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1 Week 1, Problem 4

Suppose f : [0,∞)→ R+ is C1 and satisfies

f (t2) + c

∫ t2

t1

dt̄f (t̄) ≤ C · f (t1)

for all 0 ≤ t1 < t2 <∞ and positive constants c, C. Show that f has to
decay exponentially in time.

Applying the estimate with t1 = 0 and any t = t2 we see that f(t) ≤ Cf(0)
for all t ≥ 0 and that

∫∞
0
f(s)ds ≤ C

c f(0). We can then consider

d

dt

(
e

c
C t

∫ ∞
t

f(s)ds

)
=

1

C
e

c
C t

(
c

∫ ∞
t

f(s)ds− Cf(t)

)
≤ −e

c
C t

C
lim sup
t→∞

f(t) ≤ 0

for all t. Since the derivative decreases we have(
e

c
C t

∫ ∞
t

f(s)ds

)
≤
∫ ∞

0

f(s)ds ≤ C

c
f(0)

which is ∫ ∞
t

f(s)ds ≤ C

c
e−

c
C tf(0) .

From this we can deduce exponential decay for f . Indeed, consider the sequence
of times (tn) with tn = n . Then by the mean value theorem we find a sequence
(t̃n) with t̃n ∈ [tn, tn+1] such that

f(t̃n) ≤ Ce− c
C tnf(0) .

Now for any t ≥ 1 we find the closest t̃n with t̃n ≤ t and apply the estimate
between t̃n and t to produce

f(t) ≤ C2

c
e−

c
C tnf(0) ≤ C2

c
e−

c
C (t−2)f(0) =

C2

c
f(0)e2 c

C e−
c
C t

where we have used t− tn ≤ 2.
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2 Week 1, Problem 7

Give an alternative proof of Gronwall’s inequality using a bootstrap

argument. HINT: Bootstrap the estimate φ(t) ≤ (1+ε)A exp
(∫ t

t0
(1 + ε)B(s)ds

)
for ε > 0.

Let ε > 0 and define the set

Ω =
{
t ∈ [t0, t1] | φ(s) ≤ (1 + ε)A exp

(∫ s

t0

(1 + ε)B(x)dx

)
∀s ∈ [t0, t]

}
.

The set Ω is a closed subset of [t0, t1]. It is non-empty because clearly t0 ∈ Ω.
We show that Ω is also open in [t0, t1]. Indeed, if t ∈ Ω, then φ(t) obeys

φ(t) ≤ A+

∫ t

t0

B(s)(1 + ε)A exp

(∫ s

t0

(1 + ε)B(x)dx

)
ds

≤ A exp

(∫ t

t0

(1 + ε)B(x)dx

)
< (1 + ε)A exp

(∫ s

t0

(1 + ε)B(x)dx

)
and hence by continuity a small neighbourhood of t in [t0, t1] is in Ω.

3 Week 2, Problem 1

Consider the PDE ut − iux = 0 for u (t, x) ∈ C. Identifying the (t, x)
plane appropriately with C, show that the solution u has to be holo-
morphic. Conclude that the initial value problem can only be solved
for analytic data. Compare and contrast with the transport equation.

We identify z = x+ it and consider f (x+ it) = u (t, x) as a function f : C ⊃
Ω→ C.1 We claim that the PDE implies that the function f is holomorphic. To
see this, note that ∂z̄f = 1

2

[
∂
∂x + i ∂∂t

]
u = 0. This implies that the restriction

to t = 0 is necessarily a real analytic function.
We now show that the problem can actually be solved for any real-analytic

data u(x, t = 0) = h(x) with h real analytic for |x| < R. Since h is analytic in
|x| < R, we can fix r < R and conclude bounds on the derivatives: |h(n)(0)rn| ≤
Mn! for a constant M . Therefore, the Taylor series

u(z) =

∞∑
n=0

h(n)(0)
zn

n!

converges for |z| < r and defines a holomorphic function whose restriction to
the real axis (t = 0) agrees with the data (the power series for h). Since any
holomorphic function satisfies the PDE (after the identification z = x+it above),
we are done.

1Of course identifying z = t + ix is equally possible, f (t+ ix) = u (t, x) will then be
antiholomorphic.
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Alternatively, one may show directly the convergence of the formal power
series (computed from the data) as follows:∣∣∣∑

j,k

(−i)j h(j+k) (0)

j!k!
tjxk

∣∣∣ ≤∑
j,k

|h(j+k) (0) |
(j + k)!

Rj+k
(j + k)!

j!k!

∣∣∣ t
R

∣∣∣j∣∣∣ x
R

∣∣∣k .
However, we know that

∣∣∣h(j+k)(0)
(j+k)! R

j+k
∣∣∣ < C as the function h has a convergent

power series at the origin (0, 0). Hence

... ≤ C
∞∑
m=0

∑
j+k=m

(j + k)!

j!k!

∣∣∣ t
R

∣∣∣j∣∣∣ x
R

∣∣∣k ≤ C ∞∑
m=0

(
|t|
R

+
|x|
R

)m
≤ C

1−
(
|t|+|x|
R

)
where we have used the multinomial identity. Convergence in |t| + |x| < R
follows. Differentiating the power series one easily checks that the series thus
defined is a solution of the PDE.

4 Week 2, Problem 4

(John’s PDE book) Show that the function u (x, t) defined for t ≥ 0 by

u = −2

3

(
t+
√

3x+ t2
)

for 4x+ t2 > 0

u = 0 for 4x+ t2 < 0

is an integral solution of Burger’s equation.

