Partial Differential Equations 2020 Solutions to CW 1

Gustav Holzegel

February 27, 2020

1 Week 1, Problem 4

Suppose $f:[0, \infty) \rightarrow \mathbb{R}^{+}$is C^{1} and satisfies

$$
f\left(t_{2}\right)+c \int_{t_{1}}^{t_{2}} d \bar{t} f(\bar{t}) \leq C \cdot f\left(t_{1}\right)
$$

for all $0 \leq t_{1}<t_{2}<\infty$ and positive constants c, C. Show that f has to decay exponentially in time.

Applying the estimate with $t_{1}=0$ and any $t=t_{2}$ we see that $f(t) \leq C f(0)$ for all $t \geq 0$ and that $\int_{0}^{\infty} f(s) d s \leq \frac{C}{c} f(0)$. We can then consider $\frac{d}{d t}\left(e^{\frac{c}{C} t} \int_{t}^{\infty} f(s) d s\right)=\frac{1}{C} e^{\frac{c}{C} t}\left(c \int_{t}^{\infty} f(s) d s-C f(t)\right) \leq \frac{-e^{\frac{c}{C} t}}{C} \limsup _{t \rightarrow \infty} f(t) \leq 0$
for all t. Since the derivative decreases we have

$$
\left(e^{\frac{c}{c} t} \int_{t}^{\infty} f(s) d s\right) \leq \int_{0}^{\infty} f(s) d s \leq \frac{C}{c} f(0)
$$

which is

$$
\int_{t}^{\infty} f(s) d s \leq \frac{C}{c} e^{-\frac{c}{c} t} f(0) .
$$

From this we can deduce exponential decay for f. Indeed, consider the sequence of times $\left(t_{n}\right)$ with $t_{n}=n$. Then by the mean value theorem we find a sequence $\left(\tilde{t}_{n}\right)$ with $\tilde{t}_{n} \in\left[t_{n}, t_{n+1}\right]$ such that

$$
f\left(\tilde{t}_{n}\right) \leq C e^{-\frac{c}{c} t_{n}} f(0)
$$

Now for any $t \geq 1$ we find the closest \tilde{t}_{n} with $\tilde{t}_{n} \leq t$ and apply the estimate between \tilde{t}_{n} and t to produce

$$
f(t) \leq \frac{C^{2}}{c} e^{-\frac{c}{C} t_{n}} f(0) \leq \frac{C^{2}}{c} e^{-\frac{c}{C}(t-2)} f(0)=\frac{C^{2}}{c} f(0) e^{2 \frac{c}{c}} e^{-\frac{c}{C} t}
$$

where we have used $t-t_{n} \leq 2$.

2 Week 1, Problem 7

Give an alternative proof of Gronwall's inequality using a bootstrap argument. HINT: Bootstrap the estimate $\phi(t) \leq(1+\epsilon) A \exp \left(\int_{t_{0}}^{t}(1+\epsilon) B(s) d s\right)$ for $\epsilon>0$.

Let $\epsilon>0$ and define the set

$$
\Omega=\left\{t \in\left[t_{0}, t_{1}\right] \mid \phi(s) \leq(1+\epsilon) A \exp \left(\int_{t_{0}}^{s}(1+\epsilon) B(x) d x\right) \forall s \in\left[t_{0}, t\right]\right\} .
$$

The set Ω is a closed subset of $\left[t_{0}, t_{1}\right]$. It is non-empty because clearly $t_{0} \in \Omega$. We show that Ω is also open in $\left[t_{0}, t_{1}\right]$. Indeed, if $t \in \Omega$, then $\phi(t)$ obeys

$$
\begin{aligned}
\phi(t) & \leq A+\int_{t_{0}}^{t} B(s)(1+\epsilon) A \exp \left(\int_{t_{0}}^{s}(1+\epsilon) B(x) d x\right) d s \\
& \leq A \exp \left(\int_{t_{0}}^{t}(1+\epsilon) B(x) d x\right)<(1+\epsilon) A \exp \left(\int_{t_{0}}^{s}(1+\epsilon) B(x) d x\right)
\end{aligned}
$$

and hence by continuity a small neighbourhood of t in $\left[t_{0}, t_{1}\right]$ is in Ω.

3 Week 2, Problem 1

Consider the PDE $u_{t}-i u_{x}=0$ for $u(t, x) \in \mathbb{C}$. Identifying the (t, x) plane appropriately with \mathbb{C}, show that the solution u has to be holomorphic. Conclude that the initial value problem can only be solved for analytic data. Compare and contrast with the transport equation.

We identify $z=x+i t$ and consider $f(x+i t)=u(t, x)$ as a function $f: \mathbb{C} \supset$ $\Omega \rightarrow \mathbb{C} .{ }^{1}$ We claim that the PDE implies that the function f is holomorphic. To see this, note that $\partial_{\bar{z}} f=\frac{1}{2}\left[\frac{\partial}{\partial x}+i \frac{\partial}{\partial t}\right] u=0$. This implies that the restriction to $t=0$ is necessarily a real analytic function.

