let Ω denote the unbounded set |x| > 1. Let u ∈
C2

(

Ω̄
)

, ∆u = 0 in Ω and lim|x|→∞ u (x) = 0. Show that

max
Ω̄

|u| = max
∂Ω

|u| .

4. (Fritz John, 4.2 (2)) Let u ∈ C2 (Ω) ∩ C0
(

Ω̄
)

be a solution of

∆u+

n
∑

k=1

ak (x) uxk
+ c (x) u = 0

where c (x) < 0 in Ω. Show that u = 0 on ∂Ω implies u = 0 in Ω.

5. (Fritz John, 4.2 (3)) Prove the weak maximum principle for solutions of
the two-dimensional elliptic equation

Lu = auxx + 2buxy + cuyy + 2dux + 2euy = 0

where a, b, c, d, e are continuous functions of x and y in Ω̄ and ac− b2 > 0
(ellipticity) as well as a > 0 hold. HINT: Prove it first under the strict

condition Lu > 0, then use u+ǫv for v = exp
[

M (x− x0)
2 +M (y − y0)

2
]

with appropriate M , x0, y0.
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6. (Harnack’s inequality) Let u ∈ C2 for |x| < a and u ∈ C0 for |x| ≤ a. Let
also u ≥ 0 and ∆u = 0 hold for |x| < a (in other words, u is a non-negative
harmonic function). Show that for |ξ| < a

an−2 (a− |ξ|)

(a+ |ξ|)
n−1 u (0) ≤ u (ξ) ≤

an−2 (a+ |ξ|)

(a− |ξ|)
n−1 u (0)

Discuss the meaning of this estimate. What can you say for arbitrary
regions?

7. (Analyticity of harmonic functions.) In lectures we saw an outline on how
to show that harmonic functions are analytic by extending the formula
involving the fundamental solution to a complex analytic function. Here
we give an alternative argument.

Let u ∈ C2 (Ω) be harmonic in Ω ⊂ R
d (bounded, connected, open, as in

lectures). In lectures, we proved that u is smooth in Ω and also that for
any closed ball B(ξ, a) ⊂ Ω we have the estimate

|∂ξiu (ξ) | ≤
d

a
max
B(ξ,a)

|u (x) | . (29)

(a) Let B(ξ, a) ⊂ Ω and |u(x)| ≤ M hold in B(ξ, a). Use (29) to prove
that

|Dαu(ξ)| ≤
(m

a
d
)m

M for |α| = m.

Hint: Apply (29) successively to the kth derivatives in the balls
|x− ξ| ≤ am−k

m
for k = 0, 1, ...,m− 1.

(b) Prove that u is analytic in Ω. Hint: Note mm ≤ m!em.
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