We define

Ω1 = {(x, t) | t ≥ 0 and t > 2
√
−x if x ≤ 0 }

Ω2 = {(x, t) | t ≥ 0 , x ≤ 0 and t < 2
√
−x }

Note that u = 0 identically in Ω2 by definition and that Ω1 ∪ Ω2 is the upper
half plane up to a measure zero set.

An easy computation shows that u is a classical solution both in Ω1 and Ω2.
To check it is an integral solution we can either verify the Rankine Hugoniot

condition or do it from first principles. Let’s do the latter here.
We need to show that∫ ∞

0

dt

∫ ∞
−∞

dxuvt +

∫ ∞
0

dt

∫ ∞
−∞

dx
u2

2
vx +

∫ ∞
−∞

u(x, 0)vdx
∣∣∣
t=0

= 0 (1)

holds for any test function v : R× [0,∞)→ R.
By Fubini we can interchange the integration in t and x. We split the first

integral as

1 :=

∫ ∞
−∞

dx

∫ ∞
0

dt uvt =

∫ 0

−∞
dx

∫ ∞
2
√
−x
dt uvt +

∫ ∞
0

dx

∫ ∞
0

dt uvt (2)
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Integrating by parts produces (recalling u(x, 0) = 0 for x < 0)

1 = −
∫

Ω1

dtdx utv −
∫ 0

−∞
dx 2
√
−x v

(
x, 2
√
−x
)
−
∫ ∞
−∞

u(x, 0)vdx
∣∣∣
t=0

Similarly for the second integral in (1) we have

2 :=

∫ ∞
0

dt

∫ ∞
−∞

dx
u2

2
vx =

∫ ∞
0

dt

∫ ∞
−t2/4

dx
u2

2
vx

= −
∫

Ω1

uuxv −
∫ ∞

0

dt
t2

2
v

(
− t

4

2
, t

)
(3)

Adding 1 and 2 we find using that u is a classical solution in Ω1

1 + 2 =−
∫ 0

−∞
dx 2
√
−xv

(
x, 2
√
−x
)
−
∫ ∞

0

dt
t2

2
v

(
− t

2

4
, t

)
−
∫ ∞
−∞

u(x, 0)vdx
∣∣∣
t=0

(4)

A simple change of variables x = − t
2

4 , dx = − 1
2 tdt shows that the first two

integrals on the right hand side cancel and hence proves the result.

5 Week 3, Problem 5

Use the Cauchy-Kowalevskaya theorem to show that the initial value
problem

utux = f(t, x, u) , u(0, x) = g(x) (5)

has a real analytic solution on a neighbourhood of (0, 0) provided that
f is real analytic on a neighbourhood of (0, 0, g(0)) and g is real analytic
on a neighbourhood of 0 and g′(0) 6= 0. Construct an example with
g′(0) = 0, g′′(0) 6= 0, g and f real analytic and such that the initial value
problem does not even have a C1 solution on a neighbourhood of (0, 0).

We let F (t, x, u, ut, ux) = utux−f(t, x, u) which is analytic at (0, 0, g(0), a, b)
for all a, b ∈ R. To apply the Cauchy-Kovalevskaya Theorem in the form of

Theorem 2.11 in the notes, we define ut(0, 0) = f(0,0,g(0))
g′(0) and check that the

hypersurface t = 0 is non-characteristic at (0, 0), i.e.

∂

∂(∂tu)
(utux − f(t, x, u))

∣∣∣
t=0,x=0,u=g(0)

= ∂xu(0, 0) = g′(0) 6= 0 .

The CK theorem now guarantees an analytic solution near (0, 0).
For the (counter)example if g′(0) 6= 0 is not satisfied, consider

utux = eu u(0, x) = g(x) = x2

which at (0, 0) yields the contradiction 0 = 1 using that ut is continuous.
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6 Week 6, Problem 8

Consider a classical solution u to the one-dimensional heat equation

∂tu = ∂xxu

defined on the half space R2
t>0. Suppose u = ux = 0 holds along the

line segment {x = 0}×(1, 2). On what region does u necessarily vanish?

The key is to apply Holmgren’s global uniqueness theorem (due to F. John).
We claim that u vanishes in the set (−∞,∞)× [1, 2]. By continuity it suffices to
show vanishing in (−∞,∞)×(1, 2). We furthermore focus on showing vanishing
in (0,∞) × (1, 2) (because vanishing in (−∞, 0) × (1, 2) can be shown entirely
analogously using a reflection). Fix a point (x̄, t̄) with x̄ ∈ (0,∞) and t̄ ∈
(1, 2). Let δ > 0 be such that 1 < t̄ − δ < t̄ + δ < 2. Consider the map
σ : [0, 1]× [t̄− δ, t̄+ δ]→ R2 given by

σ (λ, t) =

(
t, (x̄+ 1)λ cos2

(
t− t̄
δ

π

2

))
This defines a continuous one-parameter family of hypersurfaces (curves) Σλ
(the image of σ(λ, (t̄− δ, t̄+ δ))) as in the assumptions of the global Holmgren
theorem. In particular, one easily checks that all these hypersurfaces are non-

characteristic for the heat equation (compute (∂t − ∂xx)H2
∣∣∣
H=0

= −2 with

H = x − (x̄ + 1)λ cos2
(
t−t̄
δ
π
2

)
) and clearly (t̄, x̄) lies on Σλ for λ = x̄

x̄+1 < 1

(choose t = t̄). The global Holmgren theorem therefore implies vanishing at
(t̄, x̄). It follows that u vanishes in (0,∞) × (1, 2). Reflecting the procedure
above yields vanishing in all of (−∞,∞) × (1, 2) and continuity vanishing in
(−∞,∞)× [1, 2]. In view of Exercise 6 the result cannot be improved.
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