We now show that the problem can actually be solved for any real-analytic data $u(x, t=0)=h(x)$ with h real analytic for $|x|<R$. Since h is analytic in $|x|<R$, we can fix $r<R$ and conclude bounds on the derivatives: $\left|h^{(n)}(0) r^{n}\right| \leq$ $M n$! for a constant M. Therefore, the Taylor series

$$
u(z)=\sum_{n=0}^{\infty} h^{(n)}(0) \frac{z^{n}}{n!}
$$

converges for $|z|<r$ and defines a holomorphic function whose restriction to the real axis $(t=0)$ agrees with the data (the power series for h). Since any holomorphic function satisfies the PDE (after the identification $z=x+i t$ above), we are done.

[^0]Alternatively, one may show directly the convergence of the formal power series (computed from the data) as follows:

$$
\left|\sum_{j, k} \frac{(-i)^{j} h^{(j+k)}(0)}{j!k!} t^{j} x^{k}\right| \leq \sum_{j, k} \frac{\left|h^{(j+k)}(0)\right|}{(j+k)!} R^{j+k} \frac{(j+k)!}{j!k!}\left|\frac{t}{R}\right|^{j}\left|\frac{x}{R}\right|^{k} .
$$

However, we know that $\left|\frac{h^{(j+k)}(0)}{(j+k)!} R^{j+k}\right|<C$ as the function h has a convergent power series at the origin $(0,0)$. Hence

$$
\ldots \leq C \sum_{m=0}^{\infty} \sum_{j+k=m} \frac{(j+k)!}{j!k!}\left|\frac{t}{R}\right|^{j}\left|\frac{x}{R}\right|^{k} \leq C \sum_{m=0}^{\infty}\left(\frac{|t|}{R}+\frac{|x|}{R}\right)^{m} \leq \frac{C}{1-\left(\frac{|t|+|x|}{R}\right)}
$$

where we have used the multinomial identity. Convergence in $|t|+|x|<R$ follows. Differentiating the power series one easily checks that the series thus defined is a solution of the PDE.

4 Week 2, Problem 4

(John's PDE book) Show that the function $u(x, t)$ defined for $t \geq 0$ by

$$
\begin{array}{ll}
u=-\frac{2}{3}\left(t+\sqrt{3 x+t^{2}}\right) & \text { for } 4 x+t^{2}>0 \\
u=0 & \\
\text { for } 4 x+t^{2}<0
\end{array}
$$

is an integral solution of Burger's equation.
We define

$$
\begin{gathered}
\Omega_{1}=\{(x, t) \mid t \geq 0 \text { and } t>2 \sqrt{-x} \text { if } x \leq 0\} \\
\Omega_{2}=\{(x, t) \mid t \geq 0, x \leq 0 \text { and } t<2 \sqrt{-x}\}
\end{gathered}
$$

Note that $u=0$ identically in Ω_{2} by definition and that $\Omega_{1} \cup \Omega_{2}$ is the upper half plane up to a measure zero set.

An easy computation shows that u is a classical solution both in Ω_{1} and Ω_{2}.
To check it is an integral solution we can either verify the Rankine Hugoniot condition or do it from first principles. Let's do the latter here.

We need to show that

$$
\begin{equation*}
\int_{0}^{\infty} d t \int_{-\infty}^{\infty} d x u v_{t}+\int_{0}^{\infty} d t \int_{-\infty}^{\infty} d x \frac{u^{2}}{2} v_{x}+\left.\int_{-\infty}^{\infty} u(x, 0) v d x\right|_{t=0}=0 \tag{1}
\end{equation*}
$$

holds for any test function $v: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$.
By Fubini we can interchange the integration in t and x. We split the first integral as

$$
\begin{equation*}
11:=\int_{-\infty}^{\infty} d x \int_{0}^{\infty} d t u v_{t}=\int_{-\infty}^{0} d x \int_{2 \sqrt{-x}}^{\infty} d t u v_{t}+\int_{0}^{\infty} d x \int_{0}^{\infty} d t u v_{t} \tag{2}
\end{equation*}
$$

Integrating by parts produces (recalling $u(x, 0)=0$ for $x<0$)

$$
1=-\int_{\Omega_{1}} d t d x u_{t} v-\int_{-\infty}^{0} d x 2 \sqrt{-x} v(x, 2 \sqrt{-x})-\left.\int_{-\infty}^{\infty} u(x, 0) v d x\right|_{t=0}
$$

Similarly for the second integral in (1) we have

$$
\begin{align*}
22:=\int_{0}^{\infty} d t \int_{-\infty}^{\infty} d x \frac{u^{2}}{2} v_{x} & =\int_{0}^{\infty} d t \int_{-t^{2} / 4}^{\infty} d x \frac{u^{2}}{2} v_{x} \\
& =-\int_{\Omega_{1}} u u_{x} v-\int_{0}^{\infty} d t \frac{t^{2}}{2} v\left(-\frac{t^{4}}{2}, t\right) \tag{3}
\end{align*}
$$

Adding $\sqrt{1}$ and 2 we find using that u is a classical solution in Ω_{1}

$$
\begin{align*}
\boxed{1}+\boxed{2}= & -\int_{-\infty}^{0} d x 2 \sqrt{-x} v(x, 2 \sqrt{-x})-\int_{0}^{\infty} d t \frac{t^{2}}{2} v\left(-\frac{t^{2}}{4}, t\right) \\
& -\left.\int_{-\infty}^{\infty} u(x, 0) v d x\right|_{t=0} \tag{4}
\end{align*}
$$

A simple change of variables $x=-\frac{t^{2}}{4}, d x=-\frac{1}{2} t d t$ shows that the first two integrals on the right hand side cancel and hence proves the result.

5 Week 3, Problem 5

Use the Cauchy-Kowalevskaya theorem to show that the initial value problem

$$
\begin{equation*}
u_{t} u_{x}=f(t, x, u) \quad, \quad u(0, x)=g(x) \tag{5}
\end{equation*}
$$

has a real analytic solution on a neighbourhood of $(0,0)$ provided that f is real analytic on a neighbourhood of $(0,0, g(0))$ and g is real analytic on a neighbourhood of 0 and $g^{\prime}(0) \neq 0$. Construct an example with $g^{\prime}(0)=0, g^{\prime \prime}(0) \neq 0, g$ and f real analytic and such that the initial value problem does not even have a C^{1} solution on a neighbourhood of $(0,0)$.

We let $F\left(t, x, u, u_{t}, u_{x}\right)=u_{t} u_{x}-f(t, x, u)$ which is analytic at $(0,0, g(0), a, b)$ for all $a, b \in \mathbb{R}$. To apply the Cauchy-Kovalevskaya Theorem in the form of Theorem 2.11 in the notes, we define $u_{t}(0,0)=\frac{f(0,0, g(0))}{g^{\prime}(0)}$ and check that the hypersurface $t=0$ is non-characteristic at $(0,0)$, i.e.

$$
\left.\frac{\partial}{\partial\left(\partial_{t} u\right)}\left(u_{t} u_{x}-f(t, x, u)\right)\right|_{t=0, x=0, u=g(0)}=\partial_{x} u(0,0)=g^{\prime}(0) \neq 0
$$

The CK theorem now guarantees an analytic solution near $(0,0)$.
For the (counter)example if $g^{\prime}(0) \neq 0$ is not satisfied, consider

$$
u_{t} u_{x}=e^{u} \quad u(0, x)=g(x)=x^{2}
$$

which at $(0,0)$ yields the contradiction $0=1$ using that u_{t} is continuous.

6 Week 6, Problem 8

Consider a classical solution u to the one-dimensional heat equation

$$
\partial_{t} u=\partial_{x x} u
$$

defined on the half space $\mathbb{R}_{t>0}^{2}$. Suppose $u=u_{x}=0$ holds along the line segment $\{x=0\} \times(1,2)$. On what region does u necessarily vanish?

The key is to apply Holmgren's global uniqueness theorem (due to F. John). We claim that u vanishes in the set $(-\infty, \infty) \times[1,2]$. By continuity it suffices to show vanishing in $(-\infty, \infty) \times(1,2)$. We furthermore focus on showing vanishing in $(0, \infty) \times(1,2)$ (because vanishing in $(-\infty, 0) \times(1,2)$ can be shown entirely analogously using a reflection). Fix a point (\bar{x}, \bar{t}) with $\bar{x} \in(0, \infty)$ and $\bar{t} \in$ $(1,2)$. Let $\delta>0$ be such that $1<\bar{t}-\delta<\bar{t}+\delta<2$. Consider the map $\sigma:[0,1] \times[\bar{t}-\delta, \bar{t}+\delta] \rightarrow \mathbb{R}^{2}$ given by

$$
\sigma(\lambda, t)=\left(t,(\bar{x}+1) \lambda \cos ^{2}\left(\frac{t-\bar{t}}{\delta} \frac{\pi}{2}\right)\right)
$$

This defines a continuous one-parameter family of hypersurfaces (curves) Σ_{λ} (the image of $\sigma(\lambda,(\bar{t}-\delta, \bar{t}+\delta))$) as in the assumptions of the global Holmgren theorem. In particular, one easily checks that all these hypersurfaces are noncharacteristic for the heat equation (compute $\left.\left(\partial_{t}-\partial_{x x}\right) H^{2}\right|_{H=0}=-2$ with $\left.H=x-(\bar{x}+1) \lambda \cos ^{2}\left(\frac{t-\bar{t}}{\delta} \frac{\pi}{2}\right)\right)$ and clearly (\bar{t}, \bar{x}) lies on Σ_{λ} for $\lambda=\frac{\bar{x}}{\bar{x}+1}<1$ (choose $t=\bar{t})$. The global Holmgren theorem therefore implies vanishing at (\bar{t}, \bar{x}). It follows that u vanishes in $(0, \infty) \times(1,2)$. Reflecting the procedure above yields vanishing in all of $(-\infty, \infty) \times(1,2)$ and continuity vanishing in $(-\infty, \infty) \times[1,2]$. In view of Exercise 6 the result cannot be improved.

[^0]: ${ }^{1}$ Of course identifying $z=t+i x$ is equally possible, $f(t+i x)=u(t, x)$ will then be antiholomorphic